Articles | Volume 21, issue 2
https://doi.org/10.5194/cp-21-357-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-357-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New probabilistic methods for quantitative climate reconstructions applied to palynological data from Lake Kinneret
Timon Netzel
Institute for Geoscience, Sect. Meteorology, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Andrea Miebach
Bonn Institute of Organismic Biology, Sect. Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
Thomas Litt
CORRESPONDING AUTHOR
Bonn Institute of Organismic Biology, Sect. Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
Andreas Hense
Institute for Geoscience, Sect. Meteorology, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Related authors
No articles found.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020, https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Short summary
A new method for weather and climate forecast model evaluation with respect to observations is proposed. Individually added values are estimated for each model, together with shared information both models provide equally on the observations. Finally, shared model information, which is not present in the observations, is calculated. The method is applied to two examples from climate and weather forecasting, showing new perspectives for model evaluation.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Rita Glowienka-Hense, Andreas Hense, Thomas Spangehl, and Marc Schröder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-141, https://doi.org/10.5194/gmd-2018-141, 2018
Revised manuscript not accepted
Short summary
Short summary
Ensemble forecast verification treats the issues of forecast errors and uncertainty estimated from ensemble spread. We suggest measures based on relative entropy. For continuous variables correlation and the mean ratio of the ensemble spread to climate variance (analysis of variance (anova)) are related to these entropies. For categorical data corresponding scores are deduced that allow the comparison with continuous data.
Nadine Pickarski and Thomas Litt
Clim. Past, 13, 689–710, https://doi.org/10.5194/cp-13-689-2017, https://doi.org/10.5194/cp-13-689-2017, 2017
Short summary
Short summary
We present a new detailed pollen and isotope record from Lake Van (Turkey) spanning the period from 250 to 128 ka. In contrast to SW Europe, all three terrestrial warm intervals at Lake Van are characterized by clear interglacial conditions. The largest forest expansion occurred during MIS 7c instead of MIS 7e. Our record also reveals high oscillations between 193 and 157 ka followed by low variations (157 to 131 ka) that highlighted Dansgaard–Oeschger-like events during the penultimate glacial.
Olga Lyapina, Martin G. Schultz, and Andreas Hense
Atmos. Chem. Phys., 16, 6863–6881, https://doi.org/10.5194/acp-16-6863-2016, https://doi.org/10.5194/acp-16-6863-2016, 2016
Short summary
Short summary
This study applies numerical clustering for the classification of about 1500 ozone data sets in Europe. We show the usefulness of cluster analysis (CA) for the quantitative evaluation of a global model: pre-selection of stations and validation of a global model in a phase-space produce clearer and more interpretable results. CA can be easily updated for new stations, different length of data, and other type of input properties, as well as other type of data (for example, meteorological).
Andrea Miebach, Phoebe Niestrath, Patricia Roeser, and Thomas Litt
Clim. Past, 12, 575–593, https://doi.org/10.5194/cp-12-575-2016, https://doi.org/10.5194/cp-12-575-2016, 2016
Short summary
Short summary
We analyze the vegetation and climate in northwestern Turkey during the last ca. 31 000 years based on a new pollen data set from lacustrine sediment cores. The study reveals vegetation responses to long-term and rapid climate changes. Moreover, it documents human activities in the catchment of Lake Iznik and shows a clear anthropogenic impact on the vegetation since the Early Bronze Age.
N. Pickarski, O. Kwiecien, D. Langgut, and T. Litt
Clim. Past, 11, 1491–1505, https://doi.org/10.5194/cp-11-1491-2015, https://doi.org/10.5194/cp-11-1491-2015, 2015
J. D. Keller and A. Hense
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-1-1509-2014, https://doi.org/10.5194/npgd-1-1509-2014, 2014
Preprint withdrawn
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Holocene
A global Data Assimilation of Moisture Patterns from 21 000–0 BP (DAMP-21ka) using lake level proxy records
Internal climate variability and spatial temperature correlations during the past 2000 years
Mid-Holocene climate change over China: model–data discrepancy
The 4.2 ka BP event in the Levant
Climate change and ecosystems dynamics over the last 6000 years in the Middle Atlas, Morocco
The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations
Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene
Proxy benchmarks for intercomparison of 8.2 ka simulations
Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene
Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves
Mechanisms for European summer temperature response to solar forcing over the last millennium
Holocene land-cover reconstructions for studies on land cover-climate feedbacks
On the importance of paleoclimate modelling for improving predictions of future climate change
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Majda Nourelbait, Ali Rhoujjati, Abdelfattah Benkaddour, Matthieu Carré, Frederique Eynaud, Philippe Martinez, and Rachid Cheddadi
Clim. Past, 12, 1029–1042, https://doi.org/10.5194/cp-12-1029-2016, https://doi.org/10.5194/cp-12-1029-2016, 2016
Short summary
Short summary
The present study is related the climate changes and their environmental impacts during the last 6 ky from a fossil record collected in the Middle Atlas, Morocco. We used the reconstruction of three climate variables and geo-chemical elements to evaluate the relationships between all the environmental variables. In summary, this present study confirms the overall climate stability over the last 6 ky and highlights the presence of a short and abrupt climate event at about 5.2 ka cal BP.
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
C. Morrill, D. M. Anderson, B. A. Bauer, R. Buckner, E. P. Gille, W. S. Gross, M. Hartman, and A. Shah
Clim. Past, 9, 423–432, https://doi.org/10.5194/cp-9-423-2013, https://doi.org/10.5194/cp-9-423-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
A. Wackerbarth, P. M. Langebroek, M. Werner, G. Lohmann, S. Riechelmann, A. Borsato, and A. Mangini
Clim. Past, 8, 1781–1799, https://doi.org/10.5194/cp-8-1781-2012, https://doi.org/10.5194/cp-8-1781-2012, 2012
D. Swingedouw, L. Terray, J. Servonnat, and J. Guiot
Clim. Past, 8, 1487–1495, https://doi.org/10.5194/cp-8-1487-2012, https://doi.org/10.5194/cp-8-1487-2012, 2012
M.-J. Gaillard, S. Sugita, F. Mazier, A.-K. Trondman, A. Broström, T. Hickler, J. O. Kaplan, E. Kjellström, U. Kokfelt, P. Kuneš, C. Lemmen, P. Miller, J. Olofsson, A. Poska, M. Rundgren, B. Smith, G. Strandberg, R. Fyfe, A. B. Nielsen, T. Alenius, L. Balakauskas, L. Barnekow, H. J. B. Birks, A. Bjune, L. Björkman, T. Giesecke, K. Hjelle, L. Kalnina, M. Kangur, W. O. van der Knaap, T. Koff, P. Lagerås, M. Latałowa, M. Leydet, J. Lechterbeck, M. Lindbladh, B. Odgaard, S. Peglar, U. Segerström, H. von Stedingk, and H. Seppä
Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, https://doi.org/10.5194/cp-6-483-2010, 2010
J. C. Hargreaves and J. D. Annan
Clim. Past, 5, 803–814, https://doi.org/10.5194/cp-5-803-2009, https://doi.org/10.5194/cp-5-803-2009, 2009
Cited articles
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C.: Sea-land isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals, Geochim. Cosmochim. Ac., 67, 3181–3199, https://doi.org/10.1016/S0016-7037(02)01031-1, 2003. a
Ben-Avraham, Z., Rosenthal, M., Tibor, G., Navon, H., Wust-Bloch, H., Hofstetter, R., and Rybakov, M.: Structure and Tectonic Development of the Kinneret Basin, in: Lake Kinneret: Ecology and Management, edited by: Zohary, T., Sukenik, A., Berman, T., and Nishri, A., Springer Netherlands, Dordrecht, 19–38, ISBN 978-94-017-8944-8, https://doi.org/10.1007/978-94-017-8944-8_2, 2014. a
Berger, J. O.: Statistical decision theory and Bayesian analysis, Springer Verlag, New York, Berlin, Heidelberg, https://doi.org/10.1007/978-1-4757-4286-2, 2013. a
Berman, T., Zohary, T., Nishri, A., and Sukenik, A.: General Background, in: Lake Kinneret: Ecology and Management, edited by Zohary, T., Sukenik, A., Berman, T., and Nishri, A. Springer Netherlands, Dordrecht, 1–15, ISBN 978-94-017-8944-8, https://doi.org/10.1007/978-94-017-8944-8_1, 2014. a
Beug, H.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Verlag Dr. Friedrich Pfeil, ISBN 9783899370430, 2004. a
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011. a
Blaauw, M., Christen, J. A., and Aquino L., M. A.: rbacon: Age-Depth Modelling using Bayesian Statistics, R package version 3.3.1, CRAN, https://CRAN.R-project.org/package=rbacon (last access: 23 January 2025), 2020. a
Bowyer, K. W., Chawla, N. V., Hall, L. O., and Kegelmeyer, W. P.: SMOTE: Synthetic Minority Over-sampling Technique, CoRR, abs/1106.1813, arxiv [preprint], https://doi.org/10.48550/arXiv.1106.1813, 2011. a
Braconnot, P., Harrison, S., Otto-Bliesner, B., Abe-Ouchi, A., Jungclaus, J., and Peterschmitt, J.-Y.: The Paleoclimate Modeling Intercomparison Project contribution to CMIP5, CLIVAR Exchanges, 56, 15–19, 2011. a
Brodersen, K. H., Ong, C. S., Stephan, K., and Buhmann, J.: The Balanced Accuracy and Its Posterior Distribution, in: 2010 20th International Conference on Pattern Recognition, 23–26 August 2010, Istanbul, Turkey, 3121–3124, https://doi.org/10.1109/ICPR.2010.764, 2010. a
Brooks, S. and Gelman, A.: General Methods for Monitoring Convergence of Iterative Simulations, J. Comput. Graph. Stat., 7, 434–455, https://doi.org/10.1080/10618600.1998.10474787, 1998. a
Chicco, D., Warrens, M., and Jurman, G.: The Matthews correlation coefficient (MCC) is more informative than Cohen's kappa and Brier score in binary classification assessment, IEEE Access, 9, 78368–78381, https://doi.org/10.1109/ACCESS.2021.3084050, 2021. a
Colleoni, F., Masina, S., Negri, A., and Marzocchi, A.: Plio–Pleistocene high–low latitude climate interplay: A Mediterranean point of view, Earth Planet. Sc. Lett., 319-320, 35–44, https://doi.org/10.1016/j.epsl.2011.12.020, 2012. a
Dan, J., Yaalon, D., Koyumdjisky, H., and Raz, Z.: The Soil Association Map of Israel (1:1 000 000), Israel J. Earth Sci., 2, 29–49, 1972. a
Danin, A.: Flora and vegetation of Israel and adjacent areas, in: The zoogeography of Israel, chap. 7, edited by: Yom Tov, Y. and Tchernov, E., Junk Publishers, Dordrecht, 129–159, ISBN 9061936500, 1988. a
Danin, A.: Flora and vegetation of Israel and adjacent areas, Bocconea, 3, 18–42, 1992. a
Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J. F., Massei, N., Sebag, D., Petit, J.-R., Copard, Y., and Trentesaux, A.: The origin of the 1500-year climate cycles in Holocene North-Atlantic records, Clim. Past, 3, 569–575, https://doi.org/10.5194/cp-3-569-2007, 2007. a
Faegri, K. and Iversen, J.: Textbook of Pollen Analysis, Wiley, ISBN 9780471921783, 1989. a
Gebhardt, C., Kühl, N., Hense, A., and Litt, T.: Reconstruction of Quaternary temperature fields by dynamically consistent smoothing, Clim. Dynam., 30, 421–437, https://doi.org/10.1007/s00382-007-0299-9, 2008. a
Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation, J. Am. Stat. Assoc., 102, 359–378, 2007. a
Greenwell, B., Boehmke, B., Cunningham, J., and Developers, G.: gbm: Generalized Boosted Regression Models, R package version 2.1.5, CRAN, https://CRAN.R-project.org/package=gbm (last access: 23 January 2025), 2019. a
Harris, I., Osborn, T., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020. a
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, in: Springer series in statistics, Springer, ISBN 9780387848846, 2009. a
Hoens, T. R. and Chawla, N. V.: Imbalanced Datasets: From Sampling to Classifiers, in: chap. 3, John Wiley and Sons, Ltd, 43–59, ISBN 9781118646106, https://doi.org/10.1002/9781118646106.ch3, 2013. a, b
Jergensen, G. E., McGovern, A., Lagerquist, R., and Smith, T.: Classifying Convective Storms Using Machine Learning, Weather Forecast., 35, 537–559, https://doi.org/10.1175/WAF-D-19-0170.1, 2020. a
Kühl, N. and Litt, T.: Quantitative time series reconstruction of Eemian temperature at three European sites using pollen data, Veget. Hist. Archaeobot., 12, 205–214, https://doi.org/10.1007/s00334-003-0019-2, 2003. a
Kühl, N., Gebhardt, C., Litt, T., and Hense, A.: Probability Density Functions as Botanical-Climatological Transfer Functions for Climate Reconstruction, Quatern. Res., 58, 381–392, https://doi.org/10.1006/qres.2002.2380, 2002. a
Kuhn, M., with contributions from Jed, W., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., and Hunt., T.: caret: Classification and Regression Training, R package version 6.0-84, CRAN, https://CRAN.R-project.org/package=caret (last access: 22 January 2025), 2019. a
Leisch, F., Hornik, K., and Ripley., B. D.: mda: Mixture and Flexible Discriminant Analysis, r package version 0.4-10, CRAN, https://CRAN.R-project.org/package=mda (last access: 22 January 2025), 2017. a
Miebach, A., Niestrath, P., Roeser, P., and Litt, T.: Impacts of climate and humans on the vegetation in northwestern Turkey: Palynological insights from Lake Iznik since the Last Glacial, Clim. Past, 12, 575–593, https://doi.org/10.5194/cp-12-575-2016, 2016. a
Miebach, A., Stolzenberger, S., Wacker, L., Hense, A., and Litt, T.: A new Dead Sea pollen record reveals the last glacial paleoenvironment of the southern Levant, Quaternary Sci. Rev., 214, 98–116, https://doi.org/10.1016/j.quascirev.2019.04.033, 2019. a, b
Miebach, A., Power, M., Resag, T., Netzel, T., Colombaroli, D., and Litt, T.: Changing fire regimes during the first olive cultivation in the Mediterranean Basin: New high-resolution evidence from the Sea of Galilee, Israel, Global Planet. Change, 210, 103774, https://doi.org/10.1016/j.gloplacha.2022.103774, 2022. a, b, c, d, e
Moore, P., Webb, J., and Collinson, M.: Pollen Analysis, Blackwell scientific publications, Blackwell Scientific Publications, ISBN 9780632021765, 1991. a
Netzel, T.: Reconstruction tools in R, Zenodo [code], https://doi.org/10.5281/zenodo.8214297, 2023b. a
Netzel, T.: Reconstruction tools in Python, Zenodo [code], https://doi.org/10.5281/zenodo.8214290, 2023c. a
Neumann, F., Schölzel, C., Litt, T., Hense, A., and Stein, M.: Holocene vegetation and climate history of the northern Golan heights (Near East), Veget. Hist. Archaeobot., 16, 329–346, https://doi.org/10.1007/s00334-006-0046-x, 2007. a, b, c, d
Orland, I., Bar-Matthews, M., Kita, N., Ayalon, A., Matthews, A., and Valley, J.: Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel, Quatern. Res., 71, 27–35, https://doi.org/10.1016/j.yqres.2008.08.005, 2009. a, b, c
Panagiotopoulos, K., Aufgebauer, A., Schäbitz, F., and Wagner, B.: Vegetation and climate history of the Lake Prespa region since the Lateglacial, Quatern. Intern., 293, 157–169, https://doi.org/10.1016/j.quaint.2012.05.048, 2013. a
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: Special Paper: A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate, J. Biogeogr., 19, 117–134, 1992. a
Ramsey, C. B.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, 2009. a
Rausch, J. and Kelley, K.: A comparison of linear and mixture models for discriminant analysis under nonnormality, Behav. Res. Meth., 41, 85–98, https://doi.org/10.3758/BRM.41.1.85, 2009. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 22 January 2025), 2018. a
Reille, M.: Pollen et spores d'Europe et d'Afrique du Nord: supplément 2, Laboratoire de Botanique historique et Palynologie, ISBN 9782950717511, 1995. a
Reille, M.: Pollen et spores d'Europe et d'Afrique du Nord: supplément 2, Laboratoire de Botanique historique et Palynologie, ISBN 9782950717528, 1998. a
Reille, M.: Pollen et spores d'Europe et d'Afrique du Nord, in: 2nd Edn., Laboratoire de Botanique historique et Palynologie, ISBN 9782950717535, 1999. a
Schölzel, C.: Palaeoenvironmental Transfer Functions in a Bayesian Framework with Application to Holocene Climate Variability in the Near East, Bonner Meteorologische Abhandlungen, Rheinische Friedrich-Wilhelms-Universität Bonn, p. 104, https://www.ifgeo.uni-bonn.de/de/medien-inhalte/bonner-meteorologische-abhandlungen_20240222.pdf (last access: 22 January 2025), 2006. a, b, c, d
Seppä, H., Hammarlund, D., and Antonsson, K.: Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: implications for atmospheric and oceanic forcings of climate, Clim. Dynam., 25, 285–297, https://doi.org/10.1007/s00382-005-0024-5, 2005. a
Simonis, D., Hense, A., and Litt, T.: Reconstruction of late Glacial and Early Holocene near surface temperature anomalies in Europe and their statistical interpretation, Quatern. Int., 274, 233–250, https://doi.org/10.1016/j.quaint.2012.02.050, 2012. a, b
Sneh, A., Bartov, Y., Weissbrod, T., and Rosensaft, M.: Geological Map of Israel, , Geological Survey, https://www.gov.il/en/pages/israel-map-1-200k (last access: 22 January 2025), 1998. a
Stolzenberger, S.: On the probabilistic evaluation of decadal and paleoclimate model predictions, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, https://hdl.handle.net/20.500.11811/7299 (last access: 22 January 2025), 2017. a
Torfstein, A., Goldstein, S. L., Kushnir, Y., Enzel, Y., Haug, G., and Stein, M.: Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial, Earth Planet. Sc. Lett., 412, 235–244, https://doi.org/10.1016/j.epsl.2014.12.013, 2015. a
Weitzel, N., Hense, A., and Ohlwein, C.: Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering, Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, 2019. a, b, c
Ziv, B., Shilo, E., Lechinsky, Y., and Rimmer, A.: Meteorology, in: Lake Kinneret: Ecology and Management, edited by: Zohary, T., Sukenik, A., Berman, T., and Nishri, A., Springer Netherlands, Dordrecht, 81–96, ISBN 978-94-017-8944-8, https://doi.org/10.1007/978-94-017-8944-8_6, 2014. a
Short summary
New probabilistic methods for local quantitative paleoclimate reconstructions are introduced within a Bayesian framework and applied to plant proxy data from Lake Kinneret (Israel). Recent climate data and arboreal pollen from the lake's sediment are added as predefined boundary conditions. The results provide a reconstruction of the mean December–February temperature and annual precipitation, along with their associated uncertainty ranges, in this region during the Holocene.
New probabilistic methods for local quantitative paleoclimate reconstructions are introduced...