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Abstract. Quantitative local paleoclimate reconstructions
are an important tool for gaining insights into the climate
history of the Earth. The complex age–sediment–depth and
proxy–climate relationships must be described in an appro-
priate way. Bayesian hierarchical models are a promising
method for describing such structures.

In this study, we present a new age–depth transformation
in a Bayesian formulation by determining the uncertainty in-
formation of depths in lake sediments at a given age. This
enables data-driven smoothing of past periods, which allows
better interpretation.

We introduce a systematic, machine-learning-based way to
establish probabilistic transfer functions which connect spa-
tial distributions of temperature and precipitation to the spa-
tial presence of specific biomes. This includes consideration
of various machine learning (ML) algorithms for solving the
classification problem of biome presence and absence, taking
into account uncertainties in the proxy–climate relationship.
For the models and biome distributions used, a simple feed-
forward neural network provides the optimal choice of the
classification problem.

Based on this, we formulate a new Bayesian hierarchical
model that generates local paleoclimate reconstructions. This
is applied to plant-based proxy data from the lake sediment of
Lake Kinneret (LK). Here, a priori information on the recent
climate in this region and data on arboreal pollen from this
lake are used as boundary conditions. To solve this model, we
use Markov chain Monte Carlo (MCMC) sampling methods.
During the inference process, our new method generates taxa
weights and biome climate ranges. The former shows that
less weight needs to be given to Olea europaea to ensure the

influence of the other taxa. In contrast, the highest weights
are found in Quercus calliprinos and Amaranthaceae, result-
ing in appropriate flexibility under the given boundary con-
ditions. In terms of climate ranges, the posterior probabil-
ity of the Mediterranean biome reveals the greatest change,
with an average boreal winter (December–February) temper-
ature of 10◦C and an annual precipitation of 700 mm for Lake
Kinneret during the Holocene. The paleoclimate reconstruc-
tion for this period shows comparatively low precipitation of
about 400 mm during 9–7 and 4–2 cal ka BP. The respective
temperatures fluctuate much less and stay around 10 °C.

1 Introduction

Local paleoclimate reconstructions reveal information on
the climatic history of relatively small regions. In the last
few decades, a lot of reconstructions were published, which
showed the advantages and disadvantages of the respective
methodologies. One promising way is the idea of the indica-
tor species approach, which is the basic of the model used in
this study. Here, plant distribution maps are linked to recent
climate data to define a climate range where the correspond-
ing taxon occurs. Finally, when considering multiple taxa,
these climatic ranges can be combined to determine the mu-
tual climatic range (MCR).

We follow the idea of Kühl et al. (2002), who devel-
oped a probabilistic interpretation of MCR. This addresses
the problem of overfitting by calculating uncertainty ranges
for each taxon. These were initially based on two- or three-
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dimensional Gaussian probability density functions (PDFs),
which is why this is called the PDF method. This basic con-
cept was extended and applied for both local and spatial cli-
mate reconstructions. For example, Kühl and Litt (2003) cal-
culated January and July temperatures for three sites in cen-
tral Europe during the Last Interglacial. Subsequently, spa-
tial reconstructions of Europe were performed in Gebhardt
et al. (2008) for the Eemian, in Simonis et al. (2012) for the
Late Glacial and Holocene, and in Weitzel et al. (2019) for
the mid-Holocene (MH). Over time, more complex machine
learning (ML) methods, such as the generalized linear model
and quadratic discriminant analysis (QDA), are used to de-
termine the transfer functions (e.g. Litt et al., 2012; Weitzel
et al., 2019). Schölzel (2006) describes the PDF method in
the context of a Bayesian hierarchical model (BHM) and
calls it the Bayesian Indicator Taxa Model (BITM). This has
the advantage that additional prior information can regulate
the transfer functions and thus the entire climate reconstruc-
tion. Among others, the BITM was applied in Neumann et al.
(2007) for Birkat Ram in Israel and in Thoma (2017) for
Lake Prespa in Greece.

The basis of the climate reconstruction used in this work
is first presented by Schölzel (2006). This is another BHM,
the so-called Bayesian biome model (BBM). In this process,
certain plant taxa are assigned to different biomes. These are
groups of taxa that have similar vegetation zones under com-
parable climatic conditions (Prentice et al., 1992). One ad-
vantage of the BBM is that no recent distribution maps for
every plant occurring in the core, but only for the biomes
used, is needed. Applications of this model can be found in
Schölzel (2006), Litt et al. (2012), and Stolzenberger (2017)
for the Dead Sea. A first application of climate reconstruc-
tions to data from Lake Kinneret (LK) is shown by Thoma
(2017), who used the time series information of the two ma-
jor biomes which can be deduced from the LK core. The re-
sulting BBM-based paleoclimate reconstruction did show too
little variability in temperature and precipitation, suggesting
that at least a three-biome-model approach (Mediterranean,
Irano-Turanian, Saharo-Arabian) as a basis for the BBM
should be used. For numerical reasons, a virtual or undefined
biome will be introduced. The BBM also allows reconstruc-
tions based on prior climate data. These come, for example,
from other studies that suggest possible climate ranges for
the reconstruction site and period (Schölzel, 2006). Once set,
they cannot be adjusted during the reconstruction process.

Although the abovementioned methods for reconstructing
the local climate are already quite well elaborated, they still
need more modifications and improvements, which can be
summarized in four points:

1. Quantitative inclusion of age uncertainty;

2. Enhancing the Bayesian biome model (BBM) by

a. evaluating effects of potential human impacts upon
the climate reconstruction,

b. treating in a flexible way the spatial taxa or biome
vs. climate relationships (transfer functions),

c. including on the prior level user-defined (poten-
tially subjective) decisions with respect to taxa se-
lection, transfer function parameter values, and a
choice of model structure.

The need for the last point is due to the assumption that rela-
tionships between recent climate and plant distribution have
not changed during the reconstruction period. A central mes-
sage of our approach is that the whole chain of modifications
according to points 1 and 2a–c is based on Bayesian statis-
tical methods together with its numerical implementation.
This provides a clear advantage over past attempts, which
have mostly seen single layers of the methods described be-
low. As one of the reviewers commented, this will “automate
some ad hoc decisions in the interests of reproducibility and
ease of use and raise the quality of reconstructions”.

This traceability of the proposed method for calculating
quantitative paleoclimate reconstructions results from the in-
creased automation and the Bayesian statistical modeling
rather than from additional assumptions. The Bayesian ap-
proach not only reconstructs a climate variable like tempera-
ture or precipitation but also attempts to model the full joint
probability density of the climate variables given the proxy
data at a given age. This stochastic view includes the most
probable climate and its related uncertainty. By this, it will
provide additional insights into the importance of the proxies
studied and thus extend the knowledge from previous stud-
ies. As a worked-out example, we will apply the new model
to botanical proxy data (pollen) from LK. A comparison is
possible following the results from previous reconstruction
studies of paleoclimate information in the vicinity of LK
(Schiebel and Litt, 2018; Miebach et al., 2022; Orland et al.,
2009), specifically the Dead Sea region (Litt et al., 2012).
The latter exhibits certain deficits like biases at recent time
slices or extensive variability during Holocene times. The
further aim of the present study is to evaluate the potential of
those abovementioned additional environmental data in the
vicinity of LK to enhance similarities and reduce differences
between quantitative climate reconstructions at LK based on
the previous BBM methods and the information content of
the additional qualitative data.

The general approach for inclusion is a Bayesian-
statistics-based data assimilation of the new environmental
data (via a likelihood) into the previous reconstruction form-
ing the prior. The resulting posterior will not only provide the
most probable reconstruction of the paleoclimate state given
both types of input data but also an uncertainty estimate. This
allows a comparison of the prior reconstruction with the pos-
terior one and an assessment of the gain of information by the
assimilation without the need for independent data. The the-
oretical concept presented in this study readily extends to the
inclusion of such independent data, which is a task for future
work. In addition, data already available on lake-level fluc-
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tuations can be used as independent proxies, at least for pre-
cipitation changes, for comparison with pollen-based recon-
structions (Lake Kinneret: Hazan et al., 2005; Vossel et al.,
2018. For regional scale changes at the Dead Sea: Litt et al.,
2012; Stein et al., 2010).

These motivations lead to the following structure of the
presented work. In Sect. 2 we give an overview of the study
area. Section 3 first deals with observed palynological data
serving as input, then the quantitative inclusion of the age–
depth relation and its uncertainty is described (bullet point 1),
followed by the actual probabilistic reconstruction model
treating bullet points 2 and 3, followed by an introduction of
the flexibility in the probabilistic transfer functions. The re-
sulting individual modules of the proposed Bayesian frame-
work are described in detail. Section 4 presents the results of
our new reconstruction method using the LK palynological
data sets. These are then discussed, summarized, and com-
pared to previously available reconstruction, with possible
extensions suggested in Sects. 5 and 6.

2 Study area

The study area and the details of its plant geographical terri-
tories are show in Fig. 1b with the mean annual precipitation
sum at a high resolution from a subjective analysis (Zohary,
1962) in Fig. 1a. LK has a maximum water depth of ca. 42 m
and a surface area of ca. 169 km2 (21× 12 km at the max-
imum). The catchment area comprises 2730 km2 (Berman
et al., 2014).

The Sea of Galilee occupies the LK basin along the ac-
tive Dead Sea fault. It is developed by several tectonic pro-
cesses (Ben-Avraham et al., 2014). Soils such as terra rossa
and rendzina form the surface cover of the Galilee Moun-
tains (Dan et al., 1972). Alluvial and lacustrine sediments of
Pleistocene to Holocene ages fill the Jordan Valley north and
south of the Sea of Galilee (Sneh et al., 1998).

Switching to the climate data on the grid of 0.5°× 0.5°
defining the Climate Research Unit (CRU) data set (Harris
et al., 2020) in Fig. 2a and b shows the spatial distribution
of the mean December to February temperature (TDJF) and
annual precipitation (PANN) that we will examine in more
detail in this study. In particular, this means that this combi-
nation will be reconstructed for the LK. The Mediterranean
climate with hot, dry summers and mild, wet boreal winters is
typical of northern Israel, as shown by the Koeppen–Geiger
classification Csa in the climate diagram of LK in Fig. 2c.
The basin of the lake is characterized by 400 mm mean an-
nual precipitation and 21 °C mean annual temperature. The
surrounding mountains, however, experience PANN rates of
up to > 900 mm and annual temperatures of less than 15 °C.
The climate diagram reflects these relatively large variations,
which result from the 0.5°×0.5° horizontal resolution of the
CRU data set. Altogether, 90 % of the precipitation in the
north of Israel comes from so-called Cyprus lows that form

over the eastern Mediterranean. These mainly occur from
October to May, with the heaviest rainfall between December
and March (Ziv et al., 2014).

Furthermore, Fig. 2d shows the biome distributions con-
sidered in this work. The colored areas distinguish the fol-
lowing biomes: the Mediterranean, the Irano-Turanian, the
Saharo-Arabian, and the unspecified biome which is needed
for numerical reasons in the classification models (see be-
low).

We can see that the majority of the lake’s watershed can
be ascribed to the Mediterranean biome, while the south-
ern lakeshore borders the Irano-Turanian biome (Zohary,
1962). The Mediterranean biome is distributed in areas ex-
ceeding 300 mm of PANN (see Fig. 2b). The climax veg-
etation is dominated by trees and shrubs. Typical plants
are Quercus ithaburensis, Q. boissieri, Q. calliprinos, Olea
europaea, Pistacia lentiscus, Arbutus andrachne, Cerato-
nia siliqua, Pinus halepensis, and Sarcopoterium spinosum
(Danin, 1988; Zohary, 1982). The Irano-Turanian steppe
grows in areas below 300 mm of PANN (see Fig. 2b). The
biome is rich in semi-shrubs, annual herbs, and geophytes.
Common taxa are Artemisia herba-alba, Thymelaea hir-
suta, and various Poaceae and Amaranthaceae (including
Chenopodiaceae) (Danin, 1992; Zohary, 1982) The Saharo-
Arabian desert vegetation type occurs in the southern part,
where the mean annual precipitation falls below 100 mm. It
is a vegetation type with sparse plant cover and low diver-
sity. Important representatives of the Saharo-Arabian vege-
tation are Zygophyllum dumosum, Retama raetam, Tamarix
nilotica, Atriplex halimus, and other Amaranthaceae. Suda-
nian vegetation occupies tropical oases of the Jordan Val-
ley. Mainly trees and shrubs such as Maerua crassifolia,
Acacia raddiana/Acacia tortilis, Balanites aegyptiaca, and
Ziziphus spina-christi compose this vegetation type (Zo-
hary, 1962). This oasis vegetation is included in the Saharo-
Arabian biome.

3 Material and methods

3.1 Material

The material used in this study originates from lacustrine
sediment cores from the central Sea of Galilee. It was re-
covered in March 2010 during a drilling campaign within
the Collaborative Research Center 806 “Our Way to Eu-
rope” funded by the German Research Foundation (DFG).
Two parallel cores (Ki10 I with 13.3 m core recovery and
Ki10 II with 17.8 m core recovery) were obtained at a wa-
ter depth of 38.8 m. Both cores were combined to a 17.8 m
composite profile. Besides a 25 cm varved sequence at the
top, the sediment comprises homogeneous grayish–brownish
silts and clays (Schiebel and Litt, 2018).
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Figure 1. Mean annual precipitation and plant geographical territories of the southern Levant (after Miebach et al., 2019, based on Zohary,
1962). The Kinneret is situated in the north close to Tiberias, and the Dead Sea is visible in the middle part of the figures.

3.2 Palynology

Additional samples were added to the palynological data
sets by Schiebel and Litt (2018) and Langgut et al. (2013)
to increase the temporal resolution. The resulting data set
consists of 160 samples with a mean resolution of 11 cm.
We followed a standard preparation technique by Faegri and
Iversen (1989) to extract pollen from the lake sediment (see
Schiebel and Litt, 2018, for more details). At least 500 ter-
restrial pollen grains were identified under a light microscope
at 400× magnification with the help of the pollen reference
collection from the paleobotanical laboratory at the Univer-
sity of Bonn and pollen atlases (Reille, 1995, 1998, 1999;
Beug, 2004). Pollen percentages are based on the terrestrial
pollen sum excluding indeterminable pollen grains and ob-
ligate aquatic plants to exclude local taxa growing in the
lake (Moore et al., 1991). Pollen zonation was adapted from
Schiebel and Litt (2018).

3.3 Quantitative inclusion of age uncertainty

3.3.1 Age–depth model

We start with the Bayesian-statistics-based age–depth model
from Miebach et al. (2022) to describe the relationship be-
tween age and depth. It provides a probabilistic model of the
sediment accumulation rate of the core necessary to reach
the 14C ages at the available depths within the dating uncer-
tainties. We use the Bacon model implemented in R (R Core
Team, 2018; Blaauw et al., 2020). The well-known OxCal
dating approach (Ramsey, 2009) is similar to the strategy in
the Bacon model, which is explained in detail and compared
to OxCal in Blaauw and Christen (2011) and is only briefly
described in the following.

Bacon uses a self-adjusting Markov chain Monte
Carlo (MCMC) simulation to calculate the conditional prob-
ability distribution P(φ,r,m|x), where φ contains the model
parameters, r contains the accumulation rate, m contains the
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Figure 2. The mean December–February temperature TDJF (a) and annual precipitation PANN (b) based on the current version (4.07) of
CRU data and the period 1961–1990. The black dot marks the location of LK. A climate diagram of the grid point closest to LK is shown in
panel (c), based on these CRU data. Panel (d) depicts the coarse-grained biome definitions used in this work.

memory effect inherent in the sedimentation, and x con-
tains the measurements such as 14C data. As a result, Ba-
con describes the posterior (conditional) probabilities of φ, r ,
and m given the age data 14C at the given sediment depth D.
However, as we will see in the next section, we are actually
interested in the conditional probability of depthD at a fixed
age A, which can be derived using the accumulation rates r
and applying Bayes’ theorem.

3.3.2 Age–depth transformation

Now we will consider how to use the probabilistic informa-
tion from models like Bacon to calculate a transformation
from depth to age. For this purpose, it is useful to look at
Table 1, which describes the variables used in this work. Us-
ing Bayesian hierarchical modeling techniques, we can de-
termine the joint probability density function (or probability
mass function in the case of discrete random variables) of
the target variables Y , the age A, the proxy data P , and the
required additional parameters 2. These are, of course, all

dependent on depth, but D is only an auxiliary variable due
to the coring procedure. Therefore, the full joint probability
density/mass function that includes D can be marginalized
(integrated) with respect toD. In a second step, we apply the
relationship between full, joined, and the necessary condi-
tional and marginal probability distributions. This establishes
the following equation:

P(Y ,A,P ,2)=
∫
D

P(Y ,A,P ,D,2)dD

=

∫
D

P(Y |A,P ,D,2) ·P(D |A,P ,2)

·P(A,P ,2)dD. (1)

Y contains the variables we are interested in, e.g., C. Now
suppose thatD is conditionally independent of P and2 and
thus fully dependent on A. This is exactly the information
we obtain from the age–depth relationship. Furthermore, the
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Table 1. List of variables.

Variable shortcut Description

P Probability distribution
C Climate: contains modern Cm and past Cp climate information
P Proxy: contains modern Pm and past P p proxy information
P s Selected plant proxy information
PP Proxy pool: explained variances between additional proxies and C
B Biome information
A Age (e.g., lake sediments)
D Depth (e.g., lake sediments)
2 Contains the following parameters:

ψ Link between C and B
ω Contains all information about the taxa weights

variables Y should not depend on age if D is given. This as-
sumption follows from the fact that, initially, any information
drawn from the sediment core is with respect to depth. Using
this, we can transform Eq. (1) as follows:

P(Y |A,P ,2)=
∫
D

P(Y | P ,D,2) ·P(D |A)dD. (2)

As we can see, we need a tool for the calculation of the condi-
tional probability distribution of sediment depth D given the
ageA: P(D|A). This was developed for this work and can be
found as a contribution to the rbacon package under the func-
tion Bacon.d.Age. Bacon calculates the slopes (accumulation
rates) of a series of flexible linear age–depth functions. Their
flexibility results from different r in a priori defined regu-
lar sections along the depth axis. If a certain age A= a is
specified, Bacon.d.Age searches for those sections where in-
tersections between a and the respective age–depth functions
exist. In this way, we can calculate probability distributions
of depths for each age within the reconstruction period.
P(D|A) obtained in this way indicates which depth has a

higher or lower (possibly approaching zero) probability of
contributing to Y at a given age. Equation (2) shows that the
desired age-dependent target variables Y are calculated by a
moving-window (convolution) stretching/compressing oper-
ation on the depth axis together with a smoothing of this axis
at each sediment depth. The moving windows are derived
solely from the age–depth model data and do not necessarily
follow a top-hat filter or any other smoothing function.

Figure 3 illustrates the entire process using the arboreal
pollen (AP) percentage from LK as an example. The full
model results will be discussed below. In this case, the target
variable Y is the AP percentage and is shown in Fig. 3a as
a function of measured sediment depth. Using the depth–age
relation of the most probable age at a given depth, the mean
age difference between the studied core intervals of 11 cm
thickness is 51 years. Thus, in a first step, we define a regu-
lar temporal grid of 50 years resulting in a total of 181 age
steps between 0 and 9 kyr BP. Based on the results of the full

probabilistic analysis of the sedimentation–time relationship
available from the rbacon package, the newly added function
Bacon.d.Age determines those depth samples which belong
to a given age on the temporal grid with a probability be-
tween zero and 1, including the changing sedimentation rates
in the lake over the past 9 kyr modeled internally in rbacon.
Applying Eq. (2) then weights depths either with near zero
or with a finite probability value given an age on the 50-year
time grid between 0 and 9 kyr BP in 181 time steps. With
this procedure, the approach addresses the full age–depth un-
certainty. Since age is a given variable (no longer a random
variable, as it is in the conditional probability of age given
the sediment depth), in principle, any time-stepping (10, 25,
100 years) could have been chosen, but the 50-year time step
is determined by the data set itself.

Using the arboreal pollen percentages from Fig. 3a in
Eq. (2), we obtain the result of the new age–depth transfor-
mation AP values depicted in Fig. 3b. In contrast, the orange
line shows the result when the plant data in terms of depth
are linked to the mean age data from the age–depth model.

The standard use of the age–depth relationship, e.g., in
Litt et al. (2012), Schiebel and Litt (2018), Torfstein et al.
(2015), Neumann et al. (2007), Miebach et al. (2019), and
Seppä et al. (2005), is incorporated in Eq. (2), making the
Bayesian statistics approach more general as the standard
method of age–depth calculation. It is illustrated by the or-
ange line in Fig. 3. It is achieved for a given age by select-
ing a single sediment depth with a probability of 1, e.g., the
depth at which the conditional probability of depths given the
age is at a maximum, and then formally computing the inte-
gral. No information about the age–depth-related uncertainty
is used: only one sediment depth is determined for a given
age, clearly a case to be identified as “overfitting”, indicated
by the strongly fluctuating behavior of the orange AP per-
centage curve, which makes interpretations difficult. As a re-
sult, this new technique circumvents such problems.
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Figure 3. The gray areas show the percentages of aggregated arboreal pollen from LK. Panel (a) depicts these data in terms of depth, and
panel (b) depicts them in terms of age. On the one hand, in panel (b), we see the result when all probability information P(D |A) is taken
into account (gray area). The orange line, on the other hand, represents the output using the mean values of A.

3.4 Enhancing the reconstruction model

In this study, an enhanced and extended version of the BB-
M/BHM is presented to calculate the quantitative climate re-
construction. The detailed derivation of it can be found in
Appendix A, with the final result written as

P(C | P ,A,2)≈
∫
B

P(B | C,ψ) ·P(C | ψ) ·P(ψ)
P(B,ψ)

·

∫
Ps

P (B | P ,P s,ω)

·P (P s | P ,A,ω)dP sdB. (3)

This is the basic model calculated Nsample times with i =
1, . . ., Nsample for different ωi and Ci by systematically sam-
pling from the pools of plant information and transfer func-
tion distributions using MCMC techniques. In order to be
able to describe this in more detail, certain framework con-
ditions need to be introduced. To this end, we will introduce
reference curves based, for example, on AP percentage data
from lake sediments (see Fig. 3b). If a reconstruction accord-
ing to Eq. (3) is performed for certain ωi and Ci , the result-
ing P(Ci | P ,A,2i) can be compared with these reference
curves. As a similarity measure, the explained variances R2

in the regression of the reference curve vs. the mean or me-
dian curve derived from Eq. (3) are used and stored in a vari-
able we call proxy pool PP . Then, the extended BHM can
be constructed (the weighting term is omitted for clarity):
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Table 2. Means and standard deviations of beta distributions with
the shape parameters α1,2.

Mean SD α1 α2

0.25 0.2 0.92 2.77
0.5 0.2 2.62 2.62
0.75 0.2 2.77 0.92

P(C,2 | P ,A,PP )∝ P(PP | C,P ,A,2)

·P(C | P ,A,2) ·P(P |A,2) ·P(A,2). (4)

At this point, one could add a variety of additional refer-
ence curves based on, for example, isotope time series from
lake or marine sediments, ice cores, insolation time series, or
greenhouse gas information (Netzel, 2023a). However, only
proxies derived from botanical information are considered in
this work.

We know that some sections of the AP percentage curves
have fluctuations that are not due to climate variability (e.g.
Panagiotopoulos et al., 2013; Miebach et al., 2016; Neu-
mann et al., 2007; Litt et al., 2012; Schiebel and Litt, 2018).
In particular, the anthropogenic influence upon vegetation
in the study area (Fig. 2) during the mid- to late Holocene
complicates the interpretation of these curves. To account
for similarities and to reduce differences between the refer-
ence and the reconstruction, the regression between the ref-
erence curve and the reconstruction is interpreted as a simple
Bayesian data assimilation step, with the reference forming
the prior and the reconstruction curve forming the likelihood,
explaining an anticipated amount of variance R2. To be in
line with the general Bayesian approach, that amount is not
a fixed number but is described by a mean value and an un-
certainty summarized by the beta distribution with the two
shape parameters α1,2:

P(PP | ·)= Beta(PP | α1,α2). (5)

A sensitivity analysis is performed by varying the mean value
of R2 from 25 % to 50 % and 75 % with a typical standard
deviation (uncertainty) of 20 %, obeying the constraint that
the explained variance can only vary between 0 % and 100 %.
On the one hand, this gives the model the ability to capture a
sufficiently large range of R2 (Netzel, 2023a), while, on the
other hand, additional moderators like human influence are
allowed if represented in either the climate reconstruction or
the reference data set. The necessary combinations of mean
and standard deviation vs. the two shape parameters are given
in Table 2.

This part of the model is the first term on the right of
Eq. (4), which we call the proxy pool module.

The second term of Eq. (4) can be analyzed as follows:

P(C | P ,A,2)= P
(
Cp | Cm,P ,A,2

)
·P (Cm | P ,A,2) . (6)

P(Cp | ·) gives the model the ability to constrain the recon-
structions based on additional climate information from the
past. These can be of different origins, for example, other
local reconstructions, paleoclimate simulations, or even sub-
jective expert knowledge based on vegetation or other eco-
logical studies. The latter is a common approach in classical
Bayesian statistical analysis (Berger, 2013). In the simplest
case, it would be a subjective probabilistic statement with
a number between zero and 1 (but excluding both) about
the climate state Cp given the age and the proxy data. In-
clusion of such past climate data information is shifted to
future work, e.g., when high-resolution regional paleocli-
mate simulations become available. The second term on the
right of Eq. (6) allows us to insert constraints on the recon-
structed modern climate. We define the transition from mod-
ern times to the past at 0 cal yr BP (calibrated years before
the present), i.e., 1950 CE. This is because the temporal res-
olution of 50 years limits us, as we can only define the years
2000 or 1950 CE as the most recent period. For such a mod-
ern climate, we use the CRU data presented in Fig. 2 and
create probability distributions as anchors for the reconstruc-
tions. These independent proposal distributions are described
by a normal distribution as an approximation for TDJF and a
gamma distribution for PANN. All in all, we refer to the above
as the prior climate module, which can be summarized as fol-
lows (with Unif being the uniform probability density):

P
(
Cp | Cm,P ,A,2

)
={

P
(
Cp | ·

)
if Cp is available,

Unif
(
1, . . ., Nage

)
otherwise , (7)

P (Cm | P ,A,2)={
0
(
PANN,m

)
and N

(
TDJF,m

)
if A (C1)≤ 0calBP,

Unif
(
1, . . ., Nage

)
otherwise . (8)

This means that reconstructions can be carried out with
fewer restrictions even without prior climate information.
This is made possible by the use of uniform distributions
that encompass the reconstruction period and thus all time
slices Nage.

Finally, we consider the third term on the right of Eq. (4)
in detail:

P(P |A,2)= P(P |A,ω,ψ)≈ P(P |A,ω)≈ P(P | ω). (9)

Firstly, we assume that the parameters ω and ψ are a priori
independent of each other. Then, we state that P is indepen-
dent of ψ if no C is given. Finally, the updated taxa weights
P(P | ω) are determined under the assumption that they are
conditionally independent of A. This means that the addi-
tional data used to update the weights are assimilated over
the entire reconstruction period. At this point, it is possible
to introduce additional prior information for time-continuous
reconstructions, e.g., across a full glacial–interglacial cycle.
The updating of the taxa weights could be split according
to that temporal information such that after assimilation they
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differ for selected time periods. This approach is not explored
further in this study and could be included in future work.

The last term of Eq. (4) is the joint distribution ofA and2.
We assume that all parameters 2 are a priori independent
of A. Thus, this distribution can be formulated as follows:

P(A,2)= P(A) ·P(ψ) ·P(ω). (10)

The second term contains the parameters of the transfer func-
tions, and A is assumed to be uniformly distributed if no
depth information is available. We see that already in the lo-
cal reconstruction module in Eq. (3), where the relations be-
tween A and D are inserted into our reconstruction scheme.
With all the reformulations and simplifications listed above,
Eq. (4) can be summarized as follows:

P(C,2 | P ,A,PP )∝ P(PP | C,P ,A,2)

·P
(
Cp | Cm,P ,A,2

)
·P (Cm | P ,A,2)

·P(ψ) ·P(P | ω) ·P(ω). (11)

Overall, taxa percentages and climate regions that better fit
the constraints of the prior climate and proxy pool modules
should be weighted higher. How this is done in detail is de-
scribed in the following.

In the context of MCMC sampling, we update P(P | ω)
using the random walk Metropolis–Hastings (rwMH) tech-
nique, since a corresponding full conditional P(ω | P ) does
not follow a probability distribution from which we can sam-
ple directly. Without further prior information, we assume a
uniform distribution across all taxaK at the beginning of the
MCMC simulation:

P(P | ω)= Unif(1, . . ., K). (12)

The respective weights are determined with the help of an
additional prior distribution:

P(ω)= Dir
(
ω1, . . ., ωK |

1
2
, . . .,

1
2

)
. (13)

Such a Dirichlet distribution allows us to determine the taxa
weights as requested above. This means that the taxa weights
have values between zero and 1 and add up to 1. The Jef-
freys prior hyperparameters ( 1

2 ) of this distribution give each
taxon equal prior weight. Furthermore, these values provide a
weaker constraint for determining the posterior taxa weights.
This property follows directly from the characteristics of the
Jeffreys prior (Gelman et al., 2013).

As described above, we want to sample not only taxa
weights but also climate values in the climate feature space of
the biome transfer function. In this way, we can identify pre-
ferred climate ranges based on the plant data and boundary
conditions. The parameters ψ remain unchanged because we
assume that they are a good approximation for the Holocene.
Instead, we sample directly from the climate space and use
P(C | ψ) from Eq. (3). Again, rwMH is used because we can-
not sample directly from the full conditional. In this case, we

use double-truncated normal distributions Nt restricted to the
climate range of the transfer function as proposal distribu-
tions to exclude biologically unrealistic climate values:

P(C | ψ)=Nt(C | µ(ψ),σ (ψ),a(ψ),b(ψ)). (14)

The transfer function parameters ψ determine not only the
truncation ranges a and b but also the expectation values µ
and standard deviations σ .

Figure 4 summarizes graphically how this local recon-
struction framework works. The boxes in the upper row con-
tain the input variables, while those in the white boxes are not
inferred during the MCMC simulation. The parameters of the
transfer functions are defined in Sect. 3.5, and the age–depth
relationship is described in Miebach et al. (2022). The up-
per gray boxes describe the inference of the taxa weights and
the climate values via rwMH sampling. This is done by com-
paring the sampled climate reconstructions (reconstruction
module) with additional recent climate data and an AP per-
centage reference curve (prior climate and proxy pool mod-
ules) and constraining them accordingly. These comparisons
are made using the independent Metropolis–Hastings sam-
pling. All in all, the procedure presented here leads to the
comprehensive extensions outlined above.

3.5 Transfer functions

One objective of this work is to systematically test a vari-
ety of possible methods to determine the transfer function
P(B | C,ψ) from Eq. (3) and select the most appropriate al-
gorithm for the task at hand. For this purpose, we use the
R package caret (Kuhn et al., 2019). This stands for classi-
fication and regression techniques and provides a variety of
models that can be used to solve corresponding problems.
The package supplies a simple way to compare the selected
models via cross-validation. In this process, the provided
data (see Fig. 2) are split into a training and a validation data
set. Cross-validation is performed on the training set (James
et al., 2013), which accounts for 70 % of all data. Statisti-
cal verification distributions result from this, which are used
to derive the performance of the models. Cross-validation is
also performed for a certain number of different parameters
for the respective machine learning (ML) algorithms (model
tuning). The entire process is very easily accessible in caret
and runs completely automatically after the initial parame-
ters have been defined. The remaining 30 % (hold-out set) is
used to validate the models obtained by cross-validation on
the remaining 70 %. This has the advantage that they can be
tested on an independent data set, further minimizing the risk
of overfitting.

As can be seen in Fig. 2d, the defined biomes (minority
classes) and the unspecified biome (majority class) are un-
balanced. This means that the number of grid points cover-
ing the different classes varies largely. In a balanced data set,
they would be roughly equal. One could reduce the size of
the entire map section so that the groups are more balanced.
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Figure 4. Directed acyclic graph of the Bayesian framework in Eq. (11). The gray boxes represent the quantities that will be inferred during
MCMC sampling, and the white boxes contain fixed quantities. The corresponding arrows represent the mutual dependencies, with their
direction pointing to the ascending hierarchical levels, and the additional boxes indicate the respective sampling procedures of the modules
contained therein.

However, the models then deliver significantly worse and
sometimes even unrealistic results. This means a model could
provide higher probabilities of occurrence, on the one hand,
where the biomes do not occur in the feature space and, on
the other hand, where the climate values are biologically un-
realistic. This problem is discussed, for example, in Thoma
(2017) and in Weitzel et al. (2019). When the map section is
enlarged, this problem recedes, especially if the absence val-
ues can serve as a boundary. This is the case when the occur-
rence domain is enclosed by the absence domain in the two-
dimensional feature space spanned by TDJF and PANN. The
reduction of the map section is analogous to the techniques of
random undersampling (Hoens and Chawla, 2013). The ma-
jority class is randomly reduced to the size of the minority
class, potentially losing important information. In contrast,
random oversampling of the minority class risks overfitting.
To solve this problem, the Synthetic Minority Oversampling
Technique (SMOTE) is used (Bowyer et al., 2011). Here, a
minority-class instance is first randomly selected, and its k-
nearest minority-class neighbors are determined. A line seg-

ment is then formed between one randomly selected neighbor
in feature space. A synthetic instance of the minority class is
created by selecting a random point along this line (Hoens
and Chawla, 2013). SMOTE can only do this with one mi-
nority class at a time. Therefore, we use this technique sepa-
rately for each of the three minority classes compared to the
majority class. Finally, all four classes consist of a similar
number of data points. These are the input for the calcula-
tion of the transfer function in the ML competition, so only
the training data are processed with SMOTE. For the model
verification on the hold-out set, the original data are used.

Table 3 lists four ML models that we compete against each
other. We have removed support vector machines (SVMs)
from this list as they are not competitive due to their dis-
proportionately long prediction time. Similar difficulties with
SVMs are also found in Jergensen et al. (2020), where an
ML competition for forecast models of convective storms is
presented.

Comparatively simple classification problems arise in this
work, so relatively simple artificial neural network (ANN)
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Table 3. Machine learning algorithms which are used for the competition.

Algorithm Shortcut Citation

Artificial neural networks NNET Venables and Ripley (2002)
Quadratic discriminant analysis QDA Venables and Ripley (2002)
Mixture discriminant analysis MDA Leisch et al. (2017)
Gradient-boosting machines GBM Greenwell et al. (2019)

structures can be used. These deliver similarly good results
with significantly less computational cost, and the risk of
overfitting is generally lower with simpler structures. After
initial tests, the ANN from the nnet package is chosen in this
work (NNET). It is a feedforward neural network that allows
one hidden layer with an arbitrary number of hidden neurons
(Venables and Ripley, 2002).

Discriminant analysis involves the development of dis-
criminants, i.e., linear combinations of independent variables
that discriminate the categories of the dependent variable
(James et al., 2013). QDA, for example, extracts discrimi-
nants that maximize separation between groups and then uses
them to perform a Gaussian classification. QDA accounts
for heterogeneity in the covariance matrices of these groups.
Mixture discriminant analysis (MDA) can be regarded as an
extension that modifies the within-group multivariate density
of predictors by a mixture (i.e., a weighted sum) of multivari-
ate normal distributions (Rausch and Kelley, 2009).

Gradient-boosting machines (GBM) is chosen to introduce
an ML algorithm based on decision trees. It is a generaliza-
tion of tree-boosting that attempts to mitigate the following
problems: speed; interpretability; robustness to overlapping
group distributions; and, most importantly, mislabeling of the
training data (Hastie et al., 2009). Thus, it creates an accurate
and effective standard procedure.

The approach presented here to systematically identify
the most appropriate method to describe the relationship be-
tween botanical data and climate remedies the last disadvan-
tage mentioned in the introduction.

4 Results

This section first presents the results of the machine learning
competition. Afterwards, the reconstruction of Lake Kinneret
and the corresponding MCMC data are shown.

4.1 Machine learning competition

In the following, the results of the machine learning compe-
tition are analyzed in detail. The evaluation focuses on the
problem of unbalanced data sets. These are augmented with
SMOTE until the input values are balanced. Subsequently,
the models are trained on these data sets and finally evalu-
ated with a fraction of the original data.

In our work, this classification is based on the so-called
balanced accuracy (BA), which is calculated using 2×2 con-
tingency tables of predicted data compared to hold-out val-
idation data. From these, the true positive and true negative
rates can be calculated, referred to as sensitivity and speci-
ficity, respectively (Chicco et al., 2021). The arithmetic mean
of these two measures is the BA, which is an appropriate
metric for trained ML models designed to describe an unbal-
anced data set (Brodersen et al., 2010). BA varies between
zero and 1, with values close to 1 indicating well-performing
classifications.

The results of all trained models are shown in Fig. 5a. A
distinction is made between models trained on the original
data set (without SMOTE) and those trained on data aug-
mented with SMOTE. It is immediately noticeable that the
results marked by the blue boxplots have a BA of ∼ 0.5 or
the sensitivity is always zero and the specificity is 1, which
means that no presence is predicted. In contrast, the other
fits (orange boxplots) have an average BA of about 0.92,
which provides a clear improvement in BA. Thus, we can
not only obtain fitted models with high significance but also
reduce the boundary effects in the feature space, resulting in
more closed probability contour lines as shown in Fig. 5c.
Although all four algorithms provide well-trained models on
their own (see Fig. 5a), the direct comparison between them
leads to the final selection that a simple artificial neural net-
work emerges as the winner. The structure of this NNET is
shown in Fig. 5b, where the two climate variables represent
the input layer and the three biomes with the unspecified
biome represent the output layer. Furthermore, six hidden
neurons proved to be the best compromise between BA and
overfitting in model-tuning. This network structure is finally
used for the following climate reconstruction.

In summary, the results of the ML competition for estimat-
ing the transfer functions between the presence of biomes
and their feature space of DJF temperature and the annual
sum of precipitation do automate decisions in the interests of
reproducibility and, in doing so, raise the quality of transfer
function calculations. This introduces a higher flexibility in
the case of analyses of a network of proxy data sets, e.g., as
a basis for climate field reconstructions.
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Figure 5. Panel (a) summarizes the balanced accuracy of all ML algorithms based on the original input data and the data modified with
SMOTE. The winner of this ML competition is the feedforward neural network shown in panel (b). The thickness of the respective lines
reflects the relative absolute value of the parameters. Furthermore, the gray lines stand for negative values, and the black lines stand for
positive values. In panel (c), the classification in the feature space of TDJF and PANN is shown: the solid colored lines represent the 50 %
probability of the biomes occurring based on the transfer function from panel (b). The corresponding original input data are also shown as
colored dots.

4.2 Quantitative reconstruction

Due to the large number of parameters and data points, we
decided to generate 1 million MCMC samples. This makes
the numerical problem difficult to be solved fully in an R
(or Python) programming interface. Therefore, as much as
possible, subroutines are implemented in the compiler lan-
guage C++ and embedded into the R code. With this ap-
proach, the reconstruction model can be implemented on a
standard laptop or standalone PC with a commercially avail-
able standard 8-core central processor and takes about 40–
60 s to generate the MCMC samples and perform their eval-
uation.

Firstly, the stochastic behavior of this MCMC simulation
must be tested for convergence. For this, we use the multi-
variate extension of the Gelman–Rubin convergence indica-
tor (Brooks and Gelman, 1998). The closer this is to 1, the
more likely it is that convergence has been achieved. Gelman
et al. (2013) recommend a value of less than 1.1. In our case,
this is 1.001, from which we conclude that this simulation
setup converges.

Figure 6 summarizes the posterior taxa weights P(P |
vecω) determined by this simulation in boxplots. It is im-
mediately apparent that, with the exception of Olea eu-
ropaea, Quercus calliprinos and Q. ithaburensis, and Ama-
ranthaceae, the mean posterior taxa weights deviate only
slightly from the prior uniform distribution. In particular, the
olive taxon receives a considerably lower weight, which is
due to the generally high pollen percentage in the core (see
Appendix B for details). To ensure a sufficiently high vari-
ability with respect to the reference curve of AP percentage
in Fig. 3b, the new reconstruction method weights Quercus

calliprinos and Amaranthaceae the highest, especially under
the prior R2

= 0.5.
Figure 7 shows the prior and posterior probability distri-

butions P(B | C,ψ) based on the NNET classification un-
der SMOTE. We see the largest changes from prior to pos-
terior within the Mediterranean biome in Fig. 7a but almost
no changes in the posterior between the imposed explained
variances R2

= 0.25, 0.5, and 0.75. The branch with lower
temperature and precipitation of this distribution leads to re-
constructions that cannot fulfill the CRU-imposed bound-
ary conditions with respect to temperature. The correspond-
ing posterior probability reveals an average TDJF of 10 °C
and a PANN of 700 mm. For the two remaining biomes, the
changes between prior and posterior and the changes within
the three posterior with the different imposed explained vari-
ances R2

= 0.25, 0.5, and 0.75 are minor. The results for the
three other classification algorithms are of a similar struc-
ture. In Fig. 7d, we see the reduced posterior variances over
the prior variance in the climate variables within the biomes
due to the ingestion of the additional information of the ref-
erence curve and the CRU climate. The temperature distri-
bution of the Saharo-Arabian biome, for example, must be
constrained so that it does not contradict the CRU boundary
conditions of the most recent temperature data. Overall, it
can be seen that the posterior temperatures settle at around
10 °C and thus show less variability than the corresponding
precipitation distribution.

The posterior samples described above are determined
with the prior boundary conditions in Fig. 8. We also see
the corresponding posterior distributions as gray areas for
the case R2

= 0.5. It is noticeable that the temperature in
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Figure 6. Posterior and prior taxa weights. The continuous solid black line indicates the prior, and the boxplots indicate the posterior. The
short black line and the colored dots within each boxplot indicate the median weight under the explained variance mean values of 0.5,
0.25 (turquoise), and 0.75 (orange). The latter vary clearly only for Olea europaea and the two Quercus taxa. In addition, the assignment of
each taxon to the three biomes is color-coded.

Fig. 8a and the precipitation in Fig. 8b have slightly smaller
maximum values but that the changes from prior to posterior
are mainly visible in the spread around the maximum, cor-
responding to the results in Fig. 7d. In contrast, the largest
changes from prior to posterior are found in the explained
variances in the arboreal pollen percentage curve in Fig. 8c.
Based on the taxa weights and the values of the transfer func-
tions from Figs. 6 and 7, it can be concluded that a trade-off
with respect to recent climate conditions is reached when the
medianR2 is around 0.65 (50 % CI from 0.50 to 0.80), which
is reached with the prior choice of beta distribution with max-
imum and mean at R2

= 0.5. In contrast to the prior choice,
R2
= 0.25 and 0.75, this leaves enough degrees of freedom

to increase the posterior to 0.65 (50 % CI from 0.50 to 0.80),
which does not happen that clearly with the two remaining
choices.

In the following, we describe the final reconstruction. It
is divided into the percentages of the reconstructed biomes
P(B | P ,A,ω) in Fig. 9 and the reconstructed TDJF and
PANN in Fig. 10. From the former, we can infer the impor-
tance of these biomes in specific periods.

The period 9–7 cal ka BP can be associated mainly with
the Pottery Neolithic. The vegetation is described in Schiebel
and Litt (2018) with a strong influence of steppe vegetation
in the catchment area of LK. They conclude that this is due to
increasing drought, which is confirmed by the increased per-
centages of the Saharo-Arabian and Irano-Turanian biomes.
In contrast, the Mediterranean biome records comparatively
low percentages during this period. This leads on the one
hand to the highest average TDJF of over 10 °C and, on the
other hand, to a relatively low PANN of about 400 mm. Fur-
thermore, Miebach et al. (2022) infer a weak cooling trend
and precipitation decrease during 7.8–6.6 cal ka BP from car-
bon isotope signals of the Sea of Galilee. These qualitative
statements are confirmed by the new climate reconstruction
within both variables.

The beginning of the period 7–5 cal ka BP is accompanied
by an increase in Olea europaea and thus the Mediterranean
biome. Schiebel and Litt (2018) assume climate change to-
wards higher precipitation compared to the previous time
slice (9–7 cal ka BP). In addition, Hazan et al. (2005) and
Vossel et al. (2018) describe a high Kinneret lake level dur-
ing the Chalcolithic and Early Bronze Age, which is also
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Figure 7. In panels (a)–(c), the prior biome probabilities of 50 % are indicated with dashed black lines and the corresponding posterior biome
probabilities are depicted with solid black lines for the case of explained variance R2

= 0.5 by the reference arboreal pollen percentage, and
they are depicted in color (turquoise and orange) for R2

= 0.25 and 0.75. In panel (d), the ratios of the 95 % credible interval (CI) of the
corresponding prior and posterior distributions from panels (a)–(c) for the R2

= 0.5 case are shown.

confirmed by our reconstruction. This change is well accom-
panied by the changes in the median position when varying
the prior explained variance by the AP percentage reference
curve, which is hardly visible, e.g., for the early period 9–
7 cal ka BP.

The average PANN is about 500 mm and tempera-
tures surrounding 10 °C. During the Chalcolithic (ca. 6.5–
5.5 cal ka BP), precipitation shows a local maximum, which
decreases after about 5.5 cal ka BP. Such behavior could be
related to the transition from the Chalcolithic to the Early
Bronze Age.

The Early Bronze Age to Iron Age within 5–2.3 cal ka BP
reflects not only human-induced but also climatically driven
vegetation changes with almost no differences between the
medians of the three sensitivity calculations based on the
prior choices of explained variances R2

= 0.25, 0.5, and
0.75. On the one hand, the decrease in oak pollen of 4 and
3.2 cal ka BP could be related to the Bond events of 4.2

and 3.2 associated with droughts in the Levant. During
this period, the precipitation shows a steady decline from
ca. 500 mm to about 400 mm, while the temperature remains
around 10 °C. On the other hand, Schiebel and Litt (2018)
describe the end of olive cultivation around 5 cal ka BP as
a human influence. Therefore, a decrease in olive pollen
around 5 cal ka BP cannot be associated with changed cli-
matic conditions and is also not visible in the reconstruc-
tion. This is made possible by the lower weighting of this
taxon and supports the choice of the prior beta distribution
parameters of R2

= 0.5. Olea europaea is an integral part
of the Mediterranean vegetation zone, even as an indica-
tor species for the current geobotanical distribution of this
biome (Langgut et al., 2013). Olea also grows as a culti-
vated tree mainly under Mediterranean climate conditions.
When olive groves were planted in the past, the Mediter-
ranean oak forests, which were predominantly deciduous,
had to be cleared (e.g., Q. ithaburensis). Oak trees were

Clim. Past, 21, 357–380, 2025 https://doi.org/10.5194/cp-21-357-2025



T. Netzel et al.: Quantitative climate reconstruction of Lake Kinneret 371

Figure 8. The prior proposal distributions (orange lines) and the posterior samples (gray areas for R2
= 0.5; turquoise and brown lines for

R2
= 0.25 and 0.75) of (a) TDJF, (b) PANN, and (c) the explained variance R2 in the reconstructions when compared to the arboreal pollen

percentage reference curve with the three different explained variances R2
= 0.25, 0.5, and 0.75.

therefore replaced by olives and vice versa (see Fig. 6). Both
species have a similar chance of being recorded in the pollen
record (high pollen producer based on wind pollination). It
is also noteworthy that the bivariate conditional probabil-
ity density functions (likelihood functions) of December–
January–February temperature and annual precipitation are
very similar for both species (see Neumann et al., 2007).
The subfamilies Cichorioideae and Asteroideae (both be-
longing to the Asteraceae family) are components of the
Irano-Turanian steppe vegetation. They might also occur in
the anthropogenic-influenced Mediterranean vegetation zone
(batha, garrigue). However, it must be stressed that the Ci-
chorioideae peaks appear in a phase which was less influ-
enced by human impact (Middle Bronze Age after the de-
crease in Olea cultivation and increase in Q. ithaburensis
type). Therefore we assume a stronger climate than anthro-
pogenic signal related to Cichorioideae peaks (dryer condi-
tions).

Between 4 and 3.2 cal ka BP, the Mediterranean biome
apparently decreases and the others increase. The climate
change to lower precipitation around 4 cal ka BP could be re-
lated to the transition from the Early to the Middle Bronze
Age. The second and larger variation during 3.2 cal ka BP
might be related to the collapse of the Late Bronze Age
(Langgut et al., 2013). Furthermore, the Iron Age in the
Near East lasted from about 3.1–2.5 cal ka BP (Langgut et al.,
2013). This corresponds to an increase in precipitation at
the beginning and ends in a minimum with values around
400 mm. The transition from the Iron Age to the Babylonian–
Persian period is marked by 2.5 cal ka BP and lasted about
200 years, accompanied by a slight increase in precipitation.

The years from 2.3–1.5 cal ka BP are marked by the Hel-
lenistic and Roman–Byzantine periods. This can be asso-
ciated with the Roman Climatic Optimum (Langgut et al.,

2013), and a noticeable increase in precipitation can be seen
in the reconstruction. Orland et al. (2009) recognize from iso-
topic data from Soreq Cave a decrease in precipitation during
the period 1.9–1.3 cal ka BP. They suggest that this climate
change weakened the economic system of the Roman and
Byzantine empires, which contributed to the decline in their
rule in the Levant.

This leads us to the early Islamic period to the present,
from 1.5–0 cal ka BP. The reconstructed PANN shows rela-
tively high values and exhibits only minor variations. Finally,
the climate PDFs of the youngest time slice are the same as
the posterior distributions depicted in Fig. 8a and b.

In comparison with the quantitative climate reconstruction
of the Dead Sea in Fig. 11, we can observe some similari-
ties. During the early Holocene, relatively low precipitation
is reconstructed up to 6.5 cal ka BP. These increase markedly
during the mid-Holocene up to 3.3 cal ka BP. They then fall
significantly and rise in the further course until the youngest
time slice. With the corresponding TDJF, the trend is exactly
the opposite. Overall, we see similar patterns, although the
temperature fluctuations in Litt et al. (2012) are larger, which
is due to the special location of the Dead Sea as a transition
zone of the three biomes.

Note that the presented method and that of Litt et al. (2012)
reconstruct a full probability density PDF of the joint Dec–
Jan–Feb mean temperature and the annual precipitation sum
at a given age. The apparent smoothness of the Dec–Jan–
Feb mean temperature in Fig. 10a results if one concentrates
on the median of the reconstructed PDF without considering
the inherent variability indicated by the color-shading. The
median temperature is the temperature value that divides the
reconstructed temperature range into two equal probable in-
tervals from which individual realization of the DJF temper-
atures has to be drawn at random. This randomization in-

https://doi.org/10.5194/cp-21-357-2025 Clim. Past, 21, 357–380, 2025



372 T. Netzel et al.: Quantitative climate reconstruction of Lake Kinneret

Figure 9. Posterior biome percentages in relation to cal ka. The colors indicate the probability density values, the solid black lines indicate
the median for the reconstruction based on the explained variance R2

= 0.5 by the AP percentage, and the dashed black lines indicate the
first and third quartiles. The turquoise and brown lines are the medians for R2

= 0.25 and 0.75.

troduces additional variability in the time series but requires
the specification of the autocorrelation in time beyond that
which is introduced by the AP percentage reference curve.
The effects of such randomization in the climate field re-
construction of Holocene temperature in Europe have been
demonstrated by Simonis et al. (2012). The comparison of

the present reconstruction with other temperature reconstruc-
tion, e.g., based on non-pollen data, can only be done if these
two types of information (the most probable or median value
plus the implied variability) are quantitatively available (see
Gneiting and Raftery, 2007).
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Figure 10. As in Fig. 9 but for the quantitative paleoclimate reconstruction of the Lake Kinneret region. (a) The reconstructed TDJF in
degrees Celsius (°C). (b) The PANN in millimeters (mm).

5 Discussion and possible extensions

Our new approach of a local climate reconstruction offers a
systematic method to investigate the variability in the data
under certain boundary conditions. These partly originate
from sources other than the original botanical proxy data. In
this way, it can be determined whether a physically and bio-
logically realistic climate reconstruction is possible with the
given proxy data. The new method shows, for example, that
the probability of the Mediterranean biome with lower tem-
peratures and precipitation in Fig. 7a cannot be used when
constrained by recent climate data and arboreal pollen ref-
erence. So far, the full distributions have been included in
the reconstructions. This new flexibility in terms of trans-
fer functions accounts for the assumption that the relation-
ship between recent biome distributions and the correspond-
ing climate remains unchanged in space and time. The poste-

rior distributions in Fig. 9 show where these might have been
on average during the reconstruction period for the Sea of
Galilee.

Further useful information can be obtained from the poste-
rior taxa weights. From this, it can be deduced to what extent
a particular taxon is included in the reconstruction based on
its occurrence in the sediment core. Thus, this automatically
determined data can expand the underlying expert knowl-
edge. Here it seems that less weight needs to be given to olive
pollen, which dominates at certain depths, to ensure the influ-
ence of the other taxa. This shows how the highest possible
variability can be obtained from the proxy information un-
der the assumed boundary conditions. With a comparatively
higher weighting of Quercus calliprinos, the recent precipita-
tion distribution at the Sea of Galilee can be approximated as
well as possible. Furthermore, we find the highest weights in
relation to the Irano-Turanian and Saharo-Arabian biomes in
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Figure 11. Paleoclimate reconstruction of the Dead Sea, modified after Litt et al. (2012). (a) The TDJF anomaly in degrees Celsius (°C).
(b) The PANN in millimeters (mm). The thicker white lines are the expectation values, and the thinner white lines describe the respective
linear climate trends. The thicker black lines mark the mode, and the thinner black lines indicate the interdecile and interquartile ranges.

the taxa Poaceae and Amaranthaceae. This makes it possible
to reconstruct the lower precipitation in the periods 9–7 and
3.2–2 cal ka BP. It also helps to reduce the human impact on
vegetation during the reconstruction process. This is particu-
larly striking in the Mediterranean biome around 5 cal ka BP,
where we see only minor changes.

In the posterior distribution of the explained variance be-
tween the reconstructed precipitation and AP percentage in
Fig. 8c, values of 0.65 occur on average starting from the
prior information that the mean R2

= 0.5 with an assumed
uncertainty of ±0.2. These relatively high positive posterior
correlations confirm the relationship between these two vari-
ables proposed in Schiebel and Litt (2018) and allow the
quantitative exploration of that proposal. We also see the or-
der of magnitude in which this must be present to allow a
compromise with the other boundary conditions in Fig. 8a
and b.

Compared to previous local climate reconstructions based
on Bayesian statistics, the proxy information considered can
be included without further processing. This means that it
is not necessary to pre-select specific plant data and set
thresholds for their probability of occurrence. In addition, the
boundary conditions, such as climate anchor points and ref-

erence curves, can be extended. For example, isotope data
from the Mediterranean Sea, such as MEDSTACK (Colleoni
et al., 2012), or from speleothems in the Soreq Cave (Bar-
Matthews et al., 2003) can be used as guidelines. In addition,
PDFs for the MH from paleoclimate simulations (Braconnot
et al., 2011) can be included. The new reconstruction method
can therefore be easily adapted and used accordingly in fu-
ture studies.

The age uncertainty accounted for in this study with the
new age–depth transformation presented allows data-driven
smoothing and stretching/compressing of the original depth
axis of the proxy information, as well as arbitrarily high reso-
lution and a regular temporal grid. This means that reference
proxies can now be examined in spectral space. For exam-
ple, the fluctuations around 4 and 3.2 cal ka BP could be com-
pared with the ice-rafted debris of the North Atlantic using
wavelet power spectra (Debret et al., 2007). We thus see that
the reconstruction method presented can be extended with
additional independent proxy information, so that quantita-
tive multiproxy analyses and the inclusion of results from
paleoclimate simulations are possible.
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6 Conclusions

In this study, we present new techniques for generating lo-
cal paleoclimate reconstructions based on botanical proxies.
For this purpose, we use a newly developed BHM solved
with MCMC sampling. To place the proxy information in
a temporal context, a new probabilistic method is used to
assign age information to depths in sediment cores. In par-
ticular, the uncertainty of age is accounted for by a sepa-
rate BHM introduced in this work. Climate variables, such
as TDJF and PANN, were included using a transfer function
based on biome occurrence. We determine these functions
with a machine learning competition. Such a systematic iden-
tification of the most appropriate method to describe the re-
lationship between botanical data and climate is performed
here for the first time.

These new techniques are applied to plant data from the
Sea of Galilee during the Holocene. The reconstructed cli-
mate variables reflect the qualitative climate reconstructions
explained in Schiebel and Litt (2018), Miebach et al. (2022),
and Orland et al. (2009). Moreover, the algorithm is able to
find climate changes that can be associated with Bond events
and known archeological and cultural changes in the Levant.
Furthermore, there is a connection with the quantitative re-
construction of the Dead Sea in Litt et al. (2012), where sim-
ilar climatological trends are reconstructed. It is interesting to
note that the reconstructed Dead Sea lake-level curve as an
independent proxy for precipitation (Stein et al., 2010) cor-
relates very well with the pollen-based paleoclimate recon-
struction (Litt et al., 2012). However, it must be stressed that
the older reconstruction method based on a Bayesian biome
model has some weaknesses compared to the new approach
which are not detectable by the correlation, namely system-
atic shifts (biases) with respect to present climate; e.g., the
mean Dec–Jan–Feb temperature in Litt et al. (2012) is clearly
too low due to the inclusion of temperature values of the
Mediterranean vegetation zone in the northern part of the
study area.

Overall, our new methods provide an additional way to
calculate quantitative paleoclimate reconstructions. From our
results, we conclude that more automatic, statistics-based
techniques complement those that require additional assump-
tions. Furthermore, our model provides additional informa-
tion, such as taxa weights and biome climate ranges with
corresponding uncertainty estimates. From this, we can gain
new insights into possible biological mechanisms involved
in ecological changes caused by past climate variability. The
new method not only remedies all the disadvantages men-
tioned in the Introduction but also represents an attempt to
solve complex BHMs with little computational cost. Extend-
ing this to multiple proxy sources and applying it to other
geographical areas could qualitatively and quantitatively ex-
pand knowledge about the climate history of the Earth.

Appendix A: Derivation of the local reconstruction
model

Using Bayes’ theorem, we can express the probability dis-
tribution for climate C given pollen and macrofossils P ,
depth D, and parameter 2. In the process, we also introduce
the biome information B:

P(C | P ,D,2)=
∫
B

P(C | P ,B,D,2)

·P(B | P ,D,2)dB. (A1)

In the case of a finite number of taxa, the integral is a corre-
sponding sum. Consider P(C | P ,B,D,2) in more detail,

P(C | P ,B,D,2)
1.
≈ P(C | B,D,2)

2.
≈ P(C | B,2)

3.
≈ P(C | B,ψ)

4.
≈

P(B | C,ψ) ·P(C | ψ) ·P(ψ)
P(B,ψ)

, (A2)

with the following assumptions and applications:

1. C is conditionally independent of P if B is given. This
assumes that B explains enough variability in the core.

2. The link between C and B is conditionally independent
of depth. This means that the relationship between these
quantities is assumed to be unchanged for any depth and
thus any age of the core. The assumption that this rela-
tionship has not changed over time is an important part
of our reconstruction method. When we look at older
time periods, we need to keep this in mind, as the re-
lationship may well have changed due to evolutionary
processes.

3. The connection between C and B is described only by
the parameter ψ . Furthermore, ψ and ω are a priori in-
dependent: P(2)= P(ψ) ·P(ω).

4. The application of Bayes’ theorem.

If we substitute Eq. (A2) into Eq. (A1), we get

P(C | P ,D,2)≈
∫
B

P(B | C,ψ) ·P(C | ψ) ·P(ψ
P(B,ψ)

·P(B | P ,D,ω)dB. (A3)

https://doi.org/10.5194/cp-21-357-2025 Clim. Past, 21, 357–380, 2025



376 T. Netzel et al.: Quantitative climate reconstruction of Lake Kinneret

Equation (2) allows us to transform this model from depth to
age:

P(C | P ,A,2)=
∫
D

P(C | P ,D,2)

·P(D |A)dD
Eq. (A3)
≈

∫
D

∫
B

P(B | C,ψ) ·P(ψ)
P(B,ψ)

·P(B | P ,D,ω)dB ·P(D |A)dD

≈

∫
B

P(B | C,ψ) ·P(ψ)
P(B,ψ)

·

∫
D

P(B | P ,D,ω)

·P(D |A)dDdB
Eq. (2)
≈

∫
B

P(B | C,ψ) ·P(ψ)
P(B,ψ)

·P(B | P ,A,ω)dB. (A4)

Consider P(B | P ,A,ω) in more detail:

P(B | P ,A,ω)=
∫
Ps

P(B | P ,P s,A,ω)

·P(P s | P ,A,ω)dP s. (A5)

The first term in the integral contains the information about
which selected plant proxies P s from the lake sediment be-
long to which biome. Note that a more detailed relationship
in terms of age A could be added at this point. Because we
consider the Holocene in this study, we assume that the prob-
abilities for the biomes are conditionally independent of age
if selected plant proxies are given. The second term describes
the plant information from the sediment core in terms of age.
Finally, we can substitute Eq. (A5) into Eq. (A4) and obtain
the reformulated BBM:

P(C | P ,A,2)≈
∫
B

P(B | C,ψ) ·P(C | ψ) ·P(ψ)
P(B,ψ)

·

∫
Ps

P(B | P ,P s,ω) ·P(P s | P ,A,ω)dP sdB. (A6)
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Appendix B: Figures of the taxa spectrum

Figure B1. Percentage distribution of terrestrial pollen sums as a function of depth for some taxa from the Sea of Galilee. In the middle, the
aggregated arboreal pollen is shown in dark green. The other colors correspond to the assignment to the respective biomes.

Figure B2. As in Fig. B1 but with the new transformation from depth to age of sediment core.
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Code and data availability. There are two Zenodo repositories,
written in R (Netzel, 2023b) and in Python (Netzel, 2023c). These
each include the Bayesian framework with the MCMC simulation
in C++. The required input data from the sediment core, from the
ML competition, and from the age–depth model are available in the
corresponding repositories.
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