Articles | Volume 21, issue 11
https://doi.org/10.5194/cp-21-2133-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-2133-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Phanerozoic paleoenvironmental and paleoclimatic evolution in Svalbard
Aleksandra Smyrak-Sikora
CORRESPONDING AUTHOR
Department of Geosciences, Norwegian University of Science and Technology (NTNU), Trondheim 7031, Norway
Department of Arctic Geology, The University Centre in Svalbard (UNIS), Longyearbyen 9171, Norway
Peter Betlem
Norwegian Geotechnical Institute (NGI), Oslo 0806, Norway
Victoria S. Engelschiøn
Natural History Museum, University of Oslo, Oslo 0562, Norway
William J. Foster
Department of Earth System Science, University of Hamburg, 20146 Hamburg, Germany
Sten-Andreas Grundvåg
Department of Geosciences, The Arctic University of Norway, Tromsø 9019, Norway
Mads E. Jelby
Department of Geoscience, Aarhus University, 8000 Aarhus C, Denmark
Morgan T. Jones
Department of Ecology, Environment and Geoscience (EMG), Umeå University, Umeå, Sweden
Department of Geosciences, University of Oslo, Oslo 0315, Norway
Grace E. Shephard
Centre for Planetary Habitability (PHAB), University of Oslo, Oslo 0315, Norway
Research School of Earth Sciences, Australian National University, Acton, Canberra, Australia
Kasia K. Śliwińska
Department of Geo-energy and Storage, The Geological Survey of Denmark and Greenland (GEUS), Copenhagen 1350, Denmark
Madeleine L. Vickers
Department of Ecology, Environment and Geoscience (EMG), Umeå University, Umeå, Sweden
Valentin Zuchuat
Mineral Resources, CSIRO, Australia
Geological Institute, RWTH-Aachen University, 52062 Aachen, Germany
Lars Eivind Augland
Department of Geosciences, University of Oslo, Oslo 0315, Norway
Jan Inge Faleide
Department of Geosciences, University of Oslo, Oslo 0315, Norway
Jennifer M. Galloway
Geological Survey of Canada (GSC)/Commission géologique du Canada, Calgary, AB, Canada
William Helland-Hansen
Department of Geoscience, Aarhus University, 8000 Aarhus C, Denmark
Maria A. Jensen
Department of Arctic Geology, The University Centre in Svalbard (UNIS), Longyearbyen 9171, Norway
Erik P. Johannessen
EP Skolithos, Sisikveien 36, 4022 Stavanger, Norway
Maayke Koevoets
Geological Survey of the Netherlands (TNO), Utrecht 3584 CB, the Netherlands
Denise Kulhanek
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Gareth S. Lord
Equinor, Bergen, Norway
Tereza Mosociova
Department of Arctic Geology, The University Centre in Svalbard (UNIS), Longyearbyen 9171, Norway
Department of Geosciences, University of Oslo, Oslo 0315, Norway
Snorre Olaussen
Department of Arctic Geology, The University Centre in Svalbard (UNIS), Longyearbyen 9171, Norway
Sverre Planke
Department of Geosciences, University of Oslo, Oslo 0315, Norway
Volcanic Basin Energy Petroleum Research AS (VBER), Oslo
Gregory D. Price
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, United Kingdom
Lars Stemmerik
Department of Geo-energy and Storage, The Geological Survey of Denmark and Greenland (GEUS), Copenhagen 1350, Denmark
Kim Senger
Department of Arctic Geology, The University Centre in Svalbard (UNIS), Longyearbyen 9171, Norway
Related authors
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Laura Kellner, Karen Dybkjær, Stefan Piasecki, Julie Fredborg, Francien Peterse, Erik S. Rasmussen, Manuel Vieira, Lígia Castro, and Kasia K. Śliwińska
J. Micropalaeontol., 44, 509–539, https://doi.org/10.5194/jm-44-509-2025, https://doi.org/10.5194/jm-44-509-2025, 2025
Short summary
Short summary
We analysed Miocene dinocyst taxa and organic particle assemblages along a distal–proximal transect in the North Sea Basin. Based on distal and shallow marine successions, we reconstruct depositional changes across the Miocene Climatic Optimum (MCO; ~16.9–14.7 Ma) and use dinocysts as palaeoclimate proxies. Additionally, we provide five GDGT-derived sea surface temperature data points that support our dinocyst-based climate interpretation.
Peter K. Bijl, Kasia K. Śliwińska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa A. Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond D. Eefting, Felix J. Elling, Pierrick Fenies, Gordon N. Inglis, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yi Ge Zhang
Biogeosciences, 22, 6465–6508, https://doi.org/10.5194/bg-22-6465-2025, https://doi.org/10.5194/bg-22-6465-2025, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducible, reusable, comparable and consistent data.
Rafael Kenji Horota, Christian Haug Eide, Kim Senger, Marius Opsanger Jonassen, and Marie Annette Vander Kloet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2248, https://doi.org/10.5194/egusphere-2025-2248, 2025
Short summary
Short summary
We explored how virtual tools can help students prepare for and reflect on outdoor learning in the Arctic. Using surveys from university courses in Svalbard, we found that digital field visits helped students feel more confident, better understand the landscape, and learn more effectively. These tools do not replace real fieldwork but make it more accessible and inclusive. Our research shows how technology can support hands-on learning in remote environments.
Peter Betlem, Nil Rodes, Sara Mollie Cohen, and Marie A. Vander Kloet
Geosci. Commun., 8, 51–65, https://doi.org/10.5194/gc-8-51-2025, https://doi.org/10.5194/gc-8-51-2025, 2025
Short summary
Short summary
Together with our students, we co-created two open geoscientific course modules using the Jupyter Book framework. Students were happy with the framework's accessibility, inclusivity, interactivity, and multimedia content and eagerly contributed to the educational materials through the GitHub backend when given the opportunity. Our efforts are an important step in the development of geoscientific open educational content co-created by technical experts, social scientists, and students alike.
Bella J. Duncan, Robert McKay, Richard Levy, Joseph G. Prebble, Timothy Naish, Osamu Seki, Christoph Kraus, Heiko Moossen, G. Todd Ventura, Denise K. Kulhanek, and James Bendle
EGUsphere, https://doi.org/10.5194/egusphere-2024-4021, https://doi.org/10.5194/egusphere-2024-4021, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We use plant wax compound specific stable isotopes to investigate how ancient Antarctic vegetation adapted to glacial conditions 23 million years ago. We find plants became less water efficient to prioritise photosynthesis during short, harsh growing seasons. Ecosystem changes also included enhanced aridity, and a shift to a stunted, low elevation vegetation. This shows the adaptability of ancient Antarctic vegetation under atmospheric CO2 conditions comparable to modern.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Juan F. Diaz, Noritoshi Suzuki, Jennifer M. Galloway, and Manuel Bringué
J. Micropalaeontol., 43, 69–80, https://doi.org/10.5194/jm-43-69-2024, https://doi.org/10.5194/jm-43-69-2024, 2024
Short summary
Short summary
In this study, we describe one new genus and three new species of radiolarians from Upper Cretaceous strata of the northern mainland coast of Arctic Canada. This is one of the few Cretaceous radiolarian assemblages recovered from the interior of North America and high northern latitudes and serves as a foundation for future Cretaceous radiolarian research in Arctic regions. Taxonomic descriptions were based on external and internal features observed using a scanning electron microscope.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Cited articles
Abay, T. B., Karlsen, D. A., Olaussen, S., Pedersen, J. H., and Hanken, N.-M.: Organic geochemistry of Cambro-Ordovician succession of Ny Friesland, Svalbard, High Arctic Norway: Petroleum generation potential and bulk geochemical properties, J. Petrol. Sci. Eng., 218, 111033, https://doi.org/10.1016/j.petrol.2022.111033, 2022.
Abdelmalak, M. M., Gac, S., Faleide, J. I., Shephard, G., Tsikalas, F., Polteau, S., Zastrozhnov, D., and Torsvik, T. H.: Quantification and restoration of the pre-drift extension across the NE Atlantic conjugate margins during the mid-Permian-early Cenozoic multi-rifting phases, Tectonics, 42, e2022TC007386, https://doi.org/10.1029/2022TC007386, 2023.
Aguirre-Urreta, M. B., Price, G. D., Ruffell, A. H., Lazo, D. G., Kalin, R. M., Ogle, N., and Rawson, P. F.: Southern hemisphere Early Cretaceous (Valanginian-Early Barremian) carbon and oxygen isotope curves from the Neuquén basin, Argentina, Cretaceous Res., 29, 87–99, 2008.
Ahlborn, M. and Stemmerik, L.: Depositional evolution of the Upper Carboniferous–Lower Permian Wordiekammen carbonate platform, Nordfjorden High, central Spitsbergen, Arctic Norway, Norw. J. Geol., 95, 91–126, https://doi.org/10.17850/njg95-1-03, 2015.
Alexandropoulou, N., Winsborrow, M., Andreassen, K., Plaza-Faverola, A., Dessandier, P. A., Mattingsdal, R., Baeten, N., and Knies, J.: A continuous seismostratigraphic framework for the Western Svalbard-Barents Sea Margin over the last 2.7 Ma: Implications for the late Cenozoic Glacial history of the Svalbard-Barents Sea Ice Sheet, Front. Earth Sci., 9, 656732, https://doi.org/10.3389/feart.2021.656732, 2021.
Allen, K. C.: Lower and Middle Devonian spores of North and Central Vestspitsbergen, Palaeontology 8, 687–748, 1965.
Allen, K. C.: Spore assemblages and their stratigraphical application in the Lower and Middle Devonian of North and Central Vestspitsbergen, Palaeontology, 10, 280–97, 1967.
Alley, N. F., Hore, S. B., and Frakes, L. A.: Glaciations at high-latitude Southern Australia during the Early Cretaceous, Aust. J. Earth Sci., 67, 1045-1095, 2020.
Anderson, T. F. and Arthur, M. A.: Stable isotopes in sedimentary geology and their application to sedimentologic and paleoenvironmental problems, in: Society of Economic Paleontologists and Mineralogists Short Course Notes, https://doi.org/10.2110/scn.83.01.0000, SEPM 10, 1–151, 1983.
Ando, A., Kakegawa, T., Takashima, R., and Saito, T.: New perspective on Aptian carbon isotope stratigraphy: data from δ13C records of terrestrial organic matter, Geology, 30, 227–230, 2002.
Anell, I., Braathen, A., Olaussen, S., and Osmundsen, P.: Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic, First Break, 31, 67–76, https://doi.org/10.3997/1365-2397.2013017, 2013.
Backman, J., Jakobsson, M., Frank, M., Sangiorgi, F., Brinkhuis, H., Stickley, C., O'Regan, M., Løvlie, R., Pälike, H., Spofforth, D., Gattacecca, J., Moran, K., King, J., and Heil, C.: Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge, Paleoceanography, 23, PS1S03, https://doi.org/10.1029/2007PA001476, 2008.
Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., and Price, G. D.: Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures, Nat. Commun., 11, 4005, https://doi.org/10.1038/s41467-020-17501-0, 2020.
Baranyi, V., Miller, C. S., Ruffell, A., Hounslow, M. W., and Kürschner, W. M.: A continental record of the Carnian Pluvial Episode (CPE) from the Mercia Mudstone Group (UK): palynology and climatic implications, J. Geol. Society, 176, 149–166, 2019.
Beauchamp, B. and Grasby, S. E.: Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion, Palaeogeogr. Palaeoclimatol. Palaeoecol., 350, 73–90, 2012.
Bédard, J. H., Saumur, B. M., Tegner, C., Troll, V. R., Deegan, F. M., Evenchick, C. A., Grasby, S. E., and Dewing, K.: Geochemical systematics of High Arctic Large Igneous Province continental tholeiites from Canada – evidence for progressive crustal contamination in the plumbing system, J. Petrol., 62, egab041, https://doi.org/10.1093/petrology/egab041, 2021.
Benton, M. J., Bernardi, M., and Kinsella, C.: The Carnian Pluvial Episode and the origin of dinosaurs, J. Geol. Soc., 175, 1019–1026, 2018.
Beranek, L. P., Gee, D. G., and Fisher, C. M.: Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides, GSA Bull., 132, 1987–2003, https://doi.org/10.1130/b35318.1, 2020.
Bergh, S., Maher Jr., H., and Braathen, A.: Late Devonian transpressional tectonics in Spitsbergen, Svalbard, and implications for basement uplift of the Sørkapp–Hornsund High, J. Geol. Soc., 168, 441–456, 2011.
Bergh, S. G., Braathen, A., and Andresen, A.: Interaction of Basement-Involved and Thin-Skinned Tectonism in the Tertiary Fold-Thrust Belt of Central Spitsbergen, Svalbard, AAPG Bull., 81, 637–661, https://doi.org/10.1306/522b43f7-1727-11d7-8645000102c1865d, 1997.
Bergström, S. M.: Conodonts as paleotemperature tools in Ordovician rocks of the Caledonides and adjacent areas in Scandinavia and the British Isles, Geol. Fören. Stock. För., 102, 377–392, 1980.
Bernardi, M., Petti, F. M., and Benton, M. J.: Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction, P. Roy. Soc. B, 285, 20172331, https://doi.org/10.1098/rspb.2017.2331, 2018.
Berndt, C., Planke, S., Alvarez Zarikian, C. A., Frieling, J., Jones, M. T., Millett, J. M., Brinkhuis, H., Bünz, S., Svensen, H. H., Longman, J., Scherer, R. P., Karstens, J., Manton, B., Nelissen, M., Reed, B., Faleide, J. I., Huismans, R. S., Agarwal, A., Andrews, G. D. M., Betlem, P., Bhattacharya, J., Chatterjee, S., Christopoulou, M., Clementi, V. J., Ferré, E. C., Filina, I. Y., Guo, P., Harper, D. T., Lambart, S., Mohn, G., Nakaoka, R., Tegner, C., Varela, N., Wang, M., Xu, W., and Yager, S. L.: Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum, Nat. Geosci., 16, 803–809, 2023.
Berner, R. A.: Paleozoic atmospheric CO2: importance of solar radiation and plant evolution, Science, 261, 68–70, https://doi.org/10.1126/science.261.5117.68, 1993.
Berner, R. A.: The rise of trees and how they changed Paleozoic atmospheric CO2, climate, and geology, in: A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, 1–7 pp., New York, NY: Springer New York, https://doi.org/10.1007/0-387-27048-5_1, 2005.
Berry, C. M.: `Hyenia'vogtii Høeg from the Middle Devonian of Spitsbergen – Its morphology and systematic position, Rev. Palaeobot. Palynol., 135, 109–116, 2005.
Berry, C. M. and Marshall, J. E. A.: Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard, Geology, 43, 1043–1046, https://doi.org/10.1130/g37000.1, 2015.
Betlem, P., Rodés, N., Birchall, T., Dahlin, A., Smyrak-Sikora, A., and Senger, K.: Svalbox Digital Model Database: A geoscientific window into the High Arctic, Geosphere, 19, 1640–1666, 2023.
Betlem, P., Birchall, T., Lord, G., Oldfield, S., Nakken, L., Ogata, K., and Senger, K.: High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen, Earth Syst. Sci. Data, 16, 985-–1006, https://doi.org/10.5194/essd-16-985-2024, 2024.
Biakov, A. S., Zakharov, Y. D., Horacek, M., Richoz, S., Kutygin, R. V., Ivanov, Y. Y., Kolesov, E. V., Konstantinov, A. G., Tuchkova, M. I., and Mikhalitsyna, T. I.: New data on the structure and age of the terminal Permian strata in the South Verkhoyansk region (northeastern Asia), Russ. Geol. Geophys.+, 57, 282–293, 2016.
Bjerager, M., Alsen, P., Bojesen-Koefoed, J. A., Fyhn, M. B. W., Hovikoski, J., Keulen, N., Lindström, S., Therkelsen, J., and Thomsen, T. B.: Triassic in the northernmost Atlantic – Linking North Greenland and the southwestern Barents Sea, Terra Nova, 35, 250–259, https://doi.org/10.1111/ter.12649, 2023.
Black, B. A., Lamarque, J.-F., Shields, C. A., Elkins-Tanton, L. T., and Kiehl, J. T.: Acid rain and ozone depletion from pulsed Siberian Traps magmatism, Geology, 42, 67–70, https://doi.org/10.1130/g34875.1, 2014.
Blakey, R.: Paleotectonic and paleogeographic history of the Arctic region, Atl. Geol., 57, 007–039, 2021.
Blattmann, F. R., Schneebeli-Hermann, E., Adatte, T., Bucher, H. F., Vérard, C., Hammer, Ø., Luz, Z. A. S., and Vennemann, T. W.: Palaeoenvironmental variability and carbon cycle perturbations during the Smithian-Spathian (Early Triassic) in Central Spitsbergen, Lethaia, 57, 1–14, 2024.
Blinova, M., Thorsen, R., Mjelde, R., and Faleide, J. I.: Structure and evolution of the Bellsund Graben between Forlandsundet and Bellsund (Spitsbergen) based on marine seismic data, Norw. J. Geol., 89, 215–228, 2009.
Blinova, M., Faleide, J. I., Gabrielsen, R. H., and Mjelde, R.: Analysis of structural trends of sub-sea-floor strata in the Isfjorden area of the West Spitsbergen Fold-and-Thrust Belt based on multichannel seismic data, J. Geol. Soc., 170, 657–668, https://doi.org/10.1144/jgs2012-109, 2013.
Blomeier, D., Wisshak, M., Dallmann, W., Volohonsky, E., and Freiwald, A.: Facies analysis of the old Red Sandstone of Spitsbergen (Wood Bay Formation): Reconstruction of the depositional environments and implications of basin development, Facies, 49, 151–174, https://doi.org/10.1007/s10347-003-0030-1, 2003a.
Blomeier, D., Wisshak, M., Joachimski, M., Freiwald, A., and Volohonsky, E.: Calcareous, alluvial and lacustrine deposits in the Old Red Sandstone of central north Spitsbergen (Wood Bay Formation, Early Devonian), Norw. J. Geol./Norsk Geologisk Forening, 83, 281–298, 2003b.
Blomeier, D., Scheibner, C., and Forke, H.: Facies arrangement and cyclostratigraphic architecture of a shallow-marine, warm-water carbonate platform: the Late Carboniferous Ny Friesland Platform in eastern Spitsbergen (Pyefjellet Beds, Wordiekammen Formation, Gipsdalen Group), Facies, 55, 291–324, https://doi.org/10.1007/s10347-008-0163-3, 2009.
Blomeier, D., Dustira, A., Forke, H., and Scheibner, C.: Environmental change in the Early Permian of NE Svalbard: from a warm-water carbonate platform (Gipshuken Formation) to a temperate, mixed siliciclastic-carbonate ramp (Kapp Starostin Formation), Facies, 57, 493–523, https://doi.org/10.1007/s10347-010-0243-z, 2011.
Blomeier, D., Dustira, A. M., Forke, H., and Scheibner, C.: Facies analysis and depositional environments of a storm-dominated, temperate to cold, mixed siliceous-carbonate ramp: the Permian Kapp Starostin Formation in NE Svalbard, Norw. J. Geol., 93, 75–93, 2013.
Blumenberg, M., Weniger, P., Kus, J., Scheeder, G., Piepjohn, K., Zindler, M., and Reinhardt, L.: Geochemistry of a middle Devonian cannel coal (Munindalen) in comparison with Carboniferous coals from Svalbard, Arktos, 4, 1–8, 2018.
Blythe, A. E. and Kleinspehn, K. L.: Tectonically versus climatically driven Cenozoic exhumation of the Eurasian plate margin, Svalbard: Fission track analyses, Tectonics, 17, 621–639, 1998.
Bodin, S., Meissner, P., Janssen, N. M., Steuber, T., and Mutterlose, J.: Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous, Global Planet. Change, 133, 238–253, 2015.
Bond, D. P., Wignall, P. B., and Grasby, S. E.: The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia, GSA Bull., 132, 931–942, https://doi.org/10.1130/B35281.1, 2020.
Bond, D. P. G., Wignall, P. B., Joachimski, M. M., Sun, Y., Savov, I., Grasby, S. E., Beauchamp, B., and Blomeier, D. P. G.: An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification, GSA Bull., 127, 1411–1421, https://doi.org/10.1130/b31216.1, 2015.
Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H. C., Schouten, S., and Sinninghe Damsté, J. S.: Climate variability and ocean fertility during the Aptian Stage, Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, 2015.
Boucot, A. J., Xu, C., and Scotese, C. R.: Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate, SEPM Concepts in Sedimentology and Paleontology, (Print-on-Demand Version), No. 11, 478 pp., ISBN 978-1-56576-289-3, 2013.
Braathen, A. and Bergh, S. G.: Kinematics of Tertiary deformation in the basement-involved fold-thrust complex, western Nordenskiøld Land, Svalbard: tectonic implications based on fault-slip data analysis, Tectonophysics, 249, 1–29, 1995.
Braathen, A., Bergh, S., and Maher Jr, H.: Structural outline of a Tertiary Basement-cored uplift/inversion structure in western Spitsbergen, Svalbard: Kinematics and controlling factors, Tectonics, 14, 95–119, 1995.
Braathen, A., Bergh, S. G., and Maher Jr., H. D.: Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard, GSA Bull., 11, 1468–1485, https://doi.org/10.1130/0016-7606(1999)111<1468:Aoacwt>2.3.Co;2 1999.
Braathen, A., Bælum, K., Maher Jr, H., and Buckley, S. J.: Growth of extensional faults and folds during deposition of an evaporite-dominated half-graben basin; the Carboniferous Billefjorden Trough, Svalbard, Norw. J. Geol., 91, 137–160, 2012.
Braathen, A., Osmundsen, P. T., Maher, H., and Ganerød, M.: The Keisarhjelmen detachment records Silurian–Devonian extensional collapse in northern Svalbard, Terra Nova, 30, 34–39, 2018.
Bratvold, J.: Chondrichthyans from the Grippia bonebed (Early Triassic) of Marmierfjellet, Spitsbergen (Master's thesis, University od Oslo), https://doi.org/10.17850/njg98-2-03, 2016.
Brayard, A., Escarguel, G., Bucher, H., and Brühwiler, T.: Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: paleoceanographic and paleogeographic implications, Journal of asian earth Sciences, 36, 420–433, https://doi.org/10.1016/j.jseaes.2008.05.004, 2009.
Breda, A., Preto, N., Roghi, G., Furin, S., Meneguolo, R., Ragazzi, E., Fedele, P., and Gianolla, P.: The Carnian Pluvial Event in the Tofane area (Cortina d'Ampezzo, Dolomites, Italy), Geo. Alp, 6, 80–115, 2009.
Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Damsté, J. S. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., and Takahashi, K.: Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 441, 606–609, 2006.
Bruhn, R. and Steel, R.: High-resolution sequence stratigraphy of a clastic foredeep succession (Paleocene, Spitsbergen): An example of peripheral-bulge-controlled depositional architecture, J. Sedim. Res., 73, 745–755, 2003.
Bryan, S. E. and Ernst, R. E.: Revised definition of large igneous provinces (LIPs), Earth-Sci. Rev., 86, 175–202, 2008.
Buchan, K. L. and Ernst, R. E.: A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP), Gondwana Res., 58, 39–57, 2018.
Buchan, S., Challinor, A., Harland, W., and Parker, J.: The Triassic stratigraphy of Svalbard, Norsk Polarinst. Skrifter, 135, 1–98 pp., 1965.
Buggisch, W., Blomeier, D., and Joachimski, M. M.: Facies, diagenesis and carbon isotopes of the Early Permian Gipshuken Formation (Svalbard). Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften, 163, 309–321, https://doi.org/10.1127/1860-1804/2012/0163-0309, 2012.
Burger, B. J., Vargas Estrada, M., and Gustin, M. S.: What caused Earth's largest mass extinction event? New evidence from the Permian-Triassic boundary in northeastern Utah, Global Planet. Change, 177, 81–100, https://doi.org/10.1016/j.gloplacha.2019.03.013, 2019.
Burgess, S. D. and Bowring, S. A.: High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction, Sci. Adv., 1, e1500470, https://doi.org/10.1126/sciadv.1500470, 2015.
Burgess, S. D., Bowring, S., and Shen, S. Z.: High-precision timeline for Earth's most severe extinction, P. Natl. Acad. Sci. USA, 111, 3316–3321, 2014.
Burgess, S. D., Muirhead, J. D., and Bowring, S. A.: Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction, Nat. Commun., 8, 164, https://doi.org/10.1038/s41467-017-00083-9, 2017.
Capelli, I. A., Scasso, R. A., Spangenberg, J. E., Kietzmann, D. A., Cravero, F., Duperron, M., and Adatte, T.: Mineralogy and geochemistry of deeply-buried marine sediments of the Vaca Muerta-Quintuco system in the Neuquén Basin (Chacay Melehue section), Argentina: Paleoclimatic and paleoenvironmental implications for the global Tithonian-Valanginian reconstructions, J. South Am. Earth Sci., 107, 103103, https://doi.org/10.1016/j.jsames.2020.103103, 2021.
Cavalheiro, L., Wagner, T., Steinig, S., Bottini, C., Dummann, W., Esegbue, O., Gambacorta, G., Giraldo-Gómez, V., Farnsworth, A., and Flögel, S.: Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event, Nat. Commun., 12, 5411, https://doi.org/10.1038/s41467-021-25706-0, 2021.
Celestino, R., Wohlwend, S., Reháková, D., and Weissert, H.: Carbon isotope stratigraphy, biostratigraphy and sedimentology of the Upper Jurassic–Lower Cretaceous Rayda Formation, Central Oman Mountains, Newsl. Stratigr., 50, 91–109, 2017.
Cepek, P. and Krutzsch, W.: Conflicting interpretations of the Tertiary Biostratigraphy of Spitsbergen and New Palynological Results, in: Intra-continental fold belts, CASE 1: West Spitsbergen, edited by: Tessensohn F., Geologisches Jahrbuch Reihe B, Polar Issue 7. Federal Institute for Geosciences and Natural Resources, Hannover, 551–602 pp., ISBN 3-510-95834-9, 2001.
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J. E., Cui, Y., Kump, L., and Croudace, I. W.: Constraints on the numerical age of the Paleocene-Eocene boundary, Geochem. Geophys. Geosyst., 12, https://doi.org/10.1029/2010GC003426, 2011.
Chambers, L. M., Pringle, M. S., and Fitton, J. G.: Phreatomagmatic eruptions on the Ontong Java Plateau: an Aptian 40Ar/39Ar age for volcaniclastic rocks at ODP Site 1184, Geol. Soc. London, Special Publications, 229, 325–331 pp., https://etheses.whiterose.ac.uk/id/eprint/21133/1/589040.pdf (last access: January 2004), 2004.
Chen, J., Shen, S., Li, X., Xu, Y., Joachimski, M. M., Bowring, S. A., Erwin, D. H., Yuan, D., Chen, B., Zhang, H., Wang, Y., Cao, C., Zheng, Q., and Mu, L.: High-resolution SIMS oxygen isotope analysis on condodont apatite from South China and implications for the end-Permian mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 448, 26–38, 2016.
Chen, Z. Q., Tong, J., and Fraiser, M. L.: Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 449–474, 2011.
Clemmensen, A. and Thomsen, E.: Palaeoenvironmental changes across the Danian–Selandian boundary in the North Sea Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 351–394, https://doi.org/10.1016/j.palaeo.2005.01.005, 2005.
Clifton, A.: The Eocene flora of Svalbard and its climatic significance, unpublished PhD Thesis, The University of Leeds, Leeds, 401 pp., https://etheses.whiterose.ac.uk/id/eprint/21133/1/589040.pdf (last access: January 2024), 2012.
Corfu, F., Polteau, S., Planke, S., Faleide, J. I., Svensen, H., Zayoncheck, A., and Stolbov, N.: U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province, Geol. Mag., 150, 1127–1135, https://doi.org/10.1017/S0016756813000162, 2013.
Cui, Y., Kump, L. R., Ridgwell, A. J., Charles, A. J., Junium, C. K., Diefendorf, A. F., Freeman, K. H., Urban, N. M., and Harding, I. C.: Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum, Nat. Geosci., 4, 481–485, 2011.
Cui, Y., Kump, L. R., and Ridgwell, A.: Spatial and temporal patterns of ocean acidification during the end-Permian mass extinction-An Earth system model evaluation, in: Volcanism and global environmental change, 291–307 pp., Cambridge University Press, https://doi.org/10.1017/CBO9781107415683.023, 2015.
Cui, Y., Diefendorf, A. F., Kump, L. R., Jiang, S., and Freeman, K. H.: Synchronous marine and terrestrial carbon cycle perturbation in the high arctic during the PETM, Paleoceanogr. Paleoclimatol., 36, e2020PA003942, https://doi.org/10.1029/2020PA003942, 2021.
Cutbill, J. and Challinor, A.: Revision of the stratigraphical scheme for the Carboniferous and Permian rocks of Spitsbergen and Bjørnøya, Geol. Mag., 102, 418–439, 1965.
Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., Lartaud, F., and Zanchetta, G.: Most Earth-surface calcites precipitate out of isotopic equilibrium, Nat. Commun., 10, 429, https://doi.org/10.1038/s41467-019-08336-5, 2019.
Dagis, A. A. and Korcinskaja, M. V.: Pervye nahodki konodontov v otocerasovyh slojah Sval'barda. The first discoveries of conodonts in the Otoceras beds of Svalbard.) Trudy Akademija SSSR, Sibirskoe otdelenie Instituta Geologii i Geofiziki, 689, 110–113, 1987.
Dal Corso, J., Ruffell, A., and Preto, N.: The Carnian Pluvial Episode (Late Triassic): New insights into this important time of global environmental and biological change, J. Geol. Soc., 175, 986–988, 2018.
Dal Corso, J., Mills, B. J., Chu, D., Newton, R. J., and Song, H.: Background Earth system state amplified Carnian (Late Triassic) environmental changes, Earth Planet. Sci. Lett., 578, 117321, https://doi.org/10.1016/j.epsl.2021.117321, 2022.
Dalland, A.: Erratic clasts in the Lower Tertiary deposits of Svalbard–evidence of transport by winter ice, Norsk Polarinstitutt Arbok, 151–165, 1976.
Dallmann, W. (Ed.): Lithostratigraphic lexicon of Svalbard. Norwegian Polar Institute, 1–318 pp., https://hdl.handle.net/11250/3214780 (last access: Mai 2025), 1999.
Dallmann, W. K., Andresen, A., Bergh, S. G., Maher Jr., H. D., and Ohta, Y.: Tertiary fold-and-thrust belt of Spitsbergen, Svalbard, Norsk Polarinstitutt, Meddelelser Nr 128, Oslo, 1–51 pp., 1993.
Dallmann, W. K., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., Lønøy, A., Nilson, I., and Worsley, D.: Upper palaeozoic lithostratigraphy, in: Lithostratigraphic Lexicon of Svalbard, edited by: Dallmann, W. K., Norsk Polarinstitutt, Tromsø, 25–126 pp., 1999.
Dallmann, W. K. E. (Ed.): Geoscience Atlas of Svalbard, Norsk Polarinst. Rapportserie, 148, http://hdl.handle.net/11250/2580810 (last access: April 2024), 2015.
Dalseg, T. S., Nakrem, H. A., and Smelror, M.: Dinoflagellate cyst biostratigraphy, palynofacies, depositional environment and sequence stratigraphy of the Agardhfjellet Formation (Upper Jurassic-Lower Cretaceous) in central Spitsbergen (Arctic Norway), Norw. J. Geol., 96, 1–14, 2016.
Davies, N. S., Berry, C. M., Marshall, J. E., Wellman, C. H., and Lindemann, F.-J.: The Devonian landscape factory: plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent, J. Geol. Soc., 178, 1–27, https://doi.org/10.1144/jgs2020-225, 2021.
Davis, W. J., Schroeder-Adams, C. J., Galloway, J. M., Herrle, J. O., and Pugh, A. T.: U-Pb geochronology of bentonites from the Upper cretaceous Kanguk Formation, Sverdrup Basin, Arctic Canada: constraints on sedimentation rates, biostratigraphic correlations and the late magmatic history of the High Arctic large Igneous Province, Geol. Mag., 154, 757–776, https://doi.org/10.1017/S0016756816000376, 2017.
Delsett, L. L., Novis, L. K., Roberts, A. J., Koevoets, M. J., Hammer, Ø., Druckenmiller, P. S., and Hurum, J. H.: The Slottsmøya marine reptile Lagerstätte: depositional environments, taphonomy and diagenesis, Geological Society, London, Special Publications, 434, 165–188, 2016.
Delsett, L. L., Roberts, A. J., Druckenmiller, P. S., and Hurum, J. H.: A new ophthalmosaurid (Ichthyosauria) from Svalbard, Norway, and evolution of the ichthyopterygian pelvic girdle, PloS One, 12, e0169971, https://doi.org/10.1371/journal.pone.0169971, 2017.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965–971, 1995.
Dimakis, P., Braathen, B. I., Faleide, J. I., Elverhøi, A., and Gudlaugsson, S. T.: Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region, Tectonophysics, 300, 311–327, https://doi.org/10.1016/S0040-1951(98)00245-5, 1998a.
Dimakis, P., Braathen, B. I., Faleide, J. I., Elverhøi, A., and Gudlaugsson, S. T.: Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region, Tectonophysics, 300, 311–327, 1998b.
Ditchfield, P. W.: High northern palaeolatitude Jurassic-Cretaceous palaeotemperature variation: new data from Kong Karls Land, Svalbard, Palaeogeogr. Palaeoclimatol. Palaeoecol., 130, 163–175, 1997.
Dockman, D., Pearson, D., Heaman, L., Gibson, S., and Sarkar, C.: Timing and origin of magmatism in the Sverdrup Basin, Northern Canada – Implications for lithospheric evolution in the High Arctic Large Igneous Province (HALIP), Tectonophysics, 742, 50–65, 2018.
Dodd, S. C., Mac Niocaill, C., and Muxworthy, A. R.: Long duration (>4 Ma) and steadystate volcanic activity in the early cretaceous Paraná-Etendeka Large Igneous Province: new palaeomagnetic data from Namibia, Earth Planet. Sci. Lett., 414, 16–29, 2015.
Doerner, M., Berner, U., Erdmann, M., and Barth, T.: Geochemical characterization of the depositional environment of Paleocene and Eocene sediments of the Tertiary Central Basin of Svalbard, Chem. Geol., 542, 119587, https://doi.org/10.1016/j.chemgeo.2020.119587, 2020.
Drachev, S.: Fold belts and sedimentary basins of the Eurasian Arctic, Arktos, 2, 21, 1–30, https://doi.org/10.1007/s41063-015-0014-8, 2016.
Duchamp-Alphonse, S., Gardin, S., Fiet, N., Bartolini, A., Blamart, D., and Pagel, M.: Fertilization of the northwestern Tethys (Vocontian basin, SE France) during the Valanginian carbon isotope perturbation: evidence from calcareous nannofossils and trace element data, Palaeogeogr. Palaeoclimatol. Palaeoecol., 243, 132–151, 2007.
Dummann, W., Schröder-Adams, C., Hofmann, P., Rethemeyer, J., and Herrle, J. O.: Carbon isotope and sequence stratigraphy of the upper Isachsen Formation on Axel Heiberg Island (Nunavut, Canada): High Arctic expression of oceanic anoxic event 1a in a deltaic environment, Geosphere, 17, 501–519, 2021.
Dummann, W., Wennrich, V., Schröder-Adams, C. J., Leicher, N., and Herrle, J. O.: Ash deposits link Oceanic Anoxic Event 2 to High Arctic volcanism, Geology, 52, 927–932, https://doi.org/10.1130/G52368.1, 2024.
Dustira, A. M., Wignall, P. B., Joachimski, M., Blomeier, D., Hartkopf-Fröder, C., and Bond, D. P. G.: Gradual onset of anoxia across the Permian–Triassic Boundary in Svalbard, Norway, Palaeogeogr. Palaeoclimatol. Palaeoecol., 374, 303–313, https://doi.org/10.1016/j.palaeo.2013.02.004, 2013.
Dypvik, H., Riber, L., Burca, F., Rüther, D., Jargvoll, D., Nagy, J., and Jochmann, M.: The Paleocene–Eocene thermal maximum (PETM) in Svalbard – clay mineral and geochemical signals, Palaeogeogr. Palaeoclimatol. Palaeoecol., 302, 156–169, 2011.
Dörr, N., Clift, P., Lisker, F., and Spiegel, C.: Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies, Tectonics, 32, 473–486, 2013.
Dzyuba, O. S., Izokh, O. P., and Shurygin, B. N.: Carbon isotope excursions in Boreal Jurassic–Cretaceous boundary sections and their correlation potential, Palaeogeogr. Palaeoclimatol. Palaeoecol., 381–382, 33–46, https://doi.org/10.1016/j.palaeo.2013.04.013, 2013.
Eberle, J. and Greenwood, D.: Life at the top of the greenhouse Eocene world–A review of the Eocene flora and vertebrate fauna from Canada's High Arctic, Geol. Soc. Am. Bull., 124, 3–23, https://doi.org/10.1130/B30571.1, 2012.
Edwards, C. T. and Saltzman, M. R.: Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 458, 102–117, 2016.
Ekeheien, C., Delsett, L. L., Roberts, A. J., and Hurum, J. H.: Preliminary report on ichthyopterygian elements from the Early Triassic (Spathian) of Spitsbergen, Norw. J. Geol., 98, 219–238, 2018.
Eldrett, J., Greenwood, D., Harding, I., and Huber, M.: Increased seasonality in the latest Eocene to earliest Oligocene in northern high latitudes, Nature, 459, 969–973, 2009.
Eldrett, J. S., Harding, I. C., Firth, J. V., and Roberts, A. P.: Magnetostratigraphic calibration of Eocene–Oligocene dinoflagellate cyst biostratigraphy from the Norwegian–Greenland Sea, Mar. Geol., 204, 91–127, 2004.
Engelschiøn, V. S., Delsett, L. L., Roberts, A. J., and Hurum, J. H.: Large-sized ichthyosaurs from the Lower Saurian niveau of the Vikinghøgda formation (Early Triassic), Marmierfjellet, Spitsbergen, Norw. J. Geol., 98, 239–266, 2018.
Engelschiøn, V. S., Bernhardsen, S., Wesenlund, F., Hammer, Ø., Hurum, J. H., and Mørk, A.: Bivalve beds reveal rapid changes in ocean oxygenation in the Boreal Middle Triassic–a case study from Svalbard, Norway, Norw. J. Geol.,, 103, 1–25, https://doi.org/10.17850/njg103-2-1, 2023.
Erba, E., Bartolini, A., and Larson, R. L.: Valanginian Weissert oceanic anoxic event, Geology, 32, 149–152, 2004.
Ernst, R. E. and Youbi, N.: How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record, Palaeogeogr. Palaeoclimatol. Palaeoecol., 478, 30–52, 2017.
Estes, R. and Hutchinson, J. H.: Eocene Lower Vertebrates from Ellesmere Island, Canadian Arctic Archipelago, Palaeogeogr. Palaeocl., 30, 325–347, 1980.
Estrada, S. and Henjes-Kunst, F.: 40Ar-39Ar and U-Pb dating of Cretaceous continental rift-related magmatism on the northeast Canadian Arctic margin, Z. Dtsch. Ges. Geowiss., 164, 107–130, 2013.
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., Saraswati, P. K., Stassen, P., Ziegler, M., and Pearson, P. N.: Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry, P. Natl. Acad. Sci. USA, 115, 1174–1179, https://doi.org/10.1073/pnas.1714744115, 2018.
Ezaki, Y., Kawamura, T., and Nakamura, K.: Kapp Starostin Formation in Spitsbergen: a sedimentary and faunal record of Late Permian palaeoenvironments in an Arctic region, in: Pangea: Global Environments and Resources – Memoir 17, 647–655 pp., 1994.
Fairchild, I. J.: The Orustdalen Formation of Brøggerhalvøya, Svalbard: A fan delta complex of Dinantian/Namurian age, Polar Res., 1982, 17–34, https://doi.org/10.1111/j.1751-8369.1982.tb00470.x, 1982.
Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J., and Eldholm, O.,: Structure and evolution of the continental margin off Norway and the Barents Sea, Episodes J. Int. Geosci., 31, 82–91, 2008.
Faleide, J. I., Pease, V., Curtis, M., Klitzke, P., Minakov, A., Scheck-Wenderoth, M., Kostyuchenko, S., and Zayonchek, A.: Tectonic implications of the lithospheric structure across the Barents and Kara shelves, Geological Society, London, Special Publications, 460, 285–314, https://doi.org/10.1144/SP460.18, 2018.
Fallatah, M. I., Alnazghah, M., Kerans, C., and Al-Hussaini, A.: Sedimentology and carbon isotope stratigraphy from the Late Jurassic – Early Cretaceous of the Arabian plate: The Weissert event and the VOICE in the Tethys Realm?, Mar. Petrol. Geol., 161, 106670, https://doi.org/10.1016/j.marpetgeo.2023.106670, 2024.
Feyling-Hanssen, R. W. and Ulleberg, K.: A Tertiary-Quaternary section at Sarsbukta, Spitsbergen, Svalbard, and its foraminifera, Polar Res.h, 2, 77–106, https://doi.org/10.3402/polar.v2i1.6963, 1984.
Fischer, A. G.: Climatic oscillations in the biosphere. Biotic crises in ecological and evolutionary time, Academic Press,, 331, 103–131, https://doi.org/10.24382/4485, 1981.
Fischer, A. G.: Long-term climate oscillations recorded in stratigraphy, Climate in Earth history, Academy Press, Washington, D.C, 97–104, https://doi.org/10.17226/11798, 1982.
Fischer, A. G.: The two Phanerozoic supercycles, in: Catastrophes and Earth history, edited by: Berggren, W. A. and Van Couvering, J. A., Princetown Univeristy Press, 129–150, https://doi.org/10.1515/9781400853281.129, 1984.
Fortey, R. and Bruton, D.: Cambrian-Ordovician rocks adjacent to Hinlopenstretet, North Ny Friesland, Spitsbergen, Geol. Soc. Am. Bull., 84, 2227–2242, 1973.
Foster, W. J.: Palaeoecology of the late Permian mass extinction and subsequent recovery, Unpublished PhD thesis, Plymouth University, https://doi.org/10.24382/4485, 2015.
Foster, W. J., Danise, S., Price, G. D., and Twitchett, R. J.: Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy, PLoS One, 12, e0172321, https://doi.org/10.1371/journal.pone.0172321, 2017a.
Foster, W. J., Danise, S., and Twitchett, R. J.: A silicified Early Triassic marine assemblage from Svalbard, J. Syst. Palaeontol., 15, 851–877, https://doi.org/10.1080/14772019.2016.1245680, 2017b.
Foster, W. J., Lehrmann, D. J., Yu, M., Ji, L., and Martindale, R. C.: Persistent environmental stress delayed the recovery of marine communities in the aftermath of the latest Permian mass extinction, Paleoceanogr. Paleoclimatol., 33, 338–353, 2018.
Foster, W. J., Hirtz, J. A., Farrell, C., Reistroffer, M., Twitchett, R. J., and Martindale, R. C.: Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction, Sci. Rep., 12, 1202, https://doi.org/10.1038/s41598-022-04991-9, 2022.
Foster, W. J., Asatryan, G., Rauzi, S., Botting, J., Buchwald, S., Lazarus, D., Isson, T., Renaudie, J., and Kiessling, W.: Response of Siliceous Marine Organisms to the Permian-Triassic Climate Crisis Based on New Findings From Central Spitsbergen, Svalbard, Paleoceanogr. Paleoclimatol., 38, e2023PA004766, https://doi.org/10.22541/essoar.169447472.26881234/v1, 2023.
Frakes, L. A., Francis, J. E., and Syktus, J. I.: Climate modes of the Phanerozoic, Cambridge University Press, Cambridge, 274 pp., https://doi.org/10.1017/CBO9780511628948, 1992.
Friend, P.: Fluviatile sedimentary structures in the Wood Bay series (Devonian) of Spitsbergen, Sedimentology, 5, 39–68, 1965.
Friend, P., Harland, W., Rogers, D., Snape, I., and Thornley, R.: Late Silurian and Early Devonian stratigraphy and probable strike-slip tectonics in northwestern Spitsbergen, Geol. Mag., 134, 459–479, 1997.
Friend, P. F.: The Devonian stratigraphy of north and central Spitsbergen, P. Yorks. Geol. Soc., 33, 77–118, https://doi.org/10.1144/pygs.33.1.77, 1961.
Fyhn, M. B. W. and Hopper, J. R.: NE Greenland Composite Tectono-Sedimentary Element, northern Greenland Sea and Fram Strait, Geol. Soc. London, Memoirs, 57, https://doi.org/10.1144/M57-2017-12, 2025.
Gabrielsen, R. H., Kløvjan, O. S., Haugsbø, H., Midbøe, P. S., Nøttvedt, A., Rasmussen, E., and Skott, P. H.: A structural outline of Forlandsundet Graben, Prins Karls Forland, Svalbard, Norsk Geol. Tidsskrift, 72, 105–120, 1992.
Gale, A. S., Mutterlose, J., Batenburg, S., Gradstein, F. M., Agterberg, F. P., Ogg, J. G., and Petrizzo, M. R. 2020: The Cretaceous Period, in: Geological Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Boston, MA, 1023–1086 pp., https://doi.org/10.1016/B978-0-12-824360-2.00027-9, 2020.
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., and Vigran, J. O.: Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis, Geology, 35, 291–294, https://doi.org/10.1130/g23117a.1, 2007.
Galloway, J. M. and Lindström, S.: Impacts of Large-scale Magmatism on Land Plant Ecosystems, Elements, 19, 289–295, 2023a.
Galloway, J. M., Vickers, M. L., Price, G. D., Poulton, T., Grasby, S. E., Hadlari, T., Beauchamp, B., and Sulphur, K.: Finding the VOICE: organic carbon isotope chemostratigraphy of Late Jurassic – Early Cretaceous Arctic Canada, Geol. Mag., 157, 1643–1657, https://doi.org/10.1017/s0016756819001316, 2020.
Galloway, J. M., Fensome, R. A., Swindles, G. T., Hadlari, T., Fath, J., Schröder-Adams, C., Herrle, J. O., and Pugh, A.: Exploring the role of High Arctic Large Igneous Province volcanism on Early Cretaceous Arctic forests, Cretaceous Res., 129, 105022, https://doi.org/10.1016/j.cretres.2021.105022, 2022.
Galloway, J. M., Grasby, S. E., Wang, F., Hadlari, T., Dewing, K., Bodin, S., and Sanei, H.: A mercury and trace element geochemical record across Oceanic Anoxic Event 1b in Arctic Canada, Palaeogeogr. Palaeoclimatol. Palaeoecol., 617, 111490, https://doi.org/10.1016/j.palaeo.2023.111490, 2023.
Galloway, J. M., Hadlari, T., Dewing, K., Poulton, T., Grasby, S. E., Reinhardt, L., Rogov, M., Longman, J., and Vickers, M.: The silent VOICE – Searching for geochemical markers to track the impact of Late Jurassic rift tectonics, Geochem. Geophys. Geosyst., 25, e2024GC011490, https://doi.org/10.1029/2024GC011490, 2024.
Gastaldo, R. A., DiMichele, W. A., and Pfefferkorn, H. W.: Out of the icehouse into the greenhouse: a late Paleozoic analogue for modern global vegetational change, GSA Today, 6, 1–7, 1996.
Gee, D. G. and Teben'kov, A.: Svalbard: a fragment of the Laurentian margin, Geol. Soc. London, Memoirs, 30, 191–206, 2004.
Gee, D. G., Bogolepova, O. K., and Lorenz, H.: The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeo-continents Laurentia, Baltica and Siberia, Geol. Soc. London, Memoirs, 32, 507–520, https://doi.org/10.1144/GSL.MEM.2006.032.01.31, 2006.
Gensel, P. G.: The earliest land plants, Annu. Rev. Ecol. Evol. S., 39, 459–477, 2008.
Gilmullina, A., Klausen, T. G., Doré, A. G., Rossi, V. M., Suslova, A., and Eide, C. H.: Linking sediment supply variations and tectonic evolution in deep time, source-to-sink systems – The Triassic Greater Barents Sea Basin, GSA Bulletin, 134, 1760–1780, 2022.
Gion, A. M., Williams, S. E., and Müller, R. D.: A reconstruction of the Eurekan Orogeny incorporating deformation constraints, Tectonics, 36, 304–320, 2017.
Gjelberg, J. and Steel, R.: An outline of Lower-Middle Carboniferous sedimentation on Svalbard: Effects of tectonic, climatic and sea level changes in rift basin sequences, Geology of the North Atlantic Borderlands – Memoir, 7, 543–561, 1981.
Gjelberg, J. and Steel, R. J.: Helvetiafjellet Formation (Barremian-Aptian), Spitsbergen: characteristics of a transgressive succession, Norwegian Petroleum Society Special Publications, Elsevier, 571–593 https://doi.org/10.1016/S0928-8937(06)80087-1, 1995.
Glørstad-Clark, E., Faleide, J. I., Lundschien, B. A., and Nystuen, J. P.: Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area, Mar. Petrol. Geol., 27, 1448–1475, https://doi.org/10.1016/j.marpetgeo.2010.02.008, 2010
Gobbett, D. J.: Carboniferous and Permian brachiopods of Svalbard Norsk Polarinstitutt Skrifter 127, 1–201, 1963.
Gobbett, D. J. and Wilson, C.: The Oslobreen Series, Upper Hecla Hoek of Ny Friesland, Spitsbergen, Geol. Mag., 97, 441–457, 1960.
Golovneva, L. and Zolina, A.: The Renardodden flora of Spitsbergen, Biol. Commun., 68, 307–319, https://doi.org/10.21638/spbu03.2023.410, 2023.
Golovneva, L. B.: Palaeogene climates of Spitsbergen, GFF (Geological Society of Sweden), 122, 62–63, https://doi.org/10.1080/11035890001221062, 2000.
Golovneva, L. B., Zolina, À. À., and Spicer, R. A.: The early Paleocene (Danian) climate of Svalbard based on palaeobotanical data, Papers in Palaeontology, 9, e1533, https://doi.org/10.1002/spp2.1533, 2023.
Gomes, A. S. and Vasconcelos, P. M.: Geochronology of the Parana-Etendeka large igneous province, Earth Sci. Rev., 220, 103716, https://doi.org/10.1016/j.earscirev.2021.103716, 2021.
Grasby, S., Sanei, H., and Beauchamp, B.: Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinctionm Nat. Geosci., 4, 104–107. https://doi.org/10.1038/ngeo1069, 2011.
Grasby, S. E. and Beauchamp, B.: Latest Permian to early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada, Chem. Geol., 264, 232–246, 2009.
Grasby, S. E. and Bond, D. P.: How large igneous provinces have killed most life on Earth – Numerous times, Elements, 19, 276–281, 2023.
Grasby, S. E., Beauchamp, B., Embry, A., and Sanei, H.: Recurrent Early Triassic Ocean anoxia, Geology, 41, 175–178, https://doi.org/10.1130/g33599.1, 2013.
Grasby, S. E., Beauchamp, B., Bond, D. P. G., Wignall, P., Talavera, C., Galloway, J. M., Piepjohn, K., Reinhardt, L., and Blomeier, D.: Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction, GSA Bull., 127, 1331–1347, https://doi.org/10.1130/b31197.1, 2015.
Grasby, S. E., Beauchamp, B., Bond, D. P., Wignall, P. B., and Sanei, H.: Mercury anomalies associated with three extinction events (Capitanian crisis, latest Permian extinction and the Smithian/Spathian extinction) in NW Pangea, Geol. Mag., 153, 285–297, 2016a.
Grasby, S. E., Beauchamp, B., and Knies, J.: Early Triassic productivity crises delayed recovery from world's worst mass extinction, Geology, 44, 779–782, 2016b.
Grasby, S. E., McCune, G. E., Beauchamp, B., and Galloway, J. M.: Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic, Bulletin, 129, 771–787, 2017.
Grasby, S. E., Liu, X., Yin, R., Ernst, R. E., and Chen, Z.: Toxic mercury pulses into late Permian terrestrial and marine environments, Geology, 48, 830–833, https://doi.org/10.1130/g47295.1, 2020.
Green, T., Renne, P. R., and Brenhin Kneller, C.: Continental flood basalts drive Phanerozoic extinctions, P. Natl. Acad. Sci. USA, 119, e2120441119, https://doi.org/10.1073/pnas.212044111, 2022.
Green, P. F. and Duddy, I. R.: Synchronous exhumation events around the Arctic including examples from Barents Sea and Alaska North Slope, in: Geological Society, London, Petroleum Geology Conference Series, Vol. 7, No. 1, 633–644 pp., London: The Geological Society of London, 2010.
Greenwood, D. R., Basinger, J. F., and Smith, R. Y.: How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras, Geology, 38, 15–18, https://doi.org/10.1130/g30218.1, 2010.
Grossman, E. L.: Applying Oxygen Isotope Paleothermometry in Deep Time, The Paleontological Society Papers, 18, 39–68, https://doi.org/10.1017/S1089332600002540, 2012.
Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B., Mazzullo, S. J., and Mii, H. S.: Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 268, 222–233, 2008.
Grundvåg, S.-A. and Olaussen, S.: Sedimentology of the Lower Cretaceous at Kikutodden and Keilhaufjellet, southern Spitsbergen: implications for an onshore–offshore link, Polar Res., 36, 1302124, https://doi.org/10.1080/17518369.2017.1302124, 2017.
Grundvåg, S. A., Johannessen, E. P., Helland-Hansen, W., and Plink-Björklund, P.: Depositional architecture and evolution of progradationally stacked lobe complexes in the E ocene Central Basin of Spitsbergen, Sedimentology, 61, 535–569, https://doi.org/10.1111/sed.12067, 2014.
Grundvåg, S. A., Marin, D., Kairanov, B., Śliwińska, K. K., Nøhr-Hansen, H., Jelby, M. E., Escalona, A., and Olaussen, S.: The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations, Mar. Petrol. Geol., 86, 834–857, https://doi.org/10.1016/j.marpetgeo.2017.06.036, 2017.
Grundvåg, S.-A., Jelby, M. E., Śliwińska, K. K., Nøhr-Hansen, H., Aadland, T., Sandvik, S. E., Tennvassås, I., Engen, T. M., and Olaussen, S.: Sedimentology and palynology of the Lower Cretaceous succession of central Spitsbergen: integration of subsurface and outcrop data, Norw. J. Geol., 99, 253–284, ISSN 0029-196X, https://doi.org/10.17850/njg99-2-02, 2019.
Grundvåg, S. A., Helland-Hansen, W., Johannessen, E. P., Eggenhuisen, J., Pohl, F., and Spychala, Y.: Deep-water sand transfer by hyperpycnal flows, the Eocene of Spitsbergen, Arctic Norway, Sedimentology, 70, 2057–2107, 2023.
Gruszczyński, M., Hałas, S., Hoffman, A., and Małkowski, K.: A brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition, Nature, 337, 64–68, 1989.
Gröcke, D. R., Price, G. D., Robinson, S. A., Baraboshkin, E. Y., Mutterlose, J., and Ruffell, A. H.: The Upper Valanginian (Early Cretaceous) positive carbon–isotope event recorded in terrestrial plants, Earth Planet. Sci. Lett., 240, 495–509, 2005.
Guarnieri, P.: Pre-break-up palaeostress state along the East Greenland margin, J. Geol. Soc., 172, 727–739, https://doi.org/10.1144/jgs2015-053, 2015.
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N., Pälike, H., Norris, R. D., Thomas, E., and Foster, G. L.: Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum, Nature, 548, 573–577, https://doi.org/10.1038/nature23646, 2017.
Haaland, L. C., Slagstad, T., Osmundsen, P. T., and Redfield, T.: U-Pb calcite ages date oblique rifting of the Arctic-North Atlantic gateway, Geology, 52, 615–619, 2024.
Hammer, Ø., Nakrem, H. A., Little, C. T., Hryniewicz, K., Sandy, M. R., Hurum, J. H., Druckenmiller, P., Knutsen, E. M., and Høyberget, M.: Hydrocarbon seeps from close to the Jurassic–Cretaceous boundary, Svalbard, Palaeogeogr. Palaeoclimatol. Palaeoecol., 306, 15–26, 2011.
Hammer, Ø., Collignon, M., and Nakrem, H. A.: Organic carbon isotope chemostratigraphy and cyclostratigraphy in the Volgian of Svalbard, Norw. J. Geol., 92, 103–112, ISSN 029-196X, 2012.
Hammer, Ø., Jones, M. T., Schneebeli-Hermann, E., Hansen, B. B., and Bucher, H.: Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction, Earth-Sci. Rev., 195, 179–190, https://doi.org/10.1016/j.earscirev.2019.04.016, 2019.
Hansen, J. and Holmer, L. E.: Diversity fluctuations and biogeography of Ordovician brachiopod faunas in northeastern Spitsbergen, Bull. Geosci., 85, 497–504, 2010.
Hansen, B. B., Bucher, H. F., Schneebeli-Hermann, E., and Hammer, Ø.: Smithian and Spathian palaeontological records of the Vikinghøgda Formation in Central Spitsbergen, Lethaia, 57, 1–15, 2024.
Haq, B. U.: Cretaceous eustasy revisited, Global Planet. Change, I, 113, 44–58, https://doi.org/10.1016/j.gloplacha.2013.12.007, 2014.
Harding, I. C., Charles, A. J., Marshall, J. E. A., Pälike, H., Roberts, A. P., Wilson, P. A., Jarvis, E., Thorne, R., Morris, E., Moremon, R., Pearce, R. B., and Akbari, S.: Sea-level and salinity fluctuations during the Paleocene–Eocene thermal maximum in Arctic Spitsbergen, Earth Planet. Sci. Lett., 303, 97–107, https://doi.org/10.1016/j.epsl.2010.12.043, 2011.
Harland, W. B.: Geology of Svalbard, Svalbard, edited by: Harland, W. B., Geological Society, London, Memoirs, ISBN 1-897799-93-4, https://doi.org/10.1144/gsl.mem.1997.017.01.26, 1997.
Harland, W. B. and Wilson, C.: The Hecla Hoek succession in Ny Friesland, Spitsbergen, Geol. Mag., 93, 265–286, 1956.
Harland, W. B., Cutbill, J., Friend, P. F., Gobbett, D. J., Holliday, D., Maton, P., Parker, J., and Wallis, R. H.: The Billefjorden Fault Zone, Spitsbergen: the long history of a major tectonic lineament, Nor. Polarinst. Skr., 161, 1–72, 1974.
Harper, D. T., Suarez, M. B., Uglesich, J., You, H., Li, D., and Dodson, P.: Aptian–Albian clumped isotopes from northwest China: cool temperatures, variable atmospheric pCO2 and regional shifts in the hydrologic cycle, Clim. Past, 17, 1607–-1625, https://doi.org/10.5194/cp-17-1607-2021, 2021.
Hatleberg, E. and Clark, D. L.: Lower Triassic conodonts and biofacies interpretations: Nepal and Svalbard, Geol. Palaeontol., 18, 101–125, 1984.
Hayes, J. M., Strauss, H., and Kaufman, A. J.: The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol., 161, 103–125, 1999.
Head, M.: A palynological investigation of Tertiary strata at Renardodden, West Spitsbergen, 6th International Palynological Conference, Abstract, 61 pp., 1984.
Helland-Hansen, W.: Sedimentation in Paleogene Foreland Basin, Spitsbergen, AAPG Bulletin, 74, 260–272, https://doi.org/10.1306/0c9b22bd-1710-11d7-8645000102c1865d, 1990.
Helland-Hansen, W. and Grundvåg, S. A.: The Svalbard Eocene-Oligocene (?) Central Basin succession: Sedimentation patterns and controls, Basin Res., 33, 729–753, https://doi.org/10.1111/bre.12492, 2021.
Henderson, C. M. and Baud, A.: Correlation of the Permian-Triassic boundary in Arctic Canada and comparison with Meishan, China, Proceedings, 30th International Geological Congress, 11, 143–152, 1997.
Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., Larssen, G. B., Ryseth, A., Rønning, K., and Sollid, K.: Chapter 17 Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems, Geol. Soc. Lond., 35, 271–281, 2011a.
Henriksen, E., Ryseth, A. E., Larssen, G. B., Heide, T., Rønning, K., Sollid, K., and Stoupakova, A. V.: Chapter 10 Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems, Geol. Soc. Lond., 35, 163–195, https://doi.org/10.1144/M35.10, 2011b.
Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway, J. M., and Fath, J.: Mid-Cretaceous High Arctic stratigraphy, climate, and oceanic anoxic events, Geology, 43, 403–406, 2015.
Hesselbo, S. P., Ogg, J. G., Ruhl, M., Hinnov, L. A., and Huang, C. J.: The Jurassic Period, in: Geological Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Boston, MA, 955–1021 pp., 2020.
Heyn, B. H., Shephard, G. E., and Conrad, C. P.: Prolonged multi-phase magmatism due to plume-lithosphere interaction as applied to the High Arctic Large Igneous Province, Geochem. Geophys. Geosyst., 25, e2023GC011380, https://doi.org/10.1029/2023GC011380, 2024.
Hjelstuen, B. O., Elverhøi, A., and Faleide, J. I.: Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan, Global Planet. Change, 12, 95–117, 1996.
Hochuli, P. A., Hermann, E., Vigran, J. O., Bucher, H., and Weissert, H.: Rapid demise and recovery of plant ecosystems across the end-Permian extinction event, Global Planet. Change, 74, 144–155, https://doi.org/10.1016/j.gloplacha.2010.10.004, 2010.
Hoel, A. and Orvin, A. K.: Das Festungsprofil auf Spitzbergen. I, Karbon-Kreide: Vermessungsresultate, http://hdl.handle.net/11250/173612 (last access: 9 September 2025), 1937.
Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H., and Hautmann, M.: New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 216–226, 2011.
Holliday, D. and Cutbill, J.: The Ebbadalen Formation (Carboniferous), Spitsbergen, P. Yorks. Geol. Soc., 39, 1–32, 1972.
Holmden, C., Creaser, R. A., Muehlenbachs, K., Leslie, S. A., and Bergström, S. M.: Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: Implications for secular curves, Geology, 26, 567–570, https://doi.org/10.1130/0091-7613(1998)0262.3.Co;2, 1998.
Hönisch, B., Ridgwell, A., Schmidt, D., Thomas, E., Gibbs, S., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D., Barker, S., Marchitto Jr., T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G., and Williams, B.: The Geological Record of Ocean Acidification, Science, 335, 1058–1063, 2012.
Horota, R. K., Rossa, P., Marques, A., Gonzaga, L., Senger, K., Cazarin, C. L., Spigolon, A., and Veronez, M. R.: An Immersive Virtual Field Experience Structuring Method for Geoscience Education, IEEE T. Learn. Technol., 16, 121–132, 2022.
Hochuli, P. A. and Vigran, J. O.: Climate variations in the Boreal Triassic—inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 20–42, https://doi.org/10.1016/j.palaeo.2009.08.013, 2010.
Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G., and Bucher, H.: Evidence for atmospheric pollution across the Permian-Triassic transition, Geology, 45, 1123–1126, 2017.
Hovikoski, J., Fyhn, M. B. W., Nøhr-Hansen, H., Hopper, J. R., Andrews, S., Barham, M., Nielsen, L. H., Bjerager, M., Bojesen-Koefoed, J., Lode, S., Sheldon, E., Uchman, A., Skorstengaard, P. R., and Alsen, P.: Paleocene-Eocene volcanic segmentation of the Norwegian-Greenland seaway reorganized high-latitude ocean circulation, Commun. Earth Environ., 2, 1–10, https://doi.org/10.1038/s43247-021-00249-w, 2021.
Hryniewicz, K., Nakrem, H. A., Hammer, Ø., Little, C. T., Kaim, A., Sandy, M. R., and Hurum, J. H.: The palaeoecology of the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from Spitsbergen, Svalbard, Lethaia, 48, 353–374, 2015.
Hu, Y., Li, X., Boos, W. R., Guo, J., Lan, J., Lin, Q., Han, J, Zhang, J., Bao, X., Yuan, S., Wei, Q., Liu, Y., Yang, J., Nie, J., and Guo, Z.: Emergence of the modern global monsoon from the Pangaea megamonsoon set by palaeogeography, Nat. Geosci., 16, 1041–1046, 2023.
Hurum, J. H., Nakrem, H. A., Hammer, Ø., Knutsen, E. M., Druckenmiller, P. S., Hryniewicz, K., and Novis, L. K.: An Arctic Lagerstätte–the Slottsmøya Member of the Agardhfjellet Formation (Upper Jurassic–Lower Cretaceous) of Spitsbergen, Norw. J. Geol., 92, 55–64 pp., 2012.
Hurum, J. H., Roberts, A. J., Nakrem, H. A., Stenløkk, J. A., and Mørk, A.: The first recovered ichthyosaur from the Middle Triassic of Edgeøya, Svalbard, Norw. Petrol. Directorate Bull., 11, 97–110, 2014.
Hurum, J. H., Druckenmiller, P. S., Hammer, Ø., Nakrem, H. A., and Olaussen, S.: The theropod that wasn't: an ornithopod tracksite from the Helvetiafjellet Formation (Lower Cretaceous) of Boltodden, Svalbard, Geol. Soc. Lond., 434, 189–206, https://doi.org/10.1144/SP434.10, 2016a.
Hurum, J. H., Roberts, A. J., Dyke, G. J., Grundvåg, S.-A., Nakrem, H. A., Midtkandal, I., Sliwinska, K., and Olaussen, S.: Bird or maniraptoran dinosaur? A femur from the Albian strata of Spitsbergen, Palaeontol. Polonica, 67, 137–47, 2016b.
Hurum, J. H., Engelschiøn, V. S., Økland, I. H., Bratvold, J., Ekeheien, C., Roberts, A. J., Delsett, L. L., Hansen, B. B., Mørk, A., and Nakrem, H. A.: The history of exploration and stratigraphy of the Early to Middle Triassic vertebrate-bearing strata of Svalbard (Sassendalen Group, Spitsbergen), Norw. J. Geol., 98, 165–174, 2018.
Hutchinson, D. K., Coxall, H. K., O'Regan, M., Nilsson, J., Caballero, R., and de Boer, A. M.: Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition, Nat. Commun., 10, 3797, https://doi.org/10.1038/s41467-019-11828-z, 2019.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Hüneke, H., Joachimski, M., Buggisch, W., and Lützner, H.: Marine carbonate facies in response to climate and nutrient level: The upper carboniferous and permian of central spitsbergen (Svalbard), Facies, 45, 93–135, https://doi.org/10.1007/BF02668107, 2001.
Høy, T. and Lundschien, B.: Triassic deltaic sequences in the northern Barents Sea, Geol. Soc. Lond., 35, 249–260, https://doi.org/10.1144/M35.15, 2011.
Ingólfsson, Ó. and Landvik, J. Y.: The Svalbard–Barents Sea ice-sheet–Historical, current and future perspectives, Quaternary Sci. Rev., 64, 33–60, 2013.
Isbell, J. L., Fraiser, M. L., and Henry, L. C.: Examining the Complexity of Environmental Change during the Late Paleozoic and Early Mesozoic, PALAIOS, 23, 267–269, https://doi.org/10.2110/palo.2008.S03, 2008.
Ivanov, A. V., He, H., Yan, L., Ryabov, V. V., Shevko, A. Y., Palesskii, S. V., and Nikolaeva, I. V.: Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism, Earth-Sci. Rev., 122, 58–76, https://doi.org/10.1016/j.earscirev.2013.04.001, 2013.
Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., and Brinkhuis, H.: The early Miocene onset of a ventilated circulation regime in the Arctic Ocean, Nature, 447, 986–990, 2007.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The international bathymetric chart of the Arctic Ocean (ibcao) version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Janocha, J., Wesenlund, F., Thießen, O., Grundvåg, S.-A., Koehl, J.-B., and Johannessen, E. P.: Petroleum geochemistry of Upper Paleozoic strata on Bjørnøya, western Barents Shelf, Mar. Petrol. Geol., 163, 106768, https://doi.org/10.1016/j.marpetgeo.2024.106768 , 2024.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D.: Palaeoclimate, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/report/ar4/wg1/ (last access: September 2024), 2007.
Jelby, M. E., Grundvåg, S. A., Helland-Hansen, W., Olaussen, S., and Stemmerik, L.: Tempestite facies variability and storm-depositional processes across a wide ramp: Towards a polygenetic model for hummocky cross-stratification, Sedimentology, 67, 742–781, https://doi.org/10.1111/sed.12671, 2020a.
Jelby, M. E., Śliwińska, K. K., Koevoets, M. J., Alsen, P., Vickers, M. L., Olaussen, S., and Stemmerik, L.: Arctic reappraisal of global carbon-cycle dynamics across the Jurassic–Cretaceous boundary and Valanginian Weissert Event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 555, 109847, https://doi.org/10.1016/j.palaeo.2020.109847, 2020b.
Jelby, M. E., Grundvåg, S. A., Śliwińska, K. K., Alsen, P., Vickers, M. L., Olaussen, S., and Stemmerik, L.: Lower Cretaceous holostratigraphy in Svalbard: the Arctic key piece of the Boreal basin puzzle, Geol. Soc. Lond. Spec. Publ., 545, SP545–2023, 2025.
Jenkyns, H.: Cretaceous anoxic events: from continents to oceans, J. Geol. Soc. Lond., 137, 171–188, 1980.
Jenkyns, H. C.: Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains, Proc. Ocean Drill. Program Sci. Results, 143, 99–104, 1995.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, 1–30, https://doi.org/10.1029/2009GC002788, 2010.
Jenkyns, H. C., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J. S.: Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean, Clim. Past, 8, 215–-226, https://doi.org/10.5194/cp-8-215-2012, 2012.
Jin, X., Tomimatsu, Y., Yin, R., Onoue, T., Franceschi, M., Grasby, S. E., and Rigo, M.: Climax in Wrangellia LIP activity coincident with major Middle Carnian (Late Triassic) climate and biotic changes: Mercury isotope evidence from the Panthalassa pelagic domain, Earth Planet. Sci. Lett., 607, 118075, https://doi.org/10.1016/j.epsl.2023.118075, 2023.
Jin, Y., Wang, Y., Wang, W., Shang, Q., Cao, C., and Erwin, D. H.: Pattern of marine mass extinction near the Permian-Triassic boundary in South China, Science, 289, 432–436, 2000.
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., and Sun, Y.: Climate warming in the latest Permian and the Permian–Triassic mass extinction, Geology, 40, 195–198, https://doi.org/10.1130/g32707.1, 2012.
Joachimski, M. M., Alekseev, A. S., Grigoryan, A., and Gatovsky, Y. A.: Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections, GSA Bull., 132, 427–443, 2020.
Jochmann, M. M., Augland, L. E., Lenz, O., Bieg, G., Haugen, T., Grundvåg, S. A., Jelby, M. E., Midtkandal, I., Dolezych, M., and Hjálmarsdóttir, H. R.: Sylfjellet: a new outcrop of the Paleogene Van Mijenfjorden Group in Svalbard, Arktos, 6, 17–38, https://doi.org/10.1007/s41063-019-00072-w, 2020.
Johannessen, E. P. and Steel, R. J.: Shelf-margin clinoforms and prediction of deepwater sands, Basin Res., 17, 521–550, 2005.
Johannessen, E. P. and Steel, R. J.: Mid-Carboniferous extension and rift-infill sequences in the Billefjorden Trough, Svalbard, Nor. Geol. Tidsskr., 72, 35–48, 1992.
Johannessen, E. P., Henningsen, T., Bakke, N. E., Johansen, T. A., Ruud, B. E., Riste, P., Elvebakk, H., Jochmann, M., Elvebakk, G., and Woldengen, M. S.: Palaeogene clinoform succession on Svalbard expressed in outcrops, seismic data, logs and cores, First Break, 29, 35–44, https://doi.org/10.3997/1365-2397.2011004, 2011.
Johansson, Å., Larionov, A. N., Gee, D. G., Ohta, Y., Tebenkov, A. M., and Sandelin, S.: Grenvillian and Caledonian tectono-magmatic activity in northeasternmost Svalbard, Geol. Soc. Lond. Mem., 30, 207–232, https://doi.org/10.1144/GSL.MEM.2004.030.01.17, 2004.
Johansson, Å., Gee, D. G., Larionov, A. N., Ohta, Y., and Tebenkov, A. M.: Grenvillian and Caledonian evolution of eastern Svalbard–a tale of two orogenies, Terra Nova, 17, 317–325, 2005.
Jokat, W. and Herter, U.: Jurassic failed rift system below the Filchner-Ronne-Shelf, Antarctica: New evidence from geophysical data, Tectonophysics, 688, 65–83, 2016.
Jones, M. T., Jerram, D. A., Svensen, H. H., and Grove, C.: The effects of large igneous provinces on the global carbon and sulphur cycles, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 4–21, https://doi.org/10.1016/j.palaeo.2015.06.042, 2016.
Jones, M. T., Augland, L. E., Shephard, G. E., Burgess, S. D., Eliassen, G. T., Jochmann, M. M., Friis, B., Jerram, D. A., Planke, S., and Svensen, H. H.: Constraining shifts in North Atlantic plate motions during the Palaeocene by U-Pb dating of Svalbard tephra layers, Sci. Rep., 7, 6822, https://doi.org/10.1038/s41598-017-06170-7, 2017.
Jones, M. T., Percival, L. M. E., Stokke, E. W., Frieling, J., Mather, T. A., Riber, L., Schubert, B. A., Schultz, B., Tegner, C., Planke, S., and Svensen, H. H.: Mercury anomalies across the Palaeocene–Eocene Thermal Maximum, Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, 2019.
Jones, M. T., Stokke, E. W., Rooney, A. D., Frieling, J., Pogge von Strandmann, P. A. E., Wilson, D. J., Svensen, H. H., Planke, S., Adatte, T., Thibault, N., Vickers, M. L., Mather, T. A., Tegner, C., Zuchuat, V., and Schultz, B. P.: Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM), Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, 2023.
Kasbohm, J., Schoene, B., and Burgess, S.: Radiometric constraints on the timing, tempo, and effects of large igneous province emplacement, in: Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, edited by: Ernst, R. E., Dickson, A. J., and Bekker, A., Am. Geophys. Union, John Wiley Sons, Inc., 27–82, https://doi.org/10.1002/9781119507444.ch2, 2021.
Kear, B. P., Engelschiøn, V. S., Hammer, Ø., Roberts, A. J., and Hurum, J. H.: Earliest Triassic ichthyosaur fossils push back oceanic reptile origins, Curr. Biol., 33, R178–R179, 2023.
Kele, S., Breitenbach, S. F., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., Kluge, T., Deák, J., Hanselmann, K., John, C. M., and Yan, H.: Temperature dependence of oxygen-and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range, Geochim. Cosmochim. Acta, 168, 172–192, 2015.
Kellogg, H. E.: Tertiary stratigraphy and tectonism in Svalbard and continental drift, AAPG Bull., 59, 465–485, 1975.
Kemp, D., Eichenseer, K., and Kiessling, W.: Maximum rates of climate change are systematically underestimated in the geological record, Nat. Commun., 6, 8890, https://doi.org/10.1038/ncomms9890, 2015
Kenrick, P., Wellman, C. H., Schneider, H., and Edgecombe, G. D.: A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic, Philos. Trans. R. Soc. B-Biol. Sci., 367, 519–536, 2012.
Kidder, D. L. and Worsley, T. R.: Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery, Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 207–237, https://doi.org/10.1016/S0031-0182(03)00667-9, 2004.
Kierulf, H. P., Kohler, J., Boy, J. P., Geyman, E. C., Mémin, A., Omang, O. C., and Steffen, R.: Time-varying uplift in Svalbard – an effect of glacial changes, Geophys. J. Int., 231, 1518–1534, 2022.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Acta, 61, 3461–3475, 1997.
Klausen, T. G., Müller, R., Slama, J., and Helland-Hansen, W.: Evidence for Late Triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of northern Pangea, Lithosphere, 9, 14–28, 2017.
Klausen, T. G., Nyberg, B., and Helland-Hansen, W.: The largest delta plain in Earth's history, Geology, 47, 470–474, https://doi.org/10.1130/G45507.1, 2019.
Kleinspehn, K. L. and Teyssier, C.: Oblique rifting and the Late Eocene–Oligocene demise of Laurasia with inception of Molloy Ridge: Deformation of Forlandsundet Basin, Svalbard, Tectonophysics, 693, 363–377, 2016.
Knies, J., Schönenberger, J., Zwingmann, H., van der Lelij, R., Smelror, M., Vullum, P. E., Brönner, M., Vogt, C., Fredin, O., Müller, A., Grasby, S. E., Beauchamp, B., and Viola, G.: Continental weathering and recovery from ocean nutrient stress during the Early Triassic Biotic Crisis, Commun. Earth Environ., 3, 161, 1–12, https://doi.org/10.1038/s43247-022-00480-z, 2022.
Koevoets, M. J., Abay, T. B., Hammer, Ø., and Olaussen, S.: High-resolution organic carbon–isotope stratigraphy of the Middle Jurassic–Lower Cretaceous Agardhfjellet Formation of central Spitsbergen, Svalbard, Palaeogeogr. Palaeoclimatol. Palaeoecol., 449, 266–274, https://doi.org/10.1016/j.palaeo.2016.02.029, 2016.
Koevoets, M. J., Hammer, Ø., Olaussen, S., Senger, K., and Smelror, M.: Integrating subsurface and outcrop data of the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation in central Spitsbergen, Nor. Geol. Tidsskr., 98, 1–34, https://doi.org/10.17850/njg98-4-01, 2018.
Koevoets, M., Hammer, Ø., and Little, C. T.: Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian-Ryazanian), Spitsbergen, Svalbard, Nor. J. Geol., 99, 1–24, https://doi.org/10.17850/njg99-1-02, 2019.
Korte, C. and Kozur, H. W.: Carbon-isotope stratigraphy across the Permian–Triassic boundary: A review, J. Asian Earth Sci., 39, 215–235, https://doi.org/10.1016/j.jseaes.2010.01.005, 2010.
Korte, C., Jasper, T., Kozur, H. W., and Veizer, J.: δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 224, 333–351, 2005.
Krajewski, K. P.: The Botneheia Formation (Middle Triassic) in Edgeøya and Barentsøya, Svalbard: lithostratigraphy, facies, phosphogenesis, paleoenvironment, Pol. Polar Res., 29, 319–364, 2008.
Krajewski, K. P.: Organic matter–apatite–pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: Relevance to the formation of petroleum source rocks in the NW Barents Sea shelf, Mar. Petrol. Geol., 45, 69–105, 2013.
Kristoffersen, Y.: On the tectonic evolution and paleoceanographic significance of the Fram Strait gateway, in: Geological history of the polar oceans: Arctic versus Antarctic, edited by: Bleil, U. and Thiede, J., Springer, Dordrecht, 63–76, https://doi.org/10.1007/978-94-009-2029-3_4, 1990.
Kristoffersen, Y. and Husebye, E. S.: Multi-channel seismic reflection measurements in the Eurasian Basin, Arctic Ocean, from US ice station FRAM-IV, Tectonophysics, 114, 103–115, 1985.
Kristoffersen, Y., Ohta, Y., and Hall, J. K.: On the origin of the Yermak Plateau north Svalbard, Arctic Ocean, Nor. J. Geol., 100, 1–33, 2020.
Kröger, B., Finnegan, S., Franeck, F., and Hopkins, M. J.: The Ordovician Succession Adjacent to Hinlopenstretet, Ny Friesland, Spitsbergen, Am. Mus. Novit., 3882, 1–28, 2017.
Kvaček, Z. and Manum, S. B.: Ferns of the Spitsbergen Palaeogene, Palaeontogr. Abt. B, 230, 169–181, 1993.
Kvaček, Z., Manum, S. B., and Boulter, M. C.: Angiosperms from the Palaeogene of Spitsbergen, including an unfinished work by A. G. Nathorst, Palaeontogr. Abt. B, 232, 103–128, 1994.
Large, D. J. and Marshall, C.: Use of carbon accumulation rates to estimate the duration of coal seams and the influence of atmospheric dust deposition on coal composition, Geol. Soc. Lond. Spec. Publ., 404, 303–315, 2015.
Large, D. J., Marshall, C., Jochmann, M., Jensen, M., Spiro, B. F., and Olaussen, S.: Time, Hydrologic Landscape, and the Long-Term Storage of Peatland Carbon in Sedimentary Basins, J. Geophys. Res.-Earth Surf., 126, e2020JF005762, https://doi.org/10.1029/2020JF005762, 2021.
Larson, R. L. and Erba, E.: Onset of the Mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses, Paleoceanogr., 14, 663–678, 1999.
Lasabuda, A., Laberg, J. S., Knutsen, S. M., and Safronova, P.: Cenozoic tectonostratigraphy and pre-glacial erosion: A mass-balance study of the northwestern Barents Sea margin, Norwegian Arctic, J. Geodyn., 119, 149–166, 2018.
Lasabuda, A. P. E., Johansen, N. S., Laberg, J. S., Faleide, J. I., Senger, K., Rydningen, T. A., Patton, H., Knutsen, S.-M., and Hanssen, A.: Cenozoic uplift and erosion of the Norwegian Barents Shelf – A review, Earth-Sci. Rev., 217, 103609, https://doi.org/10.1016/j.earscirev.2021.103609, 2021.
Lauritzen, O. and Worsley, D.: Observations of the Upper Palaeozoic stratigraphy of the Ny Friesland area, Norsk Polarinstitutt A51, 41 pp., 1975.
Lawver, L., Müller, R., Srivastava, S., and Roest, W.: The opening of the Arctic Ocean, in: Geological history of the polar oceans: Arctic versus Antarctic, edited by: Bleil, U. and Thiede, J., Springer, Dordrecht, 29–62, https://doi.org/10.1007/978-94-009-2029-3_3, 1990.
Lawver, L., Scotese, C., Grantz, A., Johnson, L., and Sweeney, J.: A review of tectonic models for the evolution of the Canada Basin, in: The Geology of North America, edited by: Grantz, A., Johnson, G. L., and Sweeney, J. F., Geological Society of America, Boulder, CO, 593–618, 1990b.
Lee, C., Love, G. D., Hopkins, M. J., Kröger, B., Franeck, F., and Finnegan, S.: Lipid biomarker and stable isotopic profiles through Early-Middle Ordovician carbonates from Spitsbergen, Norway, Org. Geochem., 131, 5–18, https://doi.org/10.1016/j.orggeochem.2019.02.008, 2019.
Lee, S., Shi, G. R., Nakrem, H. A., Woo, J., and Tazawa, J.-I.: Mass extinction or extirpation: Permian biotic turnovers in the northwestern margin of Pangea, GSA Bull., 134, 2399–2414, https://doi.org/10.1130/b36227.1, 2022.
Leever, K. A., Gabrielsen, R. H., Faleide, J. I., and Braathen, A.: A transpressional origin for the West Spitsbergen fold-and-thrust belt: Insight from analog modelling, Tectonics, 30, TC2014, https://doi.org/10.1029/2010TC002753, 2011.
Lehnert, O., Stouge, S., and Brandl, P. A.: Conodont biostratigraphy in the Early to Middle Ordovician strata of the Oslobreen Group in Ny Friesland, Svalbard, Z. Dtsch. Ges. Geowiss., 164, 149–172, 2013.
Leu, M., Schneebeli-Hermann, E., Hammer, Ø., Lindemann, F. J., and Bucher, H.: Spatiotemporal dynamics of nektonic biodiversity and vegetation shifts during the Smithian–Spathian transition: conodont and palynomorph insights from Svalbard, Lethaia, 57, 1–19, 2024.
Leung, J. Y., Zhang, S., and Connell, S. D.: Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades, Small, 18, 2107407, https://doi.org/10.1002/smll.202107407, 2022.
Lini, A., Weissert, H., and Erba, E.: The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous, Terra Nova, 4, 374–384, https://doi.org/10.1111/j.1365-3121.1992.tb00826.x, 1992.
Lipinski, M., Warning, B., and Brumsack, H. J.: Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 190, 459–475, https://doi.org/10.1016/S0031-0182(02)00619-3, 2003.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M., and Pearson, A.: Global Cooling During the Eocene-Oligocene Climate Transition, Science, 323, 1187–1190, https://doi.org/10.1126/science.1166368, 2009.
Lopes, G., Mangerud, G., and Clayton, G.: The palynostratigraphy of the Mississippian Birger Johnsonfjellet section, Spitsbergen, Svalbard, Palynology, 43, 631–649, 2019.
Lord, G. S., Solvi, K. H., Klausen, T. G., and Mørk, A.: Triassic channel bodies on Hopen, Svalbard: Their facies, stratigraphical significance and spatial distribution, Norwegian Petroleum Directorate Bulletin, 11, 41–59, 2014.
Lord, G. S., Johansen, S. K., Støen, S. J., and Mørk, A.: Facies development of the Upper Triassic succession on Barentsøya, Wilhelmøya and NE Spitsbergen, Svalbard, Nor. J. Geol., 97, 1–62, https://doi.org/10.17850/njg97-1-03, 2017.
Lord, G. S., Mørk, A., Haugen, T., Boxaspen, M. A., Husteli, B., Forsberg, C. S., and Olaussen, S.: Stratigraphy and palaeosol profiles of the Upper Triassic Isfjorden Member, Svalbard, Nor. J. Geol.,, https://doi.org//10.17850/njg102-4-02, 2022.
Lüthje, C. J., Milàn, J., and Hurum, J. H.: Paleocene tracks of the mammal pantodont genus Titanoides in coal-bearing strata, Svalbard, Arctic Norway, J. Vertebr. Paleontol., 30, 521–527, 2010.
Lüthje, C. J., Nichols, G., and Jerrett, R.: Sedimentary facies and reconstruction of a transgressive coastal plain with coal formation, Paleocene, Spitsbergen, Arctic Norway, Nor. J. Geol., 100, 1–49, https://doi.org/10.1785/njg100-2-1, 2020.
Macdonald, F. A.:. Deep-Time paleoclimate proxies, AGU Advances, 1, e2020AV000244, https://doi.org/10.1029/2020av000244, 2020.
Maher Jr., H. D., Braathen, A., Bergh, S., Dallmann, W., and Harland, W. B.: Tertiary or Cretaceous age for Spitsbergen's fold-thrust belt on the Barents Shelf, Tectonics, 14, 1321–1326, https://doi.org/10.1029/95TC01257, 1995.
Maher Jr., H. D.: Manifestations of the Cretaceous High Arctic Large Igneous Province in Svalbard, The J. Geol., 109, 91–104, https://doi.org/10.1086/317960, 2001.
Mahoney, J., Storey, M., Duncan, R., Spencer, K., and Pringle, M.: Geochemistry and age of the Ontong Java Plateau, in: The Mesozoic Pacific: Geology, tectonics, and volcanism, edited by: Pringle, M. S., Sager, W. W., Sliter, W. V., and Stein, S., Wiley, Washington, D. C: American Geophysical Union, 233–261, https://doi.org/10.1029/GM077p0233 1993.
Majka, J. and Kośmińska, K.: Magmatic and metamorphic events recorded within the Southwestern Basement Province of Svalbard, Arktos, 3, 5, https://doi.org/10.1007/s41063-017-0034-7, 2017.
Major, H., Nagy, J., Haremo, P., Dallmann, W. K., Andersen, A., and Salvigsen, O.: Adventdalen, in: Geological Map Svalbard 1:100 000, Sheet C9G. Norsk Polarinstitutt,, 1992.
Mangerud, G. and Konieczny, R.: Palynology of the Permian succession of Spitsbergen, Svalbard, Polar Res., 12, 65–93, https://doi.org/10.3402/polar.v12i1.6704, 1993.
Manum, S.: Some dinoflagellates and hystrichosphaerids from the Lower Tertiary of Spitsbergen, Nytt Magasin for Botanik, 8, 17–25, 1960.
Manum, S.: Studies in the Tertiary Flora of Spitsbergen: With Notes on Tertiary Floras of Ellesmere Island, Greenland, and Iceland, a Palynological Investigation, Norsk Polarinst. Skrifter, 125, 128+21 pp., plates, Norsk Polarinstitutt, Oslo University Press, 127 p., 1962.
Manum, S. B. and Throndsen, T.: Age of Tertiary formations on Spitsbergen, Polar Res., 4, 103–131, https://doi.org/10.3402/polar.v4i2.6927, 1986.
Marshall, C. J.: Palaeogeographic development and economic potential of the coal-bearing Palaeocene Todalen Member, Spitsbergen, PhD University of Nottingham, 360 pp., https://eprints.nottingham.ac.uk/13794/ (last access: 28 February 2025), 2013.
Marshall, C., Large, D. J., Meredith, W., Snape, C. E., Uguna, C., Spiro, B. F., Orheim, A., Jochmann, M., Mokogwu, I., Wang, Y., and Friis, B.: Geochemistry and petrology of Palaeocene coals from Spitsbergen – Part 1: Oil potential and depositional environment, Int. J. Coal Geol., 143, 22–33, https://doi.org/10.1016/j.coal.2015.03.006, 2015.
Martinez, M., Aguirre-Urreta, B., Dera, G., Lescano, M., Omarini, J., Tunik, M., O'Dogherty, L., Aguado, R., Company, M., and Bodin, S.: Synchrony of carbon cycle fluctuations, volcanism and orbital forcing during the Early Cretaceous, Earth-Sci. Rev., 239, 104356, https://doi.org/10.1016/j.earscirev.2023.104356, 2023.
Matthiessen, J.: Biostratigraphie tertiärer Ablagerungen (Paläozän) Am Van Keulenfjord (Spitzbergen) nach Dinoflagellaten-Zysten, (Diploma thesis), Christian-Albrechts-Universität zu Kiel, Kiel, 94 pp., https://oceanrep.geomar.de/id/eprint/51685 (last access: 1 February 2021), 1986.
Matysik, M., Stemmerik, L., Olaussen, S., and Brunstad, H.: Diagenesis of spiculites and carbonates in a Permian temperate ramp succession–Tempelfjorden Group, Spitsbergen, Arctic Norway, Sedimentology, 65, 745–774, https://doi.org/10.1111/sed.12404, 2018.
Maxwell, E. E. and Kear, B. P.:.Triassic ichthyopterygian assemblages of the Svalbard archipelago: a reassessment of taxonomy and distribution, J. Geol. Soc. Sweden, 135, 85–94, https://doi.org/10.1080/11035897.2012.759145, 2013.
McArthur, J. M., Mutterlose, J., Price, G. D., Rawson, P. F., Ruffell, A., and Thirlwall, M. F.: Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, δ13C, δ18O, Na, Sr, Mg), and palaeo-oceanography, Palaeogeogr. Palaeoclimatol. Palaeoecol., 202, 253–272, https://doi.org/10.1016/S0031-0182(03)00638-2, 2004.
McArthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirlwall, M. F., and Van de Schootbrugge, B.: Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): the early cretaceous (Berriasian, Valanginian, Hauterivian), Palaeogeogr. Palaeoclimatol. Palaeoecol., 248, 391–430, https://doi.org/10.1016/j.palaeo.2006.12.0152007, 2007.
McCann, A. J.: Deformation of the Old Red Sandstone of NW Spitsbergen; links to the Ellesmerian and Caledonian orogenies, Geol. Soc. London, 180, 567–584, https://doi.org/10.1144/GSL.SP.2000.180.01.30, 2000.
McClelland*, W. C., von Gosen*, W., and Piepjohn*, K.: Tonian and Silurian magmatism in Nordaustlandet: Svalbard's place in the Caledonian orogen, in: Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens, edited by: Piepjohn, K., Strauss, J. V., Reinhardt, L., and McClelland, W. C.: Boulder, Colorado, Geological Society of America, Special Paper, 541, 63–80, https://doi.org/10.1130/2018.2541(04), 2019.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future, Annu. Rev. Earth Planet. Sci., 39, 489–516, https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
Meissner, P., Mutterlose, J., and Bodin, S.: Latitudinal temperature trends in the northern hemisphere during the Early Cretaceous (Valanginian–Hauterivian), Palaeogeogr. Palaeoclimatol. Palaeoecol., 424, 17–39, https://doi.org/10.1016/j.palaeo.2015.02.003, 2015.
Menegatti, A. P., Weissert, H., Brown, R. S., Tyson, R. V., Farrimond, P., Strasser, A., and Caron, M.:High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys, Paleoceanography, 13, 530–545, 1998.
Midtkandal, I. and Nystuen, J.: Depositional architecture of a low-gradient ramp shelf in an epicontinental sea: The lower Cretaceous of Svalbard, Basin Res., 21, 655–675, https://doi.org/10.1111/j.1365-2117.2009.00399.x., 2009.
Midtkandal, I., Nystuen, J. P., Nagy, J., and Mørk, A.: Lower Cretaceous lithostratigraphy across a regional subaerial unconformity in Spitsbergen: the Rurikfjellet and Helvetiafjellet formations, Nor. J. Geol., 88, 287–304, 2008.
Midtkandal, I., Svensen, H. H., Planke, S., Corfu, F., Polteau, S., Torsvik, T. H., Faleide, J. I., Grundvåg, S.-A., Selnes, H., Kürschner, W., and Olaussen, S.: The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 463, 126–135, https://doi.org/10.1016/j.palaeo.2016.09.023, 2016.
Mii, H.-S., Grossman, E. L., and Yancey, T. E.: Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen-Global change or diagenetic artifact?, Geology, 25, 227–230, https://doi.org/10.1130/0091-7613(1997)025<0227:SCAOIS>2.3.CO;2, 1997.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.: The Phanerozoic record of global sea-level change, Science, 310, 1293–1298, https://doi.org/10.1126/science.1116412, 2005.
Montañez, I. P. and Poulsen, C. J.: The Late Paleozoic ice age: an evolving paradigm, Annu. Rev. Earth Plane. Sci., 41, 629–656, 2013.
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T.D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M. C.: CO2-forced climate and vegetation instability during Late Paleozoic deglaciation, Science, 315, 87–91, https://doi.org/10.1126/science.1134207, 2007.
Moody-Stuart, M.: High- and low-sinuosity stream deposits, with examples from the Devonian of Spitsbergen, J. Sediment. Res., 36, 1102–1117, https://doi.org/10.1306/74D71609-2B21-11D7-8648000102C1865D, 1966.
Morgans-Bell, H. S., Coe, A. L., Hesselbo, S. P., Jenkyns, H. C., Weedon, G. P., Marshall, J. E. A., Tyson, R. V., and Williams, C. J.: Integrated stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and boreholes in south Dorset, UK, Geol. Mag., 138, 511–539, 2001
Mørk, A. and Bjorøy, M.: Mesozoic source rocks on Svalbard, Petroleum Geology of the North European Margin: Proceedings of the North European Margin Symposium (NEMS'83), organized by the Norwegian Petroleum Society and held at the Norwegian Institute of Technology (NTH) in Trondheim 9–11 May, 1983, Springer, 371–382 pp., https://doi.org/10.1007/978-94-009-5626-1_28, 1984.
Mørk, A. and Grundvåg, S.:Festningen-A 300-million-year journey through shoreline exposures of the Carboniferous and Mesozoic in 7 kilometers, Geological Society of Norway— geological guides 2020-7, https://www.geologi.no/images/GeologiskeGuider/Festningen_red.pdf (last access: last access: June 2024), 2020.
Mørk, A. and Worsley, D.: Triassic of Svalbard and the Barents shelf, in: NGF Abstracts and proceedings, Vol. 3, 23–29 pp., 2006.
Mørk, A., Knarud, R., and Worsley, D.: Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard, Arctic Geology and Geophysics: Proceedings of the Third International Symposium on Arctic Geology – Memoir, 8, 371–398, 1982.
Mørk, A., Embry, A. F., and Weitschat, W.: Triassic transgressive-regressive cycles in the Sverdrup Basin, Svalbard and the Barents Shelf, Correlation in Hydrocarbon Exploration: Proceedings of the conference Correlation in Hydrocarbon Exploration organized by the Norwegian Petroleum Society and held in Bergen, Norway, 3–5 October 1988, Springer, 113–130 pp., https://doi.org/10.1007/978-94-009-1149-9_11, 1989.
Mørk, A., Vigran, J. O., Korchinskaya, M. V., Pchelina, T. M., Fefilova, L. A., Vavilov, M. N., and Weitschat, W.: a Triassic rocks in Svalbard, the Arctic Soviet islands and the Barents Shelf: bearing on their correlations, in: Norwegian Petroleum Society Special Publications, edited by: Vorren, T. O., Bergsager, E., Dahl-Stamnes, O. A., Holter, B., Johansen, B., Lie, E., and Lund, T. B., Elsevier, 457–479, https://doi.org/10.1016/B978-0-444-88943-0.50033-2, 1993.
Mørk, A., Dallmann, W., Dypvik, H., Johannessen, E., Larssen, G., Nagy, J., Nøttvedt, A., Olaussen, S., Pchelina, T., and Worsley, D.: Mesozoic lithostratigraphy, Lithostratigraphic lexicon of Svalbard, Upper Palaeozoic to Quaternary bedrock. Review and recommendations for nomenclature use: 127–214, 1999a.
Mørk, A., Elvebakk, G., Forsberg, A. W., Hounslow, M. W., Nakrem, H. A., Vigran, J. O., and Weitschat, W.: The type section of the Vikinghogda Formation: a new Lower Triassic unit in central and eastern Svalbard, Polar Res., 18, 51–82, 1999b.
Müller, R., Klausen, T. G., Faleide, J. I., Olaussen, S., Eide, C. H., and Suslova, A.: Linking regional unconformities in the Barents Sea to compression-induced forebulge uplift at the Triassic-Jurassic transition, Tectonophysics, 765, 35–51, 2019.
Müller, R. D. and Spielhagen, R. F.: Evolution of the Central Tertiary Basin of Spitsbergen: towards a synthesis of sediment and plate tectonic history, Palaeogeogr. Palaeoclimatol. Palaeoecol., 80, 153–172, 1990.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic S.: GPlates: Building a virtual Earth through deep time, Geochem. Geophys. Geosyst., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Mueller, S., Veld, H., Nagy, J., and Kürschner, W. M.: Depositional history of the Upper Triassic Kapp Toscana Group on Svalbard, Norway, inferred from palynofacies analysis and organic geochemistrym Sediment, Geol., 310, 16–29, 2014.
Mueller, S., Hounslow, M. W., and Kürschner, W. M.: Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway), J. Geol. Soc., 173, 186–202, 2016.
Mutti, M. and Weissert, H.: Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (Southern Alps, Italy), J. Sediment. Res., 65, 357–367, 1995.
Mulrooney, M. J., Larsen, L., Van Stappen, J., Rismyhr, B., Senger, K., Braathen, A., Olaussen, S., Mørk, M. B. E., Ogata, K., and Cnudde, V.: Fluid flow properties of the Wilhelmøya Subgroup, a potential unconventional CO2 storage unit in central Spitsbergen, Norw. J. Geol., 99, 85–116, 2018.
Myhre, P. I., Corfu, F., and Andresen, A.: Caledonian anatexis of Grenvillian crust: a U/Pb study of Albert I Land, NW Svalbard., Norw. J. Geol., 89, e191, 173–191, ISSN 029-196X, 2008.
Nabbefeld, B., Grice, K., Twitchett, R. J., Summons, R. E., Hays, L., Böttcher, M. E., and Asif, M.: An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen, Earth Planet. Sci. Lett., 291, 84–96, 2010.
Naber, T. V., Grasby, S. E., Cuthbertson, J. P., Rayner, N., and Tegner, C.: New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada, GSA Bull., 133, 1695–1711, 2021.
Nagy, J.: Delta-influenced foraminiferal facies and sequence stratigraphy of Paleocene deposits in Spitsbergen, Palaeogeogr. Palaeoclimatol. Palaeoecol., 222, 161–179, https://doi.org/10.1016/j.palaeo.2005.03.014, 2005.
Nagy, J. and Berge, S. H.: Micropalaeontological evidence of brackish water conditions during deposition of the Knorringfjellet Formation, Late Triassic–Early Jurassic, Spitsbergen, Polar Res., 27, 413–427, https://doi.org/10.1111/j.1751-8369.2007.00038.x, 2008.
Nagy, J., Jargvoll, D., Dypvik, H., Jochmann, M., and Riber, L.: Environmental changes during the Paleocene–Eocene Thermal Maximum in Spitsbergen as reflected by benthic foraminifera, Polar Res., 32, 19737, https://doi.org/10.3402/polar.v32i0.19737, 2013.
Nakrem, H. A. and Mørk, A.: New Early Triassic Bryozoa (Trepostomata) from Spitsbergen, with some remarks on the stratigraphy of the investigated horizons, Geol. Mag., 128, 129–140, 1991.
Nakrem, H. A., Orchard, M. J., Weitschat, W., Hounslow, M. W., Beatty, T. W., and Mørk, A.: Triassic conodonts from Svalbard and their Boreal correlations, Polar Res., 27, 523–539, https://doi.org/10.1111/j.1751-8369.2007.00038.x, 2008.
Nielsen, J. K., Błażejowski, B., Gieszcz, P., and Nielsen, J. K.: Carbon and oxygen isotope records of Permian brachiopods from relatively low and high palaeolatitudes: climatic seasonality and evaporation, Geol. Soc. Lond. Spec. Publ., 376, 387–406, 2013.
Nøttvedt, A.: Askeladden delta sequence (Paleocene) on Spitsbergen sedimentation and controls on delta formation, Polar Res., 3, 21–48, 1985.
Nøttvedt, A., Cecchi, M., Gjelberg, J., Kristensen, S., Lønøy, A., Rasmussen, A., Rasmussen, E., Skott, P., and Van Veen, P.: Svalbard-Barents Sea correlation: a short review, Nor. Pet. Soc. Spec. Publ., 2, 363–375, 1993.
Oakey, G. N. and Chalmers, J. A.: A new model for the Paleogene motion of Greenland relative to North America: Plate reconstructions of the Davis Strait and Nares Strait regions between Canada and Greenland, J. Geophys. Res.-Sol. Ea., 117, B10401, https://doi.org/10.1029/2011jb008942, 2012.
Ogata, K., Senger, K., Braathen, A., Tveranger, J., and Olaussen, S.: The importance of natural fractures in a tight reservoir for potential CO2 storage: a case study of the upper Triassic-middle Jurassic Kapp Toscana Group (Spitsbergen, Arctic Norway), Geol. Soc. Lond. Spec. Publ., 374, 395–415, 2014a.
Ogata, K., Senger, K., Braathen, A., Tveranger, J., and Olaussen, S.: Fracture systems and mesoscale structural patterns in the siliciclastic Mesozoic reservoir-caprock succession of the Longyearbyen CO2 Lab project: Implications for geological CO2 sequestration in Central Spitsbergen, Svalbard, Nor. J. Geol., 94, 121–154, 2014b.
Ogata, K., Weert, A., Betlem, P., Birchall, T., and Senger, K.: Shallow and deep subsurface sediment remobilization and intrusion in the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation (Svalbard), Geosphere, 19, 801–822, 2023.
Ogden, D. E. and Sleep, N. H.: Explosive eruption of coal and basalt and the end-Permian mass extinction, P. Natl. Acad. Sci. USA, 109, 59–62, https://doi.org/10.1073/pnas.1118675109, 2012.
Økland, I. H., Delsett, L. L., Roberts, A. J., and Hurum, J. H.: A Phalarodon fraasi (Ichthyosauria: Mixosauridae) from the Middle Triassic of Svalbard, Norw. J. Geol., 98, 267–288. https://doi.org/10.17850/njg98-2-06, 2018.
Olaussen, S., Larssen, G. B., Helland-Hansen, W., Johannessen, E. P., Nøttvedt, A., Riis, F., Rismyhr, B., Smelror, M., and Worsley, D.: Mesozoic strata of Kong Karls Land, Svalbard, Norway; a link to the northern Barents Sea basins and platforms, Nor. J. Geol., 98, 5, https://doi.org/10.17850/njg98-4-06, 2018.
Olaussen, S., Senger, K., Braathen, A., Grundvåg, S.-A., and Mørk, A.: You learn as long as you drill; research synthesis from the Longyearbyen CO2 Laboratory, Svalbard, Norway, Nor. J. Geol., 99, 157–187, 2019.
Olaussen, S., Grundvåg, S.-A., Senger, K., Anell, I., Betlem, P., Braathen, A., Dallmann, W., Jochmann, M., Johannessen, E. P., Lord, G., Mørk, A., Osmundsen, P. T., Smyrak-Sikora, A., and Stemmerik, L.: Svalbard Composite Tectono-Stratigraphic Element, Barents Sea, Geol. Soc. Lond. Mem., 57, https://doi.org/10.1144/M57-2021-36, 2025.
Olempska, E. and Błaszyk, J.: Ostracods from Permian of Spitsbergen, Pol. Polar Res., 17, 3–20, 1996.
Oordt, A. J., Soreghan, G. S., Stemmerik, L., and Hinnov, L. A.: A record of dust deposition in northern, mid-latitude Pangaea during peak icehouse conditions of the late Paleozoic ice age, J. Sediment. Res., 90, 337–363, https://doi.org/10.2110/jsr.2020.15, 2020.
O'Regan, M., Williams, C. J., Frey, K. E., and Jakobsson, M.: A synthesis of the long-term paleoclimatic evolution of the Arctic, Oceanography, 24, 66–80, 2011.
Park, J., Stein, H. J., Hannah, J. L., Georgiev, S. V., Hammer, Ø., and Olaussen, S.: Paleoenvironment in the circum-Arctic region from the Middle Jurassic to Lower Cretaceous: Trace element and stable isotope geochemistry of the Agardhfjellet Formation, Svalbard, Palaeogeogr. Palaeoclimatol. Palaeoecol., 112333, 649, https://doi.org/10.1016/j.palaeo.2024.112333, 2024.
Patterson, W. P. and Walter, L. M.: Depletion of 13C in seawater ΣC02 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates, Geology, 22, 885–888, https://doi.org/10.1130/0091-7613(1994)022<0885:Docisc>2.3.Co;2, 1994.
Paterson, N. W., Mangerud, G., Cetean, C. G., Mørk, A., Lord, G. S., Klausen, T. G., and Mørkved, P. T.: A multidisciplinary biofacies characterisation of the Late Triassic (late Carnian–Rhaetian) Kapp Toscana Group on Hopen, Arctic Norway, Palaeogeogr. Palaeoclimatol. Palaeoecol., 464, 16–42, 2016.
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H.: Large perturbations of the carbon cycle during recovery from the end-Permian extinction, Science, 305, 506–509, 2004.
Percival, L., Tedeschi, L. R., Creaser, R., Bottini, C., Erba, E., Giraud, F., Svensen, H., Savian, J., Trindade, R., and Coccioni, R.: Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a), Global Planet. Change, 200, 103461, https://doi.org/10.1016/j.gloplacha.2021.103461, 2021.
Petersen, T. G., Thomsen, T. B., Olaussen, S., and Stemmerik, L.: Provenance shifts in an evolving Eurekan foreland basin: the Tertiary Central Basin, Spitsbergen, J. Geol. Soc. Lond., 173, 634–648, 2016.
Pettersson, C. H., Pease, V., and Frei, D.: U–Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian–Sveconorwegian orogeny and development of Rodinia, Precambrian Res., 175, 206–220, 2009.
Piepjohn, K.: The Svalbardian-Ellesmerian deformation of the Old Red Sandstone and the pre-Devonian basement in NW Spitsbergen (Svalbard), Geol. Soc. Lond. Spec. Publ., 180, 585–601, https://doi.org/10.1144/GSL.SP.2000.180.01.31, 2000.
Piepjohn, K. and Dallmann, W. K.: Stratigraphy of the uppermost Old Red Sandstone of Svalbard (Mimerdalen Subgroup), Polar Res., 33, 19998, https://doi.org/10.3402/polar.v33.19998, 2014.
Piepjohn, K. and von Gosen, W.: Structural transect through Ellesmere Island (Canadian Arctic): superimposed Palaeozoic Ellesmerian and Cenozoic Eurekan deformation, Geol. Soc. Lond. Spec. Publ., 460, 33–56, 2018.
Piepjohn, K., Brinkmann, L., Grewing, A., and Kerp, H.: New data on the age of the uppermost ORS and the lowermost post-ORS strata in Dickson Land (Spitsbergen) and implications for the age of the Svalbardian deformation, Geol. Soc. Lond. Spec. Publ., 180, 603–609, https://doi.org/10.1144/GSL.SP.2000.180.01.32, 2000.
Piepjohn, K., von Gosen, W., Tessensohn, F., Reinhardt, L., McClelland, W. C., Dallmann, W., Gaedicke, C., and Harrison, J. C.: Tectonic map of the Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland, and the Queen Elizabeth Islands (Canadian Arctic), Arktos, 1, 12, https://doi.org/10.1007/s41063-015-0015-7, 2015.
Piepjohn, K., von Gosen, W., and Tessensohn, F.: The Eurekan deformation in the Arctic: an outline, J. Geol. Soc. Lond., 173, 1007–1024, 2016.
Pietsch, C. and Bottjer, D. J.: The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic, Earth-Sci. Rev., 137, 65–84, 2014.
Podlaha, O. G., Mutterlose, J., and Veizer, J.: Preservation of delta 18O and delta 13C in belemnite rostra from the Jurassic/Early Cretaceous successions, Am. J. Sci., 298, 324–347, 1998.
Pogge von Strandmann, P. A. E., Jones, M. T., West, A. J., Murphy, M. J., Stokke, E. W., Tarbuck, G., Wilson, D. J., Pearce, C. R., and Schmidt, D. N.: Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum, Sci. Adv., 7, eabh4224, https://doi.org/10.1126/sciadv.abh4224, 2021.
Polteau, S., Hendriks, B. W., Planke, S., Ganerød, M., Corfu, F., Faleide, J. I., Midtkandal, I., Svensen, H. S., and Myklebust, R.: The Early Cretaceous Barents Sea Sill Complex: distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 83–95, 2016.
Preto, N., Kustatscher, E., and Wignall, P. B.: Triassic climates – state of the art and perspectives, Palaeogeogr. Palaeoclimatol. Palaeoecol., 290, 1–10, https://doi.org/10.1016/j.palaeo.2010.03.015, 2010.
Price, G. D.: The evidence and implications of polar ice during the Mesozoic, Earth-Sci. Rev., 48, 183–210, 1999.
Price, G. D.: New constraints upon isotope variation during the early Cretaceous (Barremian–Cenomanian) from the Pacific Ocean, Geol. Mag., 140, 513–522, 2003.
Price, G. D. and Mutterlose, J.: Isotopic signals from late Jurassic–early Cretaceous (Volgian–Valanginian) sub-Arctic belemnites, Yatria River, Western Siberia, J. Geol. Soc. Lond., 161, 959–968, https://doi.org/10.1144/0016-764903-169, 2004.
Price, G. D. and Nunn, E. V.: Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: Transient glacial temperatures during the Cretaceous greenhouse, Geology, 38, 251–254, https://doi.org/10.1130/g30593.1, 2010.
Price, G. D. and Passey, B. H.: Dynamic polar climates in a greenhouse world: Evidence from clumped isotope thermometry of Early Cretaceous belemnites, Geology, 41, 923–926, 2013.
Price, G. D. and Rogov, M. A.: An isotopic appraisal of the Late Jurassic greenhouse phase in the Russian Platform, Palaeogeogr. Palaeoclimatol. Palaeoecol., 273, 41–49, https://doi.org/10.1016/j.palaeo.2008.11.011, 2009.
Price, G. D., Bajnai, D., and Fiebig, J.: Carbonate clumped isotope evidence for latitudinal seawater temperature gradients and the oxygen isotope composition of Early Cretaceous seas, Palaeogeogr. Palaeoclimatol. Palaeoecol., 552, 109777, https://doi.org/10.1016/j.palaeo.2020.109777, 2020.
Price, G. D., Főzy, I., and Pálfy, J.: Carbon cycle history through the Jurassic–Cretaceous boundary: A new global δ13C stack, Palaeogeogr. Palaeoclimatol. Palaeoecol., 451, 46–61, https://doi.org/10.1016/j.palaeo.2016.03.016, 2016.
Pörtner, H.-O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R. A., Betts, R., Kerr, R. B., Biesbroek, R., Birkmann, J., Bowen, K., Castellanos, E. C., Constable, A., Cramer, W., Dodman, D., Eriksen, S. H., Fischlin, A., Garschagen, M., Glavovic, B., Gilmore, E., Haasnoot, M., Harper, S., Hasegawa, T., Hayward, B., Hirabayashi, Y., Howden, M., Kalaba, K., Kiessling, W., Lasco, R., Lawrence, J., Lemos, M. F., Lempert, R., Ley, D., Lissner, T., Lluch-Cota, S., Loeschke, S., Lucatello, S., Luo, Y., Mackey, B., Maharaj, S., Mendez, C., Mintenbeck, K., Moncassim Vale, M., Morecroft, M. D., Mukherji, A., Mycoo, M., Mustonen, T., Nalau, J., Okem, A., Ometto, J. P., Parmesan, C., Pelling, M., Pinho, P., Poloczanska, E., Racault, M.-F., Reckien, D., Pereira, J., Revi, A., Rose, S., Sanchez-Rodriguez, R., Schipper, E. L. F., Schmidt, D., Schoeman, D., Shaw, R., Singh, C., Solecki, W., Stringer, L., Thomas, A., Totin, E., Trisos, C., Viner, D., van Aalst, M., Wairiu, M., Warren, R., Yanda, P., and Zaiton Ibrahim, Z.: Climate change 2022: Impacts, adaptation and vulnerability, IPCC Sixth Assessment Report, https://edepot.wur.nl/565644 (last access: June 2023), 2022.
Pucéat, E., Lécuyer, C., Sheppard, S. M., Dromart, G., Reboulet, S., and Grandjean, P.: Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels, Paleoceanography, 18, https://doi.org/10.1029/2002PA000823, 2003.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 1–10, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Rauzi, S., Foster, W. J., Takahashi, S., Hori, R. S., Beaty, B. J., Tarhan, L. G., and Isson, T.: Lithium isotopic evidence for enhanced reverse weathering during the Early Triassic warm period, P. Natl. Acad. Sci. USA, 121, e2318860121, https://doi.org/10.1073/pnas.2318860121, 2024.
Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M., Andreichev, V. L., Buslov, M. M., Davies, C., Fedoseev, G. S., Fitton, J. G., and Inger, S.: The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 9–20, 2009.
Rigo, M. and Joachimski, M. M.: Palaeoecology of Late Triassic conodonts: Constraints from oxygen isotopes in biogenic apatite, Acta Palaeontol. Pol., 55, 471–478, 2010.
Rigo, M., Preto, N., Roghi, G., Tateo, F., and Mietto, P.: A rise in the carbonate compensation depth of western Tethys in the Carnian (Late Triassic): deep-water evidence for the Carnian Pluvial Event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 246, 188–205, 2007.
Rigo, M., Trotter, J. A., Preto, N., and Williams, I. S.: Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys, Geology, 40, 515–518, https://doi.org/10.1130/G32792.1, 2012.
Riis, F. and Fjeldskaar, W.: On the magnitude of the Late Tertiary and Quaternary erosion and its significance for the uplift of Scandinavia and the Barents Sea, in: Structural and tectonic modelling and its application to petroleum geology, edited by: Larsen, R. M., Brekke, H., Larsen, B. T., and Talleraas, E., Elsevier, Amsterdam, 163–185, https://doi.org/10.1016/B978-0-444-88607-1.50016-4, 1992.
Riis, F., Lundschien, B. A., Høy, T., Mørk, A., and Mørk, M. B. E.: Evolution of the Triassic shelf in the northern Barents Sea region, Polar Res., 27, 318–338, https://doi.org/10.1111/j.1751-8369.2008.00086.x, 2008.
Rismyhr, B., Bjærke, T., Olaussen, S., Mulrooney, M. J., and Senger, K.: Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic–Middle Jurassic) in western central Spitsbergen, Svalbard, Nor. Geol. Tidsskr., 99, 35–64, 2018.
Rizzo, R. E., Inskip, N. F., Fazeli, H., Betlem, P., Bisdom, K., Kampman, N., and Busch, A.: Modelling geological CO2 leakage: Integrating fracture permeability and fault zone outcrop analysis, Int. J. Greenh. Gas Control, 133, 104105, 2024.
Roberts, A. J., Engelschion, V. S., and Hurum, J. H.: First three-dimensional skull of the Middle Triassic mixosaurid ichthyosaur Phalarodon fraasi from Svalbard, Norway, Acta Palaeontol. Pol., 67, 51–62, 2022.
Rocha, B. C., Davies, J. H., Janasi, V. A., Schaltegger, U., Nardy, A. J., Greber, N. D., and Lucchetti, A. C. F.: Rapid eruption of silicic magmas from the Parana magmatic province (Brazil) did not trigger the Valanginian event, Geology, 48, 1174–1178, 2020.
Rodriguez Blanco, L., Swart, P. K., Eberli, G. P., and Weger, R. J.: Negative δ13C carb values at the Jurassic-Cretaceous boundary – Vaca Muerta Formation, Neuquén Basin, Argentinam, Palaeogeogr. Palaeoclimatol. Palaeoecol., 603, 111208, https://doi.org/10.1016/j.palaeo.2022.111208, 2022.
Rodríguez-Tovar, F. J., Dorador, J., Zuchuat, V., Planke, S., and Hammer, Ø.: Response of macrobenthic trace maker community to the end-Permian mass extinction in Central Spitsbergen, Svalbard, Palaeogeogr. Palaeoclimatol. Palaeoecol., 581, https://doi.org/10.1016/j.palaeo.2021.110637, 2021.
Roest, W. R. and Srivastava, S. P.: Sea-floor spreading in the Labrador Sea: A new reconstruction, Geology, 17, 1000–1003, https://doi.org/10.1130/0091-7613(1989)017<1000:Sfsitl>2.3.Co;2, 1989.
Roghi, G.: Palynological investigations in the Carnian of the Cave del Predil area (Julian Alps, NE Italy), Rev. Palaeobot. Palynol., 132, 1–35, 2004.
Rogov, M. A.: Ammonites and infrazonal stratigraphy of the Kimmeridgian and Volgian stages of Panboreal Superrealm, T. Geol. Inst., 627, 1–732, https://doi.org/10.54896/00023272_2021_627_1, 2021.
Rogov, M. A., Ershova, V. B., Shchepetova, E. V., Zakharov, V. A., Pokrovsky, B. G., and Khudoley, A. K.: Earliest Cretaceous (late Berriasian) glendonites from Northeast Siberia revise the timing of initiation of transient Early Cretaceous cooling in the high latitudes, Cretac. Res., 71, 102–112, https://doi.org/10.1016/j.cretres.2016.11.011, 2017.
Rogov, M. A., Zakharov, V., and Kiselev, D.: Refined ammonite and bivalve biostratigraphy of the Agardhfjellet and lowermost Rurikfjellet formations (Bathonian–Ryazanian) of the Longyearbyen area, Spitsbergen., Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 309, 169–198, https://doi.org/10.1127/njgpa/2023/1158, 2023.
Rosa, E. L. and Isbell, J. L.: Late paleozoic glaciation, Encyclopedia of Geology (Second Edition), Academic Press, 534-545, ISBN 9780081029091, https://doi.org/10.1016/B978-0-08-102908-4.00063-1, 2021.
Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J., and Beerling, D. J.: CO2 as a primary driver of Phanerozoic climate, GSA Today, 14, 4–10, 2004.
Salamon, M. A., Hanken, N., Gorzelak, P., Riise, H. E., and Ferré, B.: Crinoids from Svalbard in the aftermath of the end-Permian mass extinction, Pol. Polar Res., 36, 225–238, 2015.
Sanei, H., Grasby, S. E., and Beauchamp, B.: Latest Permian mercury anomalies, Geology, 40, 63–66, 2012.
Sanson Barrera, A.: Earliest Triassic climatic, environmental and floral evolution of East Greenland, (Doctoral dissertation, University of Zurich),, 55. https://doi.org/10.5167/uzh-204634, 2016.
Schaaf, N. W., Osmundsen, P. T., Van der Lelij, R., Schönenberger, J. L., OK, R. T., and Senger, K.: Tectono-sedimentary evolution of the eastern Forlandsundet Graben, Svalbard, Nor. J. Geol., 100, 55, 3–4, https://doi.org/10.1785/njg100-4-4, 2021.
Scheibner, C., Hartkopf-Fröder, C., Blomeier, D., and Forke, H.: The Mississippian (Lower Carboniferous) in northeast Spitsbergen (Svalbard) and a re-evaluation of the Billefjorden Group, Z. Dtsch. Ges. Geowiss., 163, 293, https://doi.org/10.1127/1860-1804/2012/0163-0293, 2012.
Schlanger, S. O. and Jenkyns, H.: Cretaceous oceanic anoxic events: causes and consequences, Geol. Mijnb., 55, 3–4, 179–184, 1976.
Schobben, M., Joachimski, M. M., Korn, D., Leda, L., and Korte, C.: Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Res., 26, 675–683, 2014.
Schobben, M., Foster, W. J., Sleveland, A. R., Zuchuat, V., Svensen, H. H., Planke, S., Bond, D. P., Marcelis, F., Newton, R. J., and Wignall, P. B.: A nutrient control on marine anoxia during the end-Permian mass extinction, Nat. Geosci., 13, 640–646, 2020.
Schröder-Adams, C. J., Herrle, J. O., Embry, A. F., Haggart, J. W., Galloway, J. M., Pugh, A. T., and Harwood, D. M.: Aptian to Santonian foraminiferal biostratigraphy and paleoenvironmental change in the Sverdrup Basin as revealed at Glacier Fiord, Axel Heiberg Island, Canadian Arctic Archipelago, Palaeogeogr. Palaeoclimatol. Palaeoecol., 413, 81–100, 2014.
Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models (PaleoDEMs) for the Phanerozoic, PALEOMAP Project, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018 (last access: June 2024), 2018.
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R., and Ziegler, A. M.: Paleozoic base maps, J. Geol., 87, 217–277, https://doi.org/10.1086/628416, 1979.
Scotese, C. R., Boucot, A. J., and McKerrow, W. S.: Gondwanan palaeogeography and palaeoclimatology, J. Afr. Earth Sci., 28, 99–114, 1999.
Scotese, C. R., Song, H., Mills, B. J. W., and van der Meer, D. G.: Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years, Earth-Sci. Rev., 215, 103503, https://doi.org/10.1016/j.earscirev.2021.103503, 2021.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334–1337, https://doi.org/10.1038/nature09051, 2010.
Seibold, E.: Geology and the environment – keynote to EUG V Symposium 11, Eng. Geol., 29, 273–277, https://doi.org/10.1016/0013-7952(90)90062-6, 1990
Sellwood, B. W. and Valdes, P. J.: Jurassic climates, Proceedings of the Geologists' Association, 119, 5–17, 2008.
Senger, K., Planke, S., Polteau, S., Ogata, K., and Svensen, H.: Sill emplacement and contact metamorphism in a siliciclastic reservoir on Svalbard, Arctic Norway, Nor. J. Geol., 94, 155–-169, 2014a.
Senger, K., Tveranger, J., Ogata, K., Braathen, A., and Planke, S.: Late Mesozoic magmatism in Svalbard: A review, Earth-Sci. Rev., 139, 123–144, 2014b.
Senger, K., Brugmans, P., Grundvåg, S.-A., Jochmann, M. M., Nøttvedt, A., Olaussen, S., Skotte, A., and Smyrak-Sikora, A.: Petroleum, coal and research drilling onshore Svalbard: a historical perspective, Norw. J. Geol., 99, 3, https://doi.org/10.17850/njg99-3-1, 2019.
Senger, K., Betlem, P., Birchall, T., Gonzaga Jr, L., Grundvåg, S.-A., Horota, R. K., Laake, A., Kuckero, L., Mørk, A., and Planke, S.: Digitising Svalbard's geology: the Festningen digital outcrop model, First Break, 40, 47–55, 2022.
Senger, K., Betlem, P., Braathen, A., Olaussen, S., and Sand, G.: Longyearbyen CO2 Lab project – from a vision of a CO2-neutral Svalbard to a geoscience data eldorado, Arct. Sci., 11, 1–26, https://doi.org/10.1139/as-2024-0019, 2024.
Servais, T. and Harper, D. A.: The great Ordovician biodiversification event (GOBE): definition, concept and duration, Lethaia, 51, 151–164, 2018.
Shen, S. Z., Tazawa, J. I., and Shi, G. R.: Carboniferous and Permian Rugosochonetidae (Brachiopoda) from West Spitsbergen SZ, Alcheringa, 29, 241–256, https://doi.org/10.1080/03115510508619304, 2005.
Simms, M. J. and Ruffell, A. H.: Synchroneity of climatic change and extinctions in the Late Triassic, Geology, 17, 265–268, 1989.
Śliwińska, K. K. and Head, M. J.: New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes, J. Micropalaeontol., 39, 139–154, 2020.
Śliwińska, K. K. and Heilmann-Clausen, C.: Early Oligocene cooling reflected by the dinoflagellate cyst Svalbardella cooksoniae, Palaeogeogr. Palaeoclimatol. Palaeoecol., 305, 138–149, 2011.
Śliwińska, K. K., Thomsen, E., Schouten, S., Schoon, P. L., and Heilmann-Clausen, C.: Climate-and gateway-driven cooling of Late Eocene to earliest Oligocene sea surface temperatures in the North Sea Basin, Sci. Rep., 9, 4458, https://doi.org/10.1038/s41598-019-41013-7, 2019.
Śliwińska, K. K., Jelby, M. E., Grundvåg, S.-A., Nøhr-Hansen, H., Alsen, P., and Olaussen, S.: Dinocyst stratigraphy of the Valanginian–Aptian Rurikfjellet and Helvetiafjellet formations on Spitsbergen, Arctic Norway, Geol. Mag., 157, 1693–1714, https://doi.org/10.1017/S0016756819001249, 2020.
Śliwińska, K. K., Coxall, H. K., Hutchinson, D. K., Liebrand, D., Schouten, S., and de Boer, A. M.: Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition, Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, 2023.
Sluijs, A., Frieling, J., Inglis, G. N., Nierop, K. G. J., Peterse, F., Sangiorgi, F., and Schouten, S.: Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge, Clim. Past, 16, 2381–-2400, https://doi.org/10.5194/cp-16-2381-2020, 2020.
Smelror, M. and Larssen, G. B.: Are there Upper Cretaceous sedimentary rocks preserved on Sørkapp land, Svalbard?, Norwegian Journal of Geology, 96, https://doi.org/10.17850/njg96-2-05 2016.
Smelror, M., Olaussen, S., Dumais, M. A., Grundvåg, S. A., and Abay, T. B.: Northern Svalbard Composite Tectono-Sedimentary Element, Geol. Soc. Lond. Mem., 57, M57-2023, 2024.
Smyrak-Sikora, A. and Betlem, P.: Dataset and Interactive Plot for Smyrak-Sikora et al., 2025; Phanerozoic paleoenvironmental and paleoclimatic evolution in Svalbard, Zenodo [data set], https://doi.org/10.5281/zenodo.15405160, 2025.
Smyrak-Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., and Braathen, A.: Sedimentary architecture during Carboniferous rift initiation – the arid Billefjorden Trough, Svalbard, J. Geol. Soc. Lond., 176, 225–252, https://doi.org/10.1144/jgs2018-100, 2018.
Smyrak-Sikora, A., Nicolaisen, J. B., Braathen, A., Johannessen, E. P., Olaussen, S., and Stemmerik, L.: Impact of growth faults on mixed siliciclastic-carbonate-evaporite deposits during rift climax and reorganisation – Billefjorden Trough, Svalbard, Norway, Basin Res., 33, 2643–2674, https://doi.org/10.1111/bre.12578, 2021.
Smyrak-Sikora, A., Engelschiøn, V., Foster, W., Jelby, M. E., Jones, M., Mosociova, T., Śliwińska, K., Vickers, M. L., and Zuchuat, V.: Table: Review of Phanerozoic Paleoenvironmental and Paleoclimatic Evolution in Svalbard, Zenodo [data set], https://doi.org/10.5281/zenodo.14334260, 2024.
Song, H., Wignall, P. B., Tong, J., Bond, D. P., Song, H., Lai, X., and Chen, Y.: Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery, Earth Planet. Sci. Lett., 353, 12–21, 2012.
Song, H., Wignall, P. B., Song, H., Dai, X., and Chu, D.: Seawater temperature and dissolved oxygen over the past 500 million years, J. Earth Sci., 30, 236–243, 2019.
Soreghan, G. S.: Déjà-Vu All Over Again: Deep Time (Climate) Is Here To Stay, PALAIOS, 19, 1–2, https://doi.org/10.1669/0883-1351(2004)019<0001:Daoadt>2.0.Co;2, 2004.
Sorento, T., Olaussen, S., and Stemmerik, L.: Controls on deposition of shallow marine carbonates and evaporites – lower Permian Gipshuken Formation, central Spitsbergen, Arctic Norway, Sedimentology, 67, 207–238, https://doi.org/10.1111/sed.12640, 2020.
Soua, M.: Early Carnian anoxic event as recorded in the southern Tethyan margin, Tunisia: an overview, Int. Geol. Rev., 56, 1884–1905, 2014.
Speelman, E. N., van Kempen, M. M. L., Barke, J., Brinkhuis, H., Reichart, G. J., Smolders, A. J. P., Roelofs, J. G. M., Sangiorgi, F., de Leeuw, J. W., Lotter, A. F., and Sinninghe Damsté, J. S.: The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown, Geobiology, 7, 155–170, https://doi.org/10.1111/j.1472-4669.2009.00195.x, 2009.
Spielhagen, R. F. and Tripati, A.: Evidence from Svalbard for near-freezing temperatures and climate oscillations in the Arctic during the Paleocene and Eocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 278, 48–56, https://doi.org/10.1016/j.palaeo.2009.04.012, 2009.
Stanley Jr., G. D.: The evolution of modern corals and their early history, Earth-Sci. Rev., 60, 195–225, 2003.
Stanley, S. M.: Estimates of the magnitudes of major marine mass extinctions in earth history, P. Natl. Acad. Sci. USA, 113, E6325–E6334, https://doi.org/10.1073/pnas.161309411, 2016.
Steel, R., Gjelberg, J., Helland-Hansen, W., Kleinspehn, K., Nøttvedt, A., and Rye-Larsen, M.: The Tertiary strike-slip basins and orogenic belt of Spitsbergen, Special Publications of SEPM, https://doi.org/10.2110/pec.85.37.0339, 1985.
Steel, R. J. and Worsley, D.: Svalbard's post-Caledonian strata—an atlas of sedimentational patterns and palaeogeographic evolution, in: Petroleum geology of the North European margin, edited by: Spencer, A. M., Springer, Dordrecht, 109–135, https://doi.org/10.1007/978-94-009-5626-1_9, 1984.
Steel, R. J., Gjelberg, J., and Haarr, G.: Helvetiafjellet Formation (Barremian) at Festningen, Spitsbergen – a field guide, Nor. Polarinst. Årbok, 111–128, 1978.
Steel, R. J., Dalland, A., Kalgraff, K., and Larsen, V.: The Central Tertiary Basin of Spitsbergen: sedimentary development of a sheared-margin basin, Geology of the North Atlantic Borderlands – Memoir 7, CSPG Special Publications, 647–664, 1981.
Stemmerik, L.: Late Palaeozoic evolution of the North Atlantic margin of Pangea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 161, 95–126, https://doi.org/ 10.1016/s0031-0182(00)00119-x, 2000.
Stemmerik, L.: Influence of late Paleozoic Gondwana glaciations on the depositional evolution of the northern Pangean shelf, North Greenland, Svalbard, and the Barents Sea, Geol. Soc. Am. Spec. Pap., 441, https://doi.org/ 10.1016/s0031-0182(00)00119-x, 2008.
Stemmerik, L. and Worsley, D.: 30 years on-Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity, Nor. J. Geol., 85, 151–168, ISSN 029-196X, 2005.
Stemmerik, L., Bendix-Almgreen, S. E., and Piasecki, S.: The Permian–Triassic boundary in central East Greenland: past and present views, Bull. Geol. Soc. Den., 48, 159–167, 2001.
Stewart, I.: Sustainable geoscience, Nat. Geosci., 9, 262, https://doi.org/10.1038/ngeo2678, 2016.
Stordal, F., Svensen, H. H., Aarnes, I., and Roscher, M.: Global temperature response to century-scale degassing from the Siberian Traps Large igneous province, Palaeogeogr. Palaeoclimatol. Palaeoecol., 471, 96–107, https://doi.org/10.1016/j.palaeo.2017.01.045, 2017.
Storey, M., Duncan, R. A., and Tegner, C.: Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for the geodynamics and links to the Iceland hotspot, Chem. Geol., 241, 264–281, 2007a.
Storey, M., Duncan, R. A., and Swisher III, C. C.: Paleocene-Eocene Thermal Maximum and the opening of the Northeast Atlantic, Science, 316, 587–589, 2007b.
Stouge, S., Christiansen, J. L., and Holmer, L. E.: Lower palaeozoic stratigraphy of Murchisonfjorden and Sparreneset, Nordaustlandet, Svalbard, Geogr. Ann. Ser. A-Phys. Geogr., 93, 209–226, 2011.
Stouge, S., Harper, D. A., Boyce, W. D., and Christiansen, I. K. L.: Development of the lower Cambrian–Middle Ordovician carbonate platform: North Atlantic Region, AAPG Memoir 597–626, https://durham-repository.worktribe.com/output/1677649 (last access: June 2024), 2012.
Straume, E. O., Gaina, C., Medvedev, S., and Nisancioglu, K. H.: Global Cenozoic paleobathymetry with a focus on the Northern Hemisphere oceanic gateways, Gondwana Res., 86, 126–143, https://doi.org/10.1016/j.gr.2020.05.011, 2020.
Straume, E. O., Nummelin, A., Gaina, C., and Nisancioglu, K. H.: Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways, P. Natl. Acad. Sci. USA, 119, e2115346119, https://doi.org/10.1073/pnas.2115346119, 2022.
Suc, J.-P., Fauquette, S., Popescu, S.-M., and Robin, C.: Subtropical mangrove and evergreen forest reveal Paleogene terrestrial climate and physiography at the North Pole, Palaeogeogr. Palaeoclimatol. Palaeoecol., 551, 109755, https://doi.org/10.1016/j.palaeo.2020.109755, 2020.
Summons, R. E., Welander, P. V., and Gold, D. A.: Lipid biomarkers: molecular tools for illuminating the history of microbial life, Nat. Rev. Microbiol., 20, 174–185, 2022.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366–370, https://doi.org/10.1126/science.1224126, 2012.
Sun, Y. D., Wignall, P. B., Joachimski, M. M., Bond, D. P., Grasby, S. E., Lai, X. L., and Sun, S.: Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China, Earth Planet. Sci. Lett., 444, 88–100, 2016.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., and Rey, S. S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545, 2004.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490–500, https://doi.org/10.1016/j.epsl.2008.11.015, 2009.
Svensen, H. H., Frolov, S., Akhmanov, G. G., Polozov, A. G., Jerram, D. A., Shiganova, O. V., Melnikov, N. V., Iyer, K., and Planke, S.: Sills and gas generation in the Siberian Traps, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 376, 20170080, https://doi.org/10.1098/rsta.2017.0080, 2018.
Svensen, H. H., Jerram, D. A., Polozov, A. G., Planke, S., Neal, C. R., Augland, L. E., and Emeleus, H. C.: Thinking about LIPs: A brief history of ideas in Large igneous province research, Tectonophysics, 760, 229–251, 2019.
Tarduno, J., Sliter, W., Kroenke, L., Leckie, M., Mayer, H., Mahoney, J., Musgrave, R., Storey, M., and Winterer, E.: Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism, Science, 254, 399–403, 1991.
Tejada, M., Mahoney, J., Neal, C., Duncan, R., and Petterson, M.: Basement geochemistry and geochronology of Central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau, J. Petrol., 43, 449–484, 2002.
Tejada, M. L. G., Suzuki, K., Kuroda, J., Coccioni, R., Mahoney, J. J., Ohkouchi, N., Sakamoto, T., and Tatsumi, Y.: Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event, Geology, 37, 855–858, 2009.
Thordarson, T.: Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192 Site 1184: a record of subaerial phreatomagmatic eruptions on the Ontong Java Plateau, Geol. Soc. Lond. Spec. Publ., 229, 275–306, 2004.
Throndsen, T.: Vitrinite reflectance studies of coals and dispersed organic matter in Tertiary deposits in the Adventdalen area, Svalbard, Polar Res., 2, 77–91, 1982.
Torsvik, T. H. and Cocks, L. R. M.: The integration of palaeomagnetism, the geological record and mantle tomography in the location of ancient continents, Geol. Mag., 156, 242–260, 2019.
Torsvik, T. H., Carlos, D., Mosar, J., Cocks, L. R. M., and Malme, T.: Global reconstructions and North Atlantic paleogeography 440 Ma to recent, in: BATLAS–Mid Norway plate reconstruction atlas with global and Atlantic perspectives, edited by: Eide, E. A., Geol. Surv. Norw., Trondheim, 18–39, https://static.ngu.no/FileArchive/159/faktaark.pdf (last access: June 2024), 2002.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., Van Hinsbergen, D. J., Domeier, M., Gaina, C., and Tohver, E.: Phanerozoic polar wander, palaeogeography and dynamics, Earth-Sci. Rev., 114, 325–368, 2012.
Tozer, E. T.: A standard for Triassic Time, Geol. Surv. Can. Bull., 156, 1–103, 1967.
Tozer, E. T. and Parker, J. R.: Notes on the Triassic biostratigraphy of Svalbard, Geol. Mag., 105, 526–542, 1968.
Tremolada, F., Bornemann, A., Bralower, T. J., Koeberl, C., and van de Schootbrugge, B.: Paleoceanographic changes across the Jurassic/Cretaceous boundary: The calcareous phytoplankton response, Earth Planet. Sci. Lett., 241, 361–371, https://doi.org/10.1016/j.epsl.2005.11.047, 2006.
Twitchett, R. J. and Barras, C. G.: Trace fossils in the aftermath of mass extinction events, Geol. Soc. Lond. Spec. Publ., 228, 95–415, https://doi.org/10.1144/GSL.SP.2004.228.01.18, 2004.
Twitchett, R. J. and Wignall, P. B.: Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy, Palaeogeography, Palaeoclimatology, Palaeoecology, 124, 137–151, https://doi.org/10.1016/0031-0182(96)00008-9, 1996.
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B.: Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis, Geology, 29, 351–354, 2001.
Uchman, A., Hanken, N.-M., Nielsen, J. K., Grundvåg, S.-A., and Piasecki, S.: Depositional environment, ichnological features and oxygenation of Permian to earliest Triassic marine sediments in central Spitsbergen, Svalbard, Polar Res., 35, 24782, https://doi.org//10.3402/polar.v35.24782, 2016.
Uchman, A. and Hanken, N. M.: Cambrian-Ordovician trace fossils of the Basissletta region, northeast Spitsbergen, Svalbard. Acta geologica Polonica, 74, 1–20, https://doi.org/10.24425/agp.2024.150014, 2024.
Uhl, D., Traiser, C., Griesser, U., and Denk, T.: Fossil leaves as palaeoclimate proxies in the Palaeogene of Spitsbergen (Svalbard), Acta Palaeobot., 47, 89, 2007.
Van Der Meer, D. G., Zeebe, R. E., van Hinsbergen, D. J., Sluijs, A., Spakman, W., and Torsvik, T. H.: Plate tectonic controls on atmospheric CO2 levels since the Triassic, P. Natl. Acad. Sci. USA, 111, 4380–4385, 2014.
Van der Meer, D. G., van Saparoea, A. V. D. B., Van Hinsbergen, D. J. J., Van de Weg, R. M. B., Godderis, Y., Le Hir, G., and Donnadieu, Y.: Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes, Gondwana Res., 44, 22–34, 2017.
van de Schootbrugge, B., Föllmi, K. B., Bulot, L. G., and Burns, S. J.: Paleoceanographic changes during the early Cretaceous (Valanginian–Hauterivian): evidence from oxygen and carbon stable isotopes, Earth Planet. Sci. Lett., 181, 15–31, 2000.
Vérard, C. and Veizer, J.: On plate tectonics and ocean temperatures, Geology, 47, 881–885, 2019.
Verba, M.: Kollektornye svoystva porod osadochnogo chekhla arkhipelaga Shpitsbergen [Sedimentary cover reservoir of Svalbard archipelago], Neftegaz. Geol. Teor. Prakt., 8, 1–45, 2013.
Vickers, M. L., Price, G. D., Jerrett, R. M., and Watkinson, M.: Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard, Geosphere, 12, 1594–1605, https://doi.org/10.1130/ges01344.1, 2016.
Vickers, M. L., Price, G. D., Jerrett, R. M., Sutton, P., Watkinson, M. P., and FitzPatrick, M.: The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes, GSA Bull., 131, 1979–1994, https://doi.org/10.1130/b35074.1, 2019a.
Vickers, M. L., Bajnai, D., Price, G. D., Linckens, J., and Fiebig, J.: Southern high-latitude warmth during the Jurassic–Cretaceous: New evidence from clumped isotope thermometry, Geology, 47, 724–728, 2019b.
Vickers, M. L., Fernandez, A., Hesselbo, S. P., Price, G. D., Bernasconi, S. M., Lode, S., Ullmann, C. V., Thibault, N., Hougaard, I. W., and Korte, C.: Unravelling Middle to Late Jurassic palaeoceanographic and palaeoclimatic signals in the Hebrides Basin using belemnite clumped isotope thermometry, Earth Planet. Sci. Lett., 546, 116401, https://doi.org/10.1016/j.epsl.2020.116401, 2020.
Vickers, M. L., Bernasconi, S. M., Ullmann, C. V., Lode, S., Looser, N., Morales, L. G., Price, G. D., Wilby, P. R., Hougård, I. W., Hesselbo, S. P., and Korte, C.: Marine temperatures underestimated for past greenhouse climate, Sci. Rep., 11, 19109, https://doi.org/10.1038/s41598-021-98528-1, 2021.
Vickers, M. L., Jelby, M. E., Śliwińska, K. K., Percival, L. M., Wang, F., Sanei, H., Price, G. D., Ullmann, C. V., Grasby, S. E., and Reinhardt, L.: Volcanism and carbon cycle perturbations in the High Arctic during the Late Jurassic–Early Cretaceous, Palaeogeogr. Palaeoclimatol. Palaeoecol., 613, 111412, https://doi.org/10.1016/j.palaeo.2023.111412, 2023.
Vigran, J. O.: Spores from Devonian deposits, Mimerdalen, Spitsbergen, Norsk Polarinst. Skrifter, 132, 1–33, 1964.
Vigran, J. O., Mangerud, G., Mørk, A., Worsley, D., and Hochuli, P. A.: Palynology and geology of the Triassic succession of Svalbard and the Barents Sea, Nor. Geol. Unders., 14, 1–270, https://doi.org/10.5167/uzh-99116, 2014.
Vogt, T.: Geology of a Middle Devonian cannel coal from Spitsbergen, Nor. Geol. Tidsskr., 21, 1–12, 1941.
Wappler, T. and Denk, T.: Herbivory in early Tertiary Arctic forests, Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 283-29-5, 2011.
Ware, D., Jenks, J. F., Hautmann, M., and Bucher, H.: Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography, Swiss J. Geosci., 104, 161–181, 2011.
Watson, R., Baste, I., Larigauderie, A., Leadley P., Pascual, U., Baptiste, B., Demissew, S., Dziba, L., Erpul, G., Fazel A., Fischer M.,Hernández, A. M., Karki, M., Mathur, V., Pataridze, T., Pinto, I. S., Stenseke, M., Török, K., and Vilá, B.: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES Secretariat: Bonn, Germany, 22–47 pp., https://www.mari-odu.org/academics/2018su_Leadership/commons/library/Summary for Policymakers IPBES Global Assessment.pdf (last access: January 2024), 2019.
Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G.: The great Ordovician biodiversification event, Columbia University Press, 884, New York, 1–6 pp., 2004.
Weber, M.: Paleoenvironments during the Paleogene in the High Arctic of Spitsbergen – Evidence from Sedimentology and Palynology, Master thesis, Institute of Applied Geoscience, Technical University of Darmstadt University Centre in Svalbard, 100 pp., 2019.
Weger, R. J., Eberli, G. P., Rodriguez Blanco, L., Tenaglia, M., and Swart, P. K.: Finding a VOICE in the Southern Hemisphere: A new record of global organic carbon?, Geol. Soc. Am. Bull., 135, 7–8, 2107-–2120, https://doi.org/10.1130/B36405.1, 2022.
Weissert, H. and Channell, J. E. T.: Tethyan carbonate carbon isotope stratigraphy across the Jurassic-Cretaceous boundary: An indicator of decelerated global carbon cycling?, Paleoceanography, 4, 483–494, https://doi.org/10.1029/PA004i004p00483, 1989.
Weissert, H. and Erba, E.: Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record, J. Geol. Soc., 161, 695–702, https://doi.org/10.1144/0016-764903-087, 2004.
Weissert, H., Lini, A., Föllmi, K. B., and Kuhn, O.: Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 189–203, 1998.
Weitschat, W. and Lehmann, U.: Biostratigraphy of the uppermost part of the Smithian Stage (Lower Triassic) at the Botneheia, W-Spitsbergen 48, Mitteilungen des Geologischen-Paläontologischen Institut, Universität Hamburg, 85–100 pp., 1978.
Wesenlund, F., Grundvåg, S.-A., Engelschiøn, V.S., Thießen, O., and Pedersen, J. H.: Linking facies variations, organic carbon richness and bulk bitumen content–A case study of the organic-rich Middle Triassic shales from eastern Svalbard, Mar. Petrol. Geol., 132, 105168, https://doi.org/10.1016/j.marpetgeo.2021.105168, 2021.
Wesenlund, F., Grundvåg, S.-A., Engelschiøn, V. S., Thießen, O., and Pedersen, J. H.: Multi-elemental chemostratigraphy of Triassic mudstones in eastern Svalbard: Implications for source rock formation in front of the World's largest delta plain, The Depositional Record, 8, 718–753, https://doi.org/10.1002/dep2.182, 2022.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., and Florindo, F.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Wieczorek, R., Fantle, M. S., Kump, L. R., and Ravizza, G.: Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum, Geochim. Cosmochim. Acta, 119, 391–410, https://doi.org/10.1016/j.gca.2013.06.005, 2013.
Wierzbowski, H., Bajnai, D., Wacker, U., Rogov, M. A., Fiebig, J., and Tesakova, E. M.: Clumped isotope record of salinity variations in the Subboreal Province at the Middle–Late Jurassic transition, Global Planet. Change, 167, 172–189, 2018.
Wignall, P., Morante, R., and Newton, R.: The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils, Geol. Mag., 135, 47–62, https://doi.org/10.1017/S0016756897008121, 1998.
Wignall, P. B.: Large igneous provinces and mass extinctions, Earth-Sci. Rev., 53, 1–33, https://doi.org/10.1016/S0012-8252(00)00037-4, 2001.
Wignall, P. B., Bond, D. P. G., Haas, J., Wang, W., Jiang, H. S., Lai, X. L., Altiner, D., Védrine, S., Hips, K., and Zajzon, N.: Capitanian (Middle Permian) mass extinction and recovery in western Tethys: a fossil, facies, and δ13C study from Hungary and Hydra Island (Greece) Palaios, 27, 78–89, https://doi.org/10.2110/palo.2011.p11-058r, 2012.
Wignall, P. B., Bond, D. P. G., Sun, Y., Grasby, S. E., Beauchamp, B., Joachimski, M. M., and Blomeier, D. P. G.: Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation, Geol. Mag., 153, 316–331, https://doi.org/10.1017/s0016756815000588, 2016.
Wiman, C.: Ichthyosaurier aus der Trias Spitzbergens, Bulletin of the Geological Institution of the University of Upsala, 10, 124–148, 1910.
Wiman, C.: Eine neue marine Reptilien-Ordnung aus der Trias Spitzbergens, Bulletin of the Geological Institute of the University of Uppsala, 22, 183–196, 1928.
Worsley, D.: Sedimentological observations on the Grey Hoek Formation of northern Andrée Land, Spitsbergen, Nor. Polarinst. Årbok, 1970, 102–111, 1972.
Worsley, D.: The post-Caledonian development of Svalbard and the western Barents Sea, Polar Res., 27, 298–317, https://doi.org/10.1111/j.1751-8369.2008.00085.x, 2008.
Worsley, D., Agdestein, T., Gjelberg, J., Kirkemo, K., Mørk, A., Nilsson, I., Olaussen, S., Steel, R. J., and Stemmerik, L.: The geological evolution of Bjørnøya, Arctic Norway: implications for the Barents shelf, Nor. J. Geol., 81, 195–234, 2001.
Wu, Y., Chu, D., Tong, J., Song, H., Dal Corso, J., Wignall, P. B., Song, H., Du, Y., and Cui, Y.: Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction, Nat. Commun., 12, 2137, https://doi.org/10.1038/s41467-021-22298-7, 2021.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Žák, K., Košťák, M., Man, O., Zakharov, V. A., Rogov, M. A., Pruner, P., Rohovec, J., Dzyuba, O. S., and Mazuch, M.: Comparison of carbonate C and O stable isotope records across the Jurassic/Cretaceous boundary in the Tethyan and Boreal Realms, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 83–96, https://doi.org/10.1016/j.palaeo.2010.10.038, 2011.
Zakharov, V. A., Rogov, M. A., Dzyuba, O. S., Žák, K., Košt'ák, M., Pruner, P., Skupien, P., Chadima, M., Mazuch, M., and Nikitenko, B. L.: Palaeoenvironments and palaeoceanography changes across the Jurassic/Cretaceous boundary in the Arctic realm: case study of the Nordvik section (north Siberia, Russia), Polar Res., 33, 19714, https://doi.org/10.3402/polar.v33.19714, 2014.
Zanin, Y. N., Zamirailova, A. G., and Eder, V. G.: Chalcophile elements in black shales of the Bazhenov Formation, West Siberian sea basin, Russ. Geol. Geophys., 57, 608–616, https://doi.org/10.1016/j.rgg.2015.03.018, 2016.
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release rate unprecedented during the past 66 million years, Nat. Geosci., 9, 325–329, https://doi.org/10.1038/ngeo2681, 2016.
Zhang, H., Zhang, F., Chen, J.-B., Erwin, D. H., Syverson, D. D., Ni, P., Rampino, M., Chi, Z., Cai, Y.-F., Xiang, L., Li, W.-Q., Liu, S.-A., Wang, R.-C., Wang, X.-D., Feng, Z., Li, H.-M., Zhang, T., Cai, H.-M., Zheng, W., Cui, Y., Zhu, X.-K., Hou, Z.-Q., Wu, F.-Y., Xu, Y.-G., Planavsky, N., and Shen, S.-Z.: Felsic volcanism as a factor driving the end-Permian mass extinction, Sci. Adv., 7, eabh1390, https://doi.org/10.1126/sciadv.abh1390, 2021a.
Zhang, L., Wang, C., Li, X., Cao, K., Song, Y., Hu, B., Lu, D., Wang, Q., Du, X., and Cao, S.: A new paleoclimate classification for deep time, Palaeogeogr. Palaeoclimatol. Palaeoecol., 443, 98–106, https://doi.org/10.1016/j.palaeo.2015.11.041, 2016.
Zhang, Y., Ogg, J. G., Minguez, D., Hounslow, M. W., Olaussen, S., Gradstein, F. M., and Esmeray-Senlet, S.: Magnetostratigraphy of U-Pb–dated boreholes in Svalbard, Norway, implies that magnetochron M0r (a proposed Barremian-Aptian boundary marker) begins at 121.2 ± 0.4 Ma, Geology, 49, 733–737, https://doi.org/10.1130/g48591.1, 2021b.
Zuchuat, V.: A Sedimentary Investigation of the Lower Triassic Formations and Their Underlying Permo-Carboniferous Units Across Spitsbergen, Svalbard. Institutt for geologi og bergteknikk, Norwegian University of Science and Technology, 165 pp., http://hdl.handle.net/11250/236289 (last access: June 2024), 2014.
Zuchuat, V., Sleveland, A. R. N., Twitchett, R. J., Svensen, H. H., Turner, H., Augland, L. E., Jones, M. T., Hammer, Ø., Hauksson, B. T., Haflidason, H., Midtkandal, I., and Planke, S.: A new high-resolution stratigraphic and palaeoenvironmental record spanning the End-Permian Mass Extinction and its aftermath in central Spitsbergen, Svalbard, Palaeogeogr. Palaeoclimatol. Palaeoecol., 554, 109732, https://doi.org/10.1016/j.palaeo.2020.109732, 2020.
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including the End-Permian Mass Extinction, and climate crises like the Paleocene–Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in the context of global climate fluctuations and continuous drift of Svalbard from near equatorial to Arctic latitudes.
In this review article we present Svalbard’s unique geological archive, revealing its climate...