Articles | Volume 21, issue 11
https://doi.org/10.5194/cp-21-1933-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-1933-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The most complete Holocene peat record from Central Europe: multi-proxy reconstruction of postglacial wetness changes and climate events from Linje peatland, Poland
Eliise Poolma
CORRESPONDING AUTHOR
Tallinn University of Technology, Tallinn, Estonia
Katarzyna Marcisz
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Leeli Amon
Tallinn University of Technology, Tallinn, Estonia
Patryk Fiutek
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Piotr Kołaczek
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Karolina Leszczyńska
Department of Geomorphology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Dmitri Mauquoy
School of Geosciences, University of Aberdeen, Aberdeen, UK
Michał Słowiński
Department of Past Landscape Dynamics, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
Siim Veski
Tallinn University of Technology, Tallinn, Estonia
Friederike Wagner-Cremer
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Mariusz Lamentowicz
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
Related authors
No articles found.
Luke Oliver Andrews, Katarzyna Marcisz, Piotr Kołaczek, Leeli Amon, Siim Veski, Atko Heinsalu, Normunds Stivrins, Mariusz Bąk, Marco A. Aquino-Lopez, Anna Cwanek, Edyta Łokas, Monika Karpińska-Kołaczek, Sambor Czerwiński, Michał Słowiński, and Mariusz Lamentowicz
Biogeosciences, 22, 5849–5875, https://doi.org/10.5194/bg-22-5849-2025, https://doi.org/10.5194/bg-22-5849-2025, 2025
Short summary
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following substantial as well as small but sustained increases in alkalinity. Limited recovery was evident ~30 years post-pollution.
Tomasz Polkowski, Agnieszka Gruszczyńska, Bartosz Kotrys, Artur Górecki, Anna Hrynowiecka, Marcin Żarski, Mirosław Błaszkiewicz, Jerzy Nitychoruk, Monika Czajkowska, Stefan Lauterbach, and Michał Słowiński
Clim. Past, 21, 1779–1800, https://doi.org/10.5194/cp-21-1779-2025, https://doi.org/10.5194/cp-21-1779-2025, 2025
Short summary
Short summary
In our study, we investigate changes in environment and climate that occured during post-Holsteinian period in Krępa palaeolake (eastern Poland). To achieve this goal we reconstructed summer temperature at the time using Chironomidae larvae head capsules and pollen data. This is first research from Central Europe with both chironomids and pollen used to trace climate change through post-Holsteinian period. We hope to encourage scientific community to carry out further research in the region.
Agnieszka Halaś, Mariusz Lamentowicz, Milena Obremska, Dominika Łuców, and Michał Słowiński
Biogeosciences, 22, 4797–4822, https://doi.org/10.5194/bg-22-4797-2025, https://doi.org/10.5194/bg-22-4797-2025, 2025
Short summary
Short summary
Western Siberian peatlands regulate global climate, but their response to permafrost thaw remains poorly studied. Our study analyzed peat cores from a peat plateau and a lake edge to track changes over two centuries. We found that permafrost thawing, driven by rising temperatures, altered peatland hydrology, vegetation, and microbial life. These shifts may expand with further warming, affecting carbon storage and climate feedbacks. Our findings highlight early warning signs of ecosystem change.
Ewa Zin, Tomasz Związek, Marcin Klisz, Sandra Słowińska, Dominik Róg, Milena Obremska, Dominika Łuców, Jarosław Pietruczuk, Joachim Popek, Katarzyna Piotrowicz, Kamil Pilch, Krzysztof Szewczyk, Agnieszka Halaś, and Michał Słowiński
EGUsphere, https://doi.org/10.5194/egusphere-2025-3975, https://doi.org/10.5194/egusphere-2025-3975, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used a multi-proxy approach combining peat, tree ring, climate, and historical records to reconstruct >2,300 years of peatland dynamics in a Central European region. Results show a human-induced shift from alder to pine forest due to land use change and acidification, stressing the importance of long-term records for peatland conservation.
Jade Skye, Joe R. Melton, Colin Goldblatt, Louis Saumier, Angela Gallego-Sala, Michelle Garneau, R. Scott Winton, Erick B. Bahati, Juan C. Benavides, Lee Fedorchuk, Gérard Imani, Carol Kagaba, Frank Kansiime, Mariusz Lamentowicz, Michel Mbasi, Daria Wochal, Sambor Czerwiński, Jacek Landowski, Joanna Landowska, Vincent Maire, Minna M. Väliranta, Matthew Warren, Lydia E. S. Cole, Marissa A. Davies, Erik A. Lilleskov, Jingjing Sun, and Yuwan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-432, https://doi.org/10.5194/essd-2025-432, 2025
Preprint under review for ESSD
Short summary
Short summary
Peatlands are large stores of carbon but are vulnerable to human activities and climate change. Comprehensive peatland data are vital to understand these ecosystems, but existing datasets are fragmented and contain errors. To address this, we created Peat-DBase — a standardized global database of peat depth measurements with > 200,000 measurements worldwide, showing average depths of 144 cm. Peat-DBase avoids overlapping data compilation efforts while identifying critical observational gaps.
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Michał Jakubowicz, Luke Andrews, and Katarzyna Marcisz
Biogeosciences, 22, 3843–3866, https://doi.org/10.5194/bg-22-3843-2025, https://doi.org/10.5194/bg-22-3843-2025, 2025
Short summary
Short summary
We integrated palaeoecological and geochemical data to discern the impact of catastrophic events on the development of peatlands within pine monocultures. An approach that integrates these methods is not commonly employed but offers a more comprehensive understanding of past ecosystem transformations. We used multi-proxy research of the peat core and neodymium isotope record. We support the results of our analyses with the recognition of statistically significant critical transitions.
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024, https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Short summary
The study combines palaeoecological, dendrochronological, remote sensing and historical data to detect the impact of forest management and climate change on peatlands. Due to these changes, the peatland studied in this paper and the pine monoculture surrounding it have become vulnerable to water deficits and various types of disturbance, such as fires and pest infestations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.
Leeli Amon, Friederike Wagner-Cremer, Jüri Vassiljev, and Siim Veski
Clim. Past, 18, 2143–2153, https://doi.org/10.5194/cp-18-2143-2022, https://doi.org/10.5194/cp-18-2143-2022, 2022
Short summary
Short summary
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region were reconstructed using the micro-phenology based on dwarf birch subfossil leaf cuticles. The comparison of pollen- and chironomid-inferred past temperature estimations with spring onset, growth degree day, and plant macrofossil data shows coherent patterns during the cooler Older Dryas and warmer Bølling–Allerød periods but more complicated climate dynamics during the Younger Dryas cold reversal.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Michal Hájek, Borja Jiménez-Alfaro, Ondřej Hájek, Lisa Brancaleoni, Marco Cantonati, Michele Carbognani, Anita Dedić, Daniel Dítě, Renato Gerdol, Petra Hájková, Veronika Horsáková, Florian Jansen, Jasmina Kamberović, Jutta Kapfer, Tiina Hilkka Maria Kolari, Mariusz Lamentowicz, Predrag Lazarević, Ermin Mašić, Jesper Erenskjold Moeslund, Aaron Pérez-Haase, Tomáš Peterka, Alessandro Petraglia, Eulàlia Pladevall-Izard, Zuzana Plesková, Stefano Segadelli, Yuliya Semeniuk, Patrícia Singh, Anna Šímová, Eva Šmerdová, Teemu Tahvanainen, Marcello Tomaselli, Yuliya Vystavna, Claudia Biţă-Nicolae, and Michal Horsák
Earth Syst. Sci. Data, 13, 1089–1105, https://doi.org/10.5194/essd-13-1089-2021, https://doi.org/10.5194/essd-13-1089-2021, 2021
Short summary
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
Cited articles
Adobe Inc.: Adobe Illustrator CC (version 23.0), Adobe Systems Incorporated, San Jose, California, USA [software], 2019.
Amesbury, M. J., Swindles, G. T., Bobrov, A., Charman, D. J., Holden, J., Lamentowicz, M., Mallon, G., Mazei, Y., Mitchell, E. A. D., Payne, R. J., Roland, T. P., Turner, T. E., and Warner, B. G.: Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology, Quaternary Science Reviews, 152, 132–151, https://doi.org/10.1016/j.quascirev.2016.09.024, 2016.
Banaś, K., Ronowski, R., and Marciniak, P.: Effects of Environmental Conditions on the Individual Architectures and Photosynthetic Performances of Three Species in Drosera, International Journal of Molecular Sciences, 24, 9823, https://doi.org/10.3390/ijms24129823, 2023.
Barber, K. E., Chambers, F. M., Maddy, D., Stoneman, R., and Brew, J. S.: A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England, The Holocene, 4, 198–205, https://doi.org/10.1177/095968369400400209, 1994.
Barber, K. E., Dumayne-Peaty, L., Hughes, P., Mauquoy, D., and Scaife, R.: Replicability and variability of the recent macrofossil and proxy-climate record from raised bogs: field stratigraphy and macrofossil data from Bolton Fell Moss and Walton Moss, Cumbria, England, J. Quaternary Sci., 13, 515–528, https://doi.org/10.1002/(SICI)1099-1417(1998110)13:6<515::AID-JQS393>3.0.CO;2-S, 1998.
Barber, K. E., Chambers, F., and Maddy, D.: Late Holocene climatic history of northern Germany and Denmark: peat macrofossil investigations at Dosenmoor, Schleswig-Holstein, and Svanemose, Jutland, Boreas, 33, 132–144, https://doi.org/10.1080/03009480410001082, 2004.
Bennett, K. D.: Determination of the number of zones in a biostratigraphical sequence, New Phytologist, 132, 155–170, https://doi.org/10.1111/j.1469-8137.1996.tb04521.x, 1996.
Birks, H. J. B. and Seppä, H.: Late-Quaternary palaeoclimatic research in Fennoscandia – A historical review, Boreas, 39, 655–673, https://doi.org/10.1111/j.1502-3885.2010.00160.x, 2010.
Blackford, J.: Palaeoclimatic records from peat bogs, Trends in Ecology and Evolution, 15, 193–198, https://doi.org/10.1016/S0169-5347(00)01826-7, 2000.
Błaszkiewicz, M., Piotrowski, J. A., Brauer, A., Gierszewski, P., Kordowski, J., Kramkowski, M., Lamparski, P., Lorenz, S., Noryśkiewicz, A. M., Ott, F., Słowiński, M., and Tyszkowski, S.: Climatic and morphological controls on diachronous postglacial lake and river valley evolution in the area of Last Glaciation, northern Poland, Quaternary Science Reviews, 109, 13–27, https://doi.org/10.1016/j.quascirev.2014.11.023, 2015.
Bonk, A., Müller, D., Ramisch, A., Kramkowski, M. A., Noryśkiewicz, A. M., Sekudewicz, I., Gąsiorowski, M., Luberda-Durnaś, K., Słowiński, M., Schwab, M., Tjallingii, R., Brauer, A., and Błaszkiewicz, M.: Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland), Quaternary Science Reviews, 251, 106715, https://doi.org/10.1016/j.quascirev.2020.106715, 2021.
Booth, R. K.: Testing the climate sensitivity of peat-based paleoclimate reconstructions in mid-continental North America, Quaternary Science Reviews, 29, 720–731, https://doi.org/10.1016/j.quascirev.2009.11.018, 2010.
Booth, R. K., Lamentowicz, M., and Charman, D. J.: Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies, Mires and Peat, 7, 1–7, 2010.
Brande, A., Hoelzmann, P., and Klawitter, J.: Genese und Paläoökologie eines brandenburgischen Kesselmoores, Telma, 20, 27–54, 1990.
Bronk Ramsey, C.: Radiocarbon calibration and analysis of stratigraphy: the OxCal program, Radiocarbon, 37, 425–430, https://doi.org/10.1017/S0033822200030903, 1995.
Bronk Ramsey, C.: OxCal program v 4.0, University of Oxford [code], https://c14.arch.ox.ac.uk/oxcal.html (last access: 4 February 2024), 2006.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Science Reviews, 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C. and Lee, S.: Recent and planned developments of the program OxCal, Radiocarbon, 55, 720–730, https://doi.org/10.1017/S0033822200057878, 2013.
Buttler, A., Bragazza, L., Laggoun-Défarge, F., Gogo, S., Toussaint, M., Lamentowicz, M., Chojnicki, B. H., Słowiński, M., Słowińska, S., Zielińska, M., Reczuga, M., Barabach, J., Marcisz, K., Lamentowicz, Ł., Harenda, K., Lapshina, E., Gilbert, D., Schlaepfer, R., and Jassey, V. E. J.: Ericoid shrub encroachment shifts aboveground–belowground linkages in three peatlands across Europe and Western Siberia, Global Change Biology, 29, 6772–6793, https://doi.org/10.1111/gcb.16904, 2023.
Cappers, R. T. J., Bekker, R. M., and Jans, J. E. A.: Digitale zadenatlas van Nederland: Digital seed atlas of the Netherlands, 2nd ed., Barkhuis and Groningen University Library, Groningen, 502 pp., ISBN 978-90-77922-95-8, 2012.
Cartapanis, O., Jonkers, L., Moffa-Sanchez, P., Jaccard, S. L., and De Vernal, A.: Complex spatio-temporal structure of the Holocene Thermal Maximum, Nat. Commun., 13, 5662, https://doi.org/10.1038/s41467-022-33362-1, 2022.
Chambers, F. M. and Charman, D. J.: Holocene environmental change: contributions from the peatland archive, The Holocene, 14, 1–6, https://doi.org/10.1191/0959683604hl684ed, 2004.
Chambers, F. M., Booth, R. K., De Vleeschouwer, F., Lamentowicz, M., Le Roux, G., Mauquoy, D., Nichols, J. E., and van Geel, B.: Development and refinement of proxy-climate indicators from peats, Quaternary International, 268, 21–33, https://doi.org/10.1016/j.quaint.2011.04.039, 2012.
Charman, D. J., Blundell, A., Chiverrell, R. C., Hendon, D., and Langdon, P. G.: Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain, Quaternary Science Reviews, 25, 336–350, https://doi.org/10.1016/j.quascirev.2005.05.005, 2006.
Charman, D. J., Blundell, A., and ACCROTELM Members: A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands, J. Quaternary Science, 22, 209–221, https://doi.org/10.1002/jqs.1026, 2007.
Charman, D. J., Barber, K. E., Blaauw, M., Langdon, P. G., Mauquoy, D., Daley, T. J., Hughes, P. D. M., and Karofeld, E.: Climate drivers for peatland palaeoclimate records, Quaternary Science Reviews, 28, 1811–1819, https://doi.org/10.1016/j.quascirev.2009.05.013, 2009.
Clark, J. S.: Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling, Quat. Res., 30, 67–80, https://doi.org/10.1016/0033-5894(88)90088-9, 1988.
Clarke, K. J.: Guide to Identification of Soil Protozoa – Testate Amoebae., Freshwater Biological Association, Ambleside, U.K., ISBN 0-900386-69-X, 2003.
Clymo, R. S.: The Limits to Peat Bog Growth, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 303, 605–654, 1984.
Daley, T. J., Barber, K. E., Hughes, P. D. M., Loader, N. J., Leuenberger, M., and Street-Perrott, F. A.: The 8.2 ka BP event in north-eastern North America: first combined oxygen and hydrogen isotopic data from peat in Newfoundland, J. Quaternary Science, 31, 416–425, https://doi.org/10.1002/jqs.2870, 2016.
Davies, M. A., McLaughlin, J. W., Packalen, M. S., and Finkelstein, S. A.: Using Water Table Depths Inferred From Testate Amoebae to Estimate Holocene Methane Emissions From the Hudson Bay Lowlands, Canada, JGR Biogeosciences, 126, e2020JG005969, https://doi.org/10.1029/2020JG005969, 2021.
Davis, B. A. S., Brewer, S., Stevenson, A. C., and Guiot, J.: The temperature of Europe during the Holocene reconstructed from pollen data, Quaternary Science Reviews, 22, 1701–1716, https://doi.org/10.1016/S0277-3791(03)00173-2, 2003.
De Vleeschouwer, F., Pazdur, A., Luthers, C., Streel, M., Mauquoy, D., Wastiaux, C., Le Roux, G., Moschen, R., Blaauw, M., Pawlyta, J., Sikorski, J., and Piotrowska, N.: A millennial record of environmental change in peat deposits from the Misten bog (East Belgium), Quaternary International, 268, 44–57, https://doi.org/10.1016/j.quaint.2011.12.010, 2012.
Digerfeldt, G.: Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjön, South Sweden, Boreas, 17, 165–182, https://doi.org/10.1111/j.1502-3885.1988.tb00544.x, 1988.
Drzymulska, D.: Mosses recognized as glacial relicts from their postglacial distribution in Poland, Veget. Hist. Archaeobot., 33, 657–669, https://doi.org/10.1007/s00334-023-00983-5, 2024.
Duffy, A. M., Aguero, B., Stenøien, H. K., Flatberg, K. I., Ignatov, M. S., Hassel, K., and Shaw, A. J.: Phylogenetic structure in the Sphagnum recurvum complex (Bryophyta) in relation to taxonomy and geography, Appl. Plant. Sci., 107, 1283–1295, https://doi.org/10.1002/ajb2.1525, 2020.
Fiłoc, M., Kupryjanowicz, M., Szeroczyńska, K., Suchora, M., and Rzodkiewicz, M.: Environmental changes related to the 8.2 ka event and other climate fluctuations during the middle Holocene: Evidence from two dystrophic lakes in NE Poland, The Holocene, 27, 1550–1566, https://doi.org/10.1177/0959683617702233, 2017.
Finlayson, C. M. and Spiers, A. G. (Eds.): Global review of wetland resources and priorities for wetland inventory, Supervising Scientist, Canberra, 520 pp., ISBN 978-0-642-24347-8, 1999.
Fletcher, W. J., Sánchez Goñi, M. F., Naughton, F., and Seppä, H.: Greenlandian Stage (Early Holocene, 11.7–8.2 ka), in: European Glacial Landscapes, Elsevier, 73–87, https://doi.org/10.1016/B978-0-323-99712-6.00029-5, 2024a.
Fletcher, W. J., Sánchez Goñi, M. F., Naughton, F., and Seppä, H.: Northgrippian Stage (Middle Holocene, 8.2–4.2 ka), in: European Glacial Landscapes, Elsevier, 89–104, https://doi.org/10.1016/B978-0-323-99712-6.00027-1, 2024b.
Gąbka, M. and Lamentowicz, M.: Vegetation-Environment Relationships in Peatlands Dominated by Sphagnum fallax in Western Poland, Folia Geobot., 43, 413–429, https://doi.org/10.1007/s12224-008-9023-8, 2008.
Gałka, M. and Lamentowicz, M.: Sphagnum succession in a Baltic bog in central-eastern Europe over the last 6200 years and paleoecology of Sphagnum contortum, The Bryologist, 117, 22–36, https://doi.org/10.1639/0007-2745-117.1.022, 2014.
Gałka, M., Lamentowicz, Ł., and Lamentowicz, M.: Palaeoecology of Sphagnum obtusum in NE Poland, The Bryologist, 116, 238–247, https://doi.org/10.1639/0007-2745-116.3.238, 2013a.
Gałka, M., Miotk-Szpiganowicz, G., Goslar, T., Jęśko, M., van der Knaap, W. O., and Lamentowicz, M.: Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data, Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 209–221, https://doi.org/10.1016/j.palaeo.2012.12.011, 2013b.
Gałka, M., Tobolski, K., Zawisza, E., and Goslar, T.: Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data, Veget. Hist. Archaeobot., 23, 123–152, https://doi.org/10.1007/s00334-013-0401-7, 2014.
Gałka, M., Tobolski, K., Górska, A., and Lamentowicz, M.: Resilience of plant and testate amoeba communities after climatic and anthropogenic disturbances in a Baltic bog in Northern Poland: Implications for ecological restoration, The Holocene, 27, 130–141, https://doi.org/10.1177/0959683616652704, 2017a.
Gałka, M., Tobolski, K., Lamentowicz, Ł., Ersek, V., Jassey, V. E. J., van der Knaap, W. O., and Lamentowicz, M.: Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae, Quaternary Science Reviews, 156, 90–106, https://doi.org/10.1016/j.quascirev.2016.11.034, 2017b.
Gauld, J., Fletcher, W. J., Sánchez Goñi, M. F., Naughton, F., and Seppä, H.: Meghalayan Stage (Late Holocene, 4.2 ka–present), in: European Glacial Landscapes, Elsevier, 105–126, https://doi.org/10.1016/B978-0-323-99712-6.00028-3, 2024.
GBIF Secretariat: GBIF Backbone Taxonomy, https://doi.org/10.15468/39OMEI, 2023.
Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019.
Gong, J., Roulet, N., Frolking, S., Peltola, H., Laine, A. M., Kokkonen, N., and Tuittila, E.-S.: Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content, Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020, 2020.
Granlund, L., Vesakoski, V., Sallinen, A., Kolari, T. H. M., Wolff, F., and Tahvanainen, T.: Recent Lateral Expansion of Sphagnum Bogs Over Central Fen Areas of Boreal Aapa Mire Complexes, Ecosystems, 25, 1455–1475, https://doi.org/10.1007/s10021-021-00726-5, 2022.
Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Computers and Geosciences, 13, 13–35, https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
Grimm, E. C.: Tilia software (version 3.0.1), Illinois State Museum, Springfield, IL, USA [code], https://www.neotomadb.org/apps/tilia (last access: 27 October 2025), 2011.
Grosse-Brauckmann, G.: Über pflanzliche Makrofossilien mitteleuropäischer Torfe, https://doi.org/10.23689/FIDGEO-5276, 1972.
Hájková, P., Horsák, M., Hájek, M., Jankovská, V., Jamrichová, E., and Moutelíková, J.: Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians, The Holocene, 25, 702–715, https://doi.org/10.1177/0959683614566251, 2015.
Halsey, L. A., Vitt, D. H., and Gignac, L. D.: Sphagnum-dominated Peatlands in North America Since the Last Glacial Maximum: Their Occurrence and Extent, The Bryologist, 103, 334–352, https://doi.org/10.1639/0007-2745(2000)103[0334:SDPINA]2.0.CO;2, 2000.
Hammarlund, D.: Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden, Quaternary Science Reviews, 22, 353–370, https://doi.org/10.1016/S0277-3791(02)00091-4, 2003.
Hassel, K., Kyrkjeeide, M. O., Yousefi, N., Prestø, T., Stenøien, H. K., Shaw, J. A., and Flatberg, K. I.: Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid., Journal of Bryology, 40, 197–222, https://doi.org/10.1080/03736687.2018.1474424, 2018.
Hedenäs, L.: The European species of the Calliergon-Scorpidium-Drepanocladus complex, including some related or similar species, Meylania, 28, 1–116, 2003.
Holmquist, J. R., Booth, R. K., and MacDonald, G. M.: Boreal peatland water table depth and carbon accumulation during the Holocene thermal maximum, Roman Warm Period, and Medieval Climate Anomaly, Palaeogeography, Palaeoclimatology, Palaeoecology, 444, 15–27, https://doi.org/10.1016/j.palaeo.2015.11.035, 2016.
Hughes, P. D. M. and Barber, K. E.: Mire development across the fen–bog transition on the Teifi floodplain at Tregaron Bog, Ceredigion, Wales, and a comparison with 13 other raised bogs, Journal of Ecology, 91, 253–264, 2003.
Hughes, P. D. M. and Dumayne-Peaty, L.: Testing theories of mire development using multiple successions at Crymlyn Bog, West Glamorgan, South Wales, UK, Journal of Ecology, 90, 456–471, https://doi.org/10.1046/j.1365-2745.2002.00677.x, 2002.
Hughes, P. D. M., Mauquoy, D., Barber, K. E., and Langdon, P. G.: Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England, The Holocene, 10, 465–479, https://doi.org/10.1191/095968300675142023, 2000.
Hughes, P. D. M., Blundell, A., Charman, D. J., Bartlett, S., Daniell, J. R. G., Wojatschke, A., and Chambers, F. M.: An 8500cal. year multi-proxy climate record from a bog in eastern Newfoundland: contributions of meltwater discharge and solar forcing, Quaternary Science Reviews, 25, 1208–1227, https://doi.org/10.1016/j.quascirev.2005.11.001, 2006.
Jassey, V. E. J., Reczuga, M. K., Zielińska, M., Słowińska, S., Robroek, B. J. M., Mariotte, P., Seppey, C. V. W., Lara, E., Barabach, J., Słowiński, M., Bragazza, L., Chojnicki, B. H., Lamentowicz, M., Mitchell, E. A. D., and Buttler, A.: Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration, Global Change Biology, 24, 972–986, https://doi.org/10.1111/gcb.13928, 2018.
Jaszczuk, I., Jabłońska, E., Kozub, Ł., Tanneberger, F., Aggenbach, C., Seeber, E., van Diggelen, R., Kreyling, J., Silvennoinen, H. M., and Kotowski, W.: Peat formation potential of temperate fens increases with hydrological stability, Science of The Total Environment, 947, 174617, https://doi.org/10.1016/j.scitotenv.2024.174617, 2024.
Jordan, S. F., Murphy, B. T., O'Reilly, S. S., Doyle, K. P., Williams, M. D., Grey, A., Lee, S., McCaul, M. V., and Kelleher, B. P.: Mid-Holocene climate change and landscape formation in Ireland: Evidence from a geochemical investigation of a coastal peat bog, Organic Geochemistry, 109, 67–76, https://doi.org/10.1016/j.orggeochem.2017.02.004, 2017.
Juggins, S.: C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation, Newcastle University, Newcastle upon Tyne, UK [code], https://www.academia.edu/download/84693763/C2.pdf (last access: 27 October 2025), 2007.
Juggins, S.: rioja: Analysis of Quaternary Science Data, Comprehensive R Archive Network (CRAN) [code], https://doi.org/10.32614/CRAN.package.rioja, 2009.
Kalvaitienė, M. and Jukonienė, I.: The Ecological Drivers of the Mosaic Structure of Bryophyte and Vascular Plant Cover in the Rich Fens of Lithuania, Plants, 14, 2662, https://doi.org/10.3390/plants14172662, 2025.
Karpińska-Kołaczek, M., Kołaczek, P., Marcisz, K., Gałka, M., Kajukało-Drygalska, K., Mauquoy, D., and Lamentowicz, M.: Kettle-hole peatlands as carbon hot spots: Unveiling controls of carbon accumulation rates during the last two millennia, Catena, 237, 107764, https://doi.org/10.1016/j.catena.2023.107764, 2024.
Katz, N. J., Katz, S. V., and Skobeyeva, E.:. Atlas of plant remains in peat., Nedra, Moscow, 1005, 1977 (in Russian).
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P. S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a multi-method reconstruction approach, Sci. Data, 7, 201, https://doi.org/10.1038/s41597-020-0530-7, 2020.
Kloss, M.: Identification of subfossil plant communities and palaeohydrological changes in raised mire development, Monographiae Botanicae, 94, 81–116, 2005.
Kloss, M. and Żurek, S.: Geology of raised mire deposits, Monographiae Botanicae, 94, 65–80, 2005.
Kobashi, T., Menviel, L., Jeltsch-Thömmes, A., Vinther, B. M., Box, J. E., Muscheler, R., Nakaegawa, T., Pfister, P. L., Döring, M., Leuenberger, M., Wanner, H., and Ohmura, A.: Volcanic influence on centennial to millennial Holocene Greenland temperature change, Sci. Rep., 7, 1441, https://doi.org/10.1038/s41598-017-01451-7, 2017.
Kokkonen, N. A. K., Laine, A. M., Laine, J., Vasander, H., Kurki, K., Gong, J., and Tuittila, E.: Responses of peatland vegetation to 15 year water level drawdown as mediated by fertility level, J. Vegetation Science, 30, 1206–1216, https://doi.org/10.1111/jvs.12794, 2019.
Korhola, A.: Holocene climatic variations in southern Finland reconstructed from peat-initiation data, The Holocene, 5, 43–57, https://doi.org/10.1177/095968369500500106, 1995.
Kotrys, B., Płóciennik, M., Sydor, P., and Brooks, S. J.: Expanding the Swiss-Norwegian chironomid training set with Polish data, Boreas, 49, 89–107, https://doi.org/10.1111/bor.12406, 2020.
Kowalewski, G.: Alogeniczne i autogeniczne składowe zarastania jezior: hipoteza wahań poziomu wody, Polskie Towarzystwo Limnologiczne, Bogucki Wydawnictwo Naukowe, Poznań, Poland, 2014.
Kucharski, L. and Kloss, M.: Contemporary vegetation of selected raised mires and its preservation, Monographiae Botanicae, 94, 37–64, 2005.
Kuuri-Riutta, O., Väliranta, M., and Tuittila, E.-S.: Literature review on testate amoebae as environmental indicators and as a functional part of the microbial community in northern peatlands, Mires Peat, 28, 1–16, ISSN 1819-754X, 2022.
Laine, J., Flatberg, K. I., Harju, P., Timonen, T., Minkkinen, K., Laine, A., Tuittila, E.-S., and Vasander, H.: Sphagnum mosses: the stars of European mires, Department of Forest Sciences, University of Helsinki, Helsinki, 326 pp., ISBN 951-51-3143-X, 2018.
Lamentowicz, Ł., Lamentowicz, M., and Gąbka, M.: Testate amoebae ecology and a local transfer function from a peatland in western Poland, Wetlands, 28, 164–175, https://doi.org/10.1672/07-92.1, 2008a.
Lamentowicz, M.: Geneza torfowisk naturalnych i seminaturalnych w Nadleśnictwie Tuchola (Origin and development of natural and seminatural peatlands in Tuchola Forest Inspectorate), Bogucki Wydawnictwo Naukowe, ISBN 83-60247-14-5, 2005.
Lamentowicz, M. and Mitchell, E. A. D.: The Ecology of Testate Amoebae (Protists) in Sphagnum in North-western Poland in Relation to Peatland Ecology, Microb. Ecol., 50, 48–63, https://doi.org/10.1007/s00248-004-0105-8, 2005.
Lamentowicz, M., Tobolski, K., and Mitchell, E. A. D.: Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland, The Holocene, 17, 1185–1196, https://doi.org/10.1177/0959683607085123, 2007.
Lamentowicz, M., Cedro, A., Gałka, M., Goslar, T., Miotk-Szpiganowicz, G., Mitchell, E. A. D., and Pawlyta, J.: Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae, Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 93–106, https://doi.org/10.1016/j.palaeo.2008.04.023, 2008b.
Lamentowicz, M., Obremska, M., and Mitchell, E. A. D.: Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle-hole mire in Northern Poland, Review of Palaeobotany and Palynology, 151, 21–40, https://doi.org/10.1016/j.revpalbo.2008.01.009, 2008c.
Lamentowicz, M., Balwierz, Z., Forysiak, J., Płóciennik, M., Kittel, P., Kloss, M., Twardy, J., Żurek, S., and Pawlyta, J.: Multiproxy study of anthropogenic and climatic changes in the last two millennia from a small mire in central Poland, in: Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water, edited by: Buczkó, K., Korponai, J., Padisák, J., and Starratt, S. W., Springer Netherlands, Dordrecht, 213–230, https://doi.org/10.1007/978-90-481-3387-1_13, 2009a.
Lamentowicz, M., Milecka, K., Gałka, M., Cedro, A., Pawlyta, J., Piotrowska, N., Lamentowicz, Ł., and van der Knaap, W. O.: Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine, Boreas, 38, 214–229, https://doi.org/10.1111/j.1502-3885.2008.00047.x, 2009b.
Lamentowicz, M., Lamentowicz, Ł., van der Knaap, W. O., Gąbka, M., and Mitchell, E. A. D.: Contrasting Species—Environment Relationships in Communities of Testate Amoebae, Bryophytes and Vascular Plants Along the Fen–Bog Gradient, Microb. Ecol., 59, 499–510, https://doi.org/10.1007/s00248-009-9617-6, 2010.
Lamentowicz, M., Gałka, M., Lamentowicz, Ł., Obremska, M., Kühl, N., Lücke, A., and Jassey, V. E. J.: Reconstructing climate change and ombrotrophic bog development during the last 4000 years in northern Poland using biotic proxies, stable isotopes and trait-based approach, Palaeogeography, Palaeoclimatology, Palaeoecology, 418, 261–277, https://doi.org/10.1016/j.palaeo.2014.11.015, 2015.
Lamentowicz, M., Gałka, M., Marcisz, K., Słowiński, M., Kajukało-Drygalska, K., Dayras, M. D., and Jassey, V. E. J.: Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands, Biol. Lett., 15, 20190043, https://doi.org/10.1098/rsbl.2019.0043, 2019b.
Lamentowicz, M., Kołaczek, P., Mauquoy, D., Kittel, P., Łokas, E., Słowiński, M., Jassey, V. E. J., Niedziółka, K., Kajukało-Drygalska, K., and Marcisz, K.: Always on the tipping point – A search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland, Quaternary Science Reviews, 225, 105954, https://doi.org/10.1016/j.quascirev.2019.105954, 2019a.
Lamentowicz, M., Andrews, L., Czerwiński, S., and Marcisz, K.: Multi-proxy palaeoecological studies from peatlands: a comprehensive review of recent advances and future developments, Earth-Science Reviews, 271, 105278, https://doi.org/10.1016/j.earscirev.2025.105278, 2025.
Limpens, J., Tomassen, H. B. M., and Berendse, F.: Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability, Journal of Bryology, 25, 83–90, https://doi.org/10.1179/03736680235001733, 2003.
Loisel, J., Yu, Z., Beilman, D. W., Kaiser, K., and Parnikoza, I.: Peatland Ecosystem Processes in the Maritime Antarctic During Warm Climates, Sci. Rep., 7, 12344, https://doi.org/10.1038/s41598-017-12479-0, 2017.
Łuców, D., Küttim, M., Słowiński, M., Kołaczek, P., Karpińska-Kołaczek, M., Küttim, L., Salme, M., and Lamentowicz, M.: Searching for an ecological baseline: Long-term ecology of a post-extraction restored bog in Northern Estonia, Quaternary International, 607, 65–78, https://doi.org/10.1016/j.quaint.2021.08.017, 2022.
Lumbreras, A., Navarro, G., Pardo, C., and Molina, J. A.: Aquatic Ranunculus communities in the northern hemisphere: A global review, Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 145, 118–122, https://doi.org/10.1080/11263504.2011.602728, 2011.
Madeja, J. and Latowski, D.: Too Old AMS Radiocarbon Dates Obtained from Moss Remains from Lake Kwiecko Bottom Sediments (N Poland), Geochronometria, 32, 13–19, https://doi.org/10.2478/v10003-008-0029-2, 2008.
Magny, M., Bégeot, C., Guiot, J., and Peyron, O.: Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases, Quaternary Science Reviews, 22, 1589–1596, https://doi.org/10.1016/S0277-3791(03)00131-8, 2003.
Magny, M., Vannière, B., De Beaulieu, J.-L., Bégeot, C., Heiri, O., Millet, L., Peyron, O., and Walter-Simonnet, A.-V.: Early-Holocene climatic oscillations recorded by lake-level fluctuations in west-central Europe and in central Italy, Quaternary Science Reviews, 26, 1951–1964, https://doi.org/10.1016/j.quascirev.2006.04.013, 2007.
Marcisz, K., Fournier, B., Gilbert, D., Lamentowicz, M., and Mitchell, E. A. D.: Response of Sphagnum Peatland Testate Amoebae to a 1-Year Transplantation Experiment Along an Artificial Hydrological Gradient, Microb. Ecol., 67, 810–818, https://doi.org/10.1007/s00248-014-0367-8, 2014a.
Marcisz, K., Lamentowicz, Ł., Słowińska, S., Słowiński, M., Muszak, W., and Lamentowicz, M.: Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient, European Journal of Protistology, 50, 445–455, https://doi.org/10.1016/j.ejop.2014.07.001, 2014b.
Marcisz, K., Tinner, W., Colombaroli, D., Kołaczek, P., Słowiński, M., Fiałkiewicz-Kozieł, B., Łokas, E., and Lamentowicz, M.: Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive, Quaternary Science Reviews, 112, 138–152, https://doi.org/10.1016/j.quascirev.2015.01.019, 2015.
Marcisz, K., Jassey, V. E. J., Kosakyan, A., Krashevska, V., Lahr, D. J. G., Lara, E., Lamentowicz, Ł., Lamentowicz, M., Macumber, A., Mazei, Y., Mitchell, E. A. D., Nasser, N. A., Patterson, R. T., Roe, H. M., Singer, D., Tsyganov, A. N., and Fournier, B.: Testate Amoeba Functional Traits and Their Use in Paleoecology, Front. Ecol. Evol., 8, 575966, https://doi.org/10.3389/fevo.2020.575966, 2020a.
Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C., and Lamentowicz, M.: Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene, Quaternary Science Reviews, 231, 106180, https://doi.org/10.1016/j.quascirev.2020.106180, 2020b.
Margielewski, W., Krąpiec, M., Buczek, K., Szychowska-Krąpiec, E., Korzeń, K., Niska, M., Stachowicz-Rybka, R., Wojtal, A. Z., Mroczkowska, A., Obidowicz, A., Sala, D., Drzewicki, W., Barniak, J., and Urban, J.: Hydrological variability of middle European peatland during the Holocene, inferred from subfossil bog pine and bog oak dendrochronology and high-resolution peat multiproxy analysis of the Budwity peatland (northern Poland), Science of The Total Environment, 931, 172925, https://doi.org/10.1016/j.scitotenv.2024.172925, 2024.
Mauquoy, D. and van Geel, B.: Mire and Peat Macros, in: Plant Macrofossil Methods and Studies, Elsevier, 2315–2336, https://doi.org/10.1016/B0-444-52747-8/00229-5, 2007.
Mauquoy, D. and Yeloff, D.: Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change?, Biodivers. Conserv., 17, 2139–2151, https://doi.org/10.1007/s10531-007-9222-2, 2008.
Mauquoy, D., van Geel, B., Blaauw, M., and van der Plicht, J.: Evidence from northwest European bogs shows “Little Ice Age” climatic changes driven by variations in solar activity, The Holocene, 12, 1–6, https://doi.org/10.1191/0959683602hl514rr, 2002.
Mauquoy, D., Yeloff, D., van Geel, B., Charman, D. J., and Blundell, A.: Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid–late Holocene, J. Quaternary Science, 23, 745–763, https://doi.org/10.1002/jqs.1158, 2008.
Mauquoy, D., Hughes, P. D. M., and van Geel, B.: A protocol for plant macrofossil analysis of peat deposits, Mires and Peat, 7, 1–5, 2010.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J.: Holocene climate variability, Quat. Res., 62, 243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
Mazei, Y. and Tsyganov, A. N.: Freshwater testate amoebae, KMK, Moscow, ISBN 5-87317-336-2, 2006.
McKay, N. P., Kaufman, D. S., Arcusa, S. H., Kolus, H. R., Edge, D. C., Erb, M. P., Hancock, C. L., Routson, C. C., Żarczyński, M., Marshall, L. P., Roberts, G. K., and Telles, F.: The 4.2 ka event is not remarkable in the context of Holocene climate variability, Nat. Commun., 15, 6555, https://doi.org/10.1038/s41467-024-50886-w, 2024.
Meisterfeld, R.: Testate Amoebae with Filopodia, The illustrated Guide to the Protozoa, 1054–1083, ISBN 1-891276-23-9, 2000.
Meisterfeld, R.: Testate amoebae, in: Patrimoines Naturels, edited by: Costello, M. J., Emblow, C. S., and White, R., Muséum National d'Histoire Naturelle – Institut d'Ecologie et de Gestion de la Biodiversité (I. E. G. B.) – Service du Patrimoine Naturel (S. P. N.), Paris, 54–57, ISBN 978-2-85653-538-7, 2001.
Montagnes, R. J. S.: The Habitat and Distribution of Meesia triquetra in North America and Greenland, The Bryologist, 93, 349, https://doi.org/10.2307/3243526, 1990.
Moore, P. A., Didemus, B. D., Furukawa, A. K., and Waddington, J. M.: Peat depth as a control on Sphagnum moisture stress during seasonal drought, Hydrological Processes, 35, e14117, https://doi.org/10.1002/hyp.14117, 2021.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J. P.: No evidence for globally coherent warm and cold periods over the preindustrial Common Era, Nature, 571, 550–554, https://doi.org/10.1038/s41586-019-1401-2, 2019.
Noryśkiewicz, A.: Preliminary results of study on vegetation history in the Linje mire region using pollen analysis, Monographiae Botanicae, 94, 117–134, 2005.
Nungesser, M. K.: Modelling microtopography in boreal peatlands: hummocks and hollows, Ecological Modelling, 165, 175–207, https://doi.org/10.1016/S0304-3800(03)00067-X, 2003.
Ogden, C. G. and Hedley, R. H.: An Atlas of Freshwater Testate Amoebae, Oxford University Press, London, ISBN 0198585020, 1980.
Økland, K. A. and Økland, J.: Freshwater bryozoans (Bryozoa) of Norway: Distribution and ecology of Cristatella mucedo and Paludicella articulata, Hydrobiologia, 421, 1–24, https://doi.org/10.1023/A:1003917200848, 2000.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M.-H., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C. J. F., and Weedon, J.: vegan: Community Ecology Package, Comprehensive R Archive Network (CRAN), R Foundation for Statistical Computing, Vienna, Austria [code], https://doi.org/10.32614/CRAN.package.vegan, 2001.
Opravilová, V. and Hájek, M.: The Variation of Testacean Assemblages (Rhizopoda) Along the Complete Base-Richness Gradient in Fens: A Case Study from the Western Carpathians, Acta Protozool, 45, 191–204, 2006.
Pancost, R. D.: Biomarker carbon and hydrogen isotopes reveal changing peatland vegetation, hydroclimate and biogeochemical tipping points, Quaternary Science Reviews, 339, 108828, https://doi.org/10.1016/j.quascirev.2024.108828, 2024.
Payne, R. J. and Mitchell, E. A. D.: How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae, Journal of Paleolimnology, 42, 483–495, doi10.1007/s10933-008-9299-y, 2009.
Pazdur, A., Fontugne, M. R., and Pazdur, M. F.: Lateglacial and holocene water-level changes of the Gościa̧ż Lake, Central Poland, derived from carbon isotope studies of laminated sediment, Quaternary Science Reviews, 14, 125–135, https://doi.org/10.1016/0277-3791(94)00124-T, 1995.
Pędziszewska, A., Tylmann, W., Witak, M., Piotrowska, N., Maciejewska, E., and Latałowa, M.: Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland), Review of Palaeobotany and Palynology, 216, 55–75, https://doi.org/10.1016/j.revpalbo.2015.01.008, 2015.
Peters, M. E. and Higuera, P. E.: Quantifying the source area of macroscopic charcoal with a particle dispersal model, Quat. Res., 67, 304–310, https://doi.org/10.1016/j.yqres.2006.10.004, 2007.
Piilo, S. R., Väliranta, M. M., Amesbury, M. J., Aquino-López, M. A., Charman, D. J., Gallego-Sala, A., Garneau, M., Koroleva, N., Kärppä, M., Laine, A. M., Sannel, A. B. K., Tuittila, E., and Zhang, H.: Consistent centennial-scale change in European sub-Arctic peatland vegetation toward Sphagnum dominance—Implications for carbon sink capacity, Global Change Biology, 29, 1530–1544, https://doi.org/10.1111/gcb.16554, 2023.
Piilo, S. R., Kuoppamaa, M., Tahvanainen, T., Kumpula, T., Kuosmanen, N., Macias-Fauria, M., and Väliranta, M.: Drastic peatland regime shift and landscape disturbances connected to warm and cold climate events over the past centuries in subarctic Finland, Boreas, bor.70017, https://doi.org/10.1111/bor.70017, 2025.
Pisaric, M. F. J.: Long-distance transport of terrestrial plant material by convection resulting from forest fires, Journal of Paleolimnology, 28, 349–354, https://doi.org/10.1023/A:1021630017078, 2002.
Poolma, E., Marcisz, K., and Fiutek, P.: Plant macrofossil and testate-amoebae analysis for Linje peatland, Mendeley Data [data set], https://doi.org/10.17632/5f6565fdht.1, 2025.
Preislerová, Z., Marcenò, C., Loidi, J., Bonari, G., Borovyk, D., Gavilán, R. G., Golub, V., Terzi, M., Theurillat, J., Argagnon, O., Bioret, F., Biurrun, I., Campos, J. A., Capelo, J., Čarni, A., Çoban, S., Csiky, J., Ćuk, M., Ćušterevska, R., Dengler, J., Didukh, Y., Dítě, D., Fanelli, G., Fernández-González, F., Guarino, R., Hájek, O., Iakushenko, D., Iemelianova, S., Jansen, F., Jašková, A., Jiroušek, M., Kalníková, V., Kavgacı, A., Kuzemko, A., Landucci, F., Lososová, Z., Milanović, Đ., Molina, J. A., Monteiro-Henriques, T., Mucina, L., Novák, P., Nowak, A., Pätsch, R., Perrin, G., Peterka, T., Rašomavičius, V., Reczyńska, K., Rūsiòa, S., Mata, D. S., Guerra, A. S., Šibík, J., Škvorc, Ž., Stešević, D., Stupar, V., Świerkosz, K., Tzonev, R., Vassilev, K., Vynokurov, D., Willner, W., and Chytrý, M.: Structural, ecological and biogeographical attributes of European vegetation alliances, Applied Vegetation Science, 27, e12766, https://doi.org/10.1111/avsc.12766, 2024.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 27 October 2025), 2024.
Ralska-Jasiewiczowa, M. (Ed.): Lake Gościąż, Central Poland: A Monographic Study, W. Szafer Institute of Botany, Polish Academy of Sciences, ISBN 83-85444-64-5, 1998.
Reczuga, M. K., Lamentowicz, M., Mulot, M., Mitchell, E. A. D., Buttler, A., Chojnicki, B., Słowiński, M., Binet, P., Chiapusio, G., Gilbert, D., Słowińska, S., and Jassey, V. E. J.: Predator–prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands, Ecology and Evolution, 8, 5752–5764, https://doi.org/10.1002/ece3.4114, 2018.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Van Der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Roland, T. P., Caseldine, C. J., Charman, D. J., Turney, C. S. M., and Amesbury, M. J.: Was there a “4.2 ka event” in Great Britain and Ireland? Evidence from the peatland record, Quaternary Science Reviews, 83, 11–27, https://doi.org/10.1016/j.quascirev.2013.10.024, 2014.
Ronkainen, T., McClymont, E. L., Tuittila, E.-S., and Väliranta, M.: Plant macrofossil and biomarker evidence of fen–bog transition and associated changes in vegetation in two Finnish peatlands, The Holocene, 24, 828–841, https://doi.org/10.1177/0959683614530442, 2014.
Rundgren, M., Kokfelt, U., Schoning, K., and Wastegård, S.: Holocene wet shifts in NW European bogs: evidence for the roles of external forcing and internal feedback from a high-resolution study of peat properties, plant macrofossils and testate amoebae, J. Quaternary Science, 38, 423–439, https://doi.org/10.1002/jqs.3485, 2023.
Ruppel, M., Väliranta, M., Virtanen, T., and Korhola, A.: Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe, The Holocene, 23, 1596–1606, https://doi.org/10.1177/0959683613499053, 2013.
Rydin, H., Gunnarsson, U., and Sundberg, S.: The Role of Sphagnum in Peatland Development and Persistence, in: Boreal Peatland Ecosystems, vol. 188, edited by: Wieder, R. K. and Vitt, D. H., Springer, Berlin, Heidelberg, 47–65, https://doi.org/10.1007/978-3-540-31913-9_4, 2006.
Samson, M., Słowińska, S., Słowiński, M., Lamentowicz, M., Barabach, J., Harenda, K., Zielińska, M., Robroek, B. J. M., Jassey, V. E. J., Buttler, A., and Chojnicki, B. H.: The Impact of Experimental Temperature and Water Level Manipulation on Carbon Dioxide Release in a Poor Fen in Northern Poland, Wetlands, 38, 551–563, https://doi.org/10.1007/s13157-018-0999-4, 2018.
Seppä, H. and Birks, H. J. B.: July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions, The Holocene, 11, 527–539, https://doi.org/10.1191/095968301680223486, 2001.
Seppä, H., Birks, H. J. B., Giesecke, T., Hammarlund, D., Alenius, T., Antonsson, K., Bjune, A. E., Heikkilä, M., MacDonald, G. M., Ojala, A. E. K., Telford, R. J., and Veski, S.: Spatial structure of the 8200 cal yr BP event in northern Europe, Clim. Past, 3, 225–236, https://doi.org/10.5194/cp-3-225-2007, 2007.
Seppä, H., Bjune, A. E., Telford, R. J., Birks, H. J. B., and Veski, S.: Last nine-thousand years of temperature variability in Northern Europe, Clim. Past, 5, 523–535, https://doi.org/10.5194/cp-5-523-2009, 2009.
Siemensma, F. J.: Microworld, world of amoeboid organisms, World-wide electronic publication, Kortenhoef, the Netherlands, https://www.arcella.nl (last access: 27 October 2025), 2024.
Sillasoo, U., Mauquoy, D., Blundell, A., Charman, D., Blaauw, M., Daniell, J. R. G., Toms, P., Newberry, J., Chambers, F. M., and Karofeld, E.: Peat multi-proxy data from Männikjärve bog as indicators of late Holocene climate changes in Estonia, Boreas, 36, 20–37, https://doi.org/10.1111/j.1502-3885.2007.tb01177.x, 2007.
Sim, T. G., Swindles, G. T., Morris, P. J., Baird, A. J., Charman, D. J., Amesbury, M. J., Beilman, D., Channon, A., and Gallego-Sala, A. V.: Ecology of peatland testate amoebae in Svalbard and the development of transfer functions for reconstructing past water-table depth and pH, Ecological Indicators, 131, 108122, https://doi.org/10.1016/j.ecolind.2021.108122, 2021a.
Sim, T. G., Swindles, G. T., Morris, P. J., Baird, A. J., Cooper, C. L., Gallego-Sala, A. V., Charman, D. J., Roland, T. P., Borken, W., Mullan, D. J., Aquino-López, M. A., and Gałka, M.: Divergent responses of permafrost peatlands to recent climate change, Environ. Res. Lett., 16, 034001, https://doi.org/10.1088/1748-9326/abe00b, 2021b.
Sim, T. G., Swindles, G. T., Morris, P. J., Baird, A. J., Gallego-Sala, A. V., Wang, Y., Blaauw, M., Camill, P., Garneau, M., Hardiman, M., Loisel, J., Väliranta, M., Anderson, L., Apolinarska, K., Augustijns, F., Aunina, L., Beaulne, J., Bobek, P., Borken, W., Broothaerts, N., Cui, Q.-Y., Davies, M. A., Ejarque, A., Farrell, M., Feeser, I., Feurdean, A., Fewster, R. E., Finkelstein, S. A., Gaillard, M.-J., Gałka, M., Heffernan, L., Hoevers, R., Jones, M., Juselius-Rajamäki, T., Karofeld, E., Knorr, K.-H., Korhola, A., Kupriyanov, D., Kylander, M. E., Lacourse, T., Lamentowicz, M., Lavoie, M., Lemdahl, G., Łuców, D., Magnan, G., Maksims, A., Mansilla, C. A., Marcisz, K., Marinova, E., Mathijssen, P. J. H., Mauquoy, D., Mazei, Y. A., Mazei, N., McCarroll, J., McCulloch, R. D., Milner, A. M., Miras, Y., Mitchell, F. J. G., Novenko, E., Pelletier, N., Peros, M. C., Piilo, S. R., Pilote, L.-M., Primeau, G., Rius, D., Robin, V., Robitaille, M., Roland, T. P., Ryberg, E., Sannel, A. B. K., Schittek, K., Servera-Vives, G., Shotyk, W., Słowiński, M., Stivrins, N., Swinnen, W., Thompson, G., Tiunov, A., Tsyganov, A. N., Tuittila, E.-S., Verstraeten, G., Wallenius, T., Webb, J., Willard, D., Yu, Z., Zaccone, C., and Zhang, H.: Regional variability in peatland burning at mid-to high-latitudes during the Holocene, Quaternary Science Reviews, 305, 108020, https://doi.org/10.1016/j.quascirev.2023.108020, 2023.
Słowińska, S., Słowiński, M., and Lamentowicz, M.: Relationships between Local Climate and Hydrology in Sphagnum Mire: Implications for Palaeohydrological Studies and Ecosystem Management, Polish Journal of Environmental Studies, 4, 779–787, 2010.
Słowińska, S., Słowiński, M., Marcisz, K., and Lamentowicz, M.: Long-term microclimate study of a peatland in Central Europe to understand microrefugia, Int. J. Biometeorol., 66, 817–832, https://doi.org/10.1007/s00484-022-02240-2, 2022.
Słowiński, M.: Macrofossil reconstruction of preboreal wetland formed on dead ice block: a case study of the Borzechowo mire in East Pomerania, Poland, Studia Quaternaria, 27, 3–10, 2010.
Słowiński, M., Błaszkiewicz, M., Brauer, A., Noryśkiewicz, B., Ott, F., and Tyszkowski, S.: The role of melting dead ice on landscape transformation in the early Holocene in Tuchola Pinewoods, North Poland, Quaternary International, 388, 64–75, https://doi.org/10.1016/j.quaint.2014.06.018, 2015.
Słowiński, M., Marcisz, K., Płóciennik, M., Obremska, M., Pawłowski, D., Okupny, D., Słowińska, S., Borówka, R., Kittel, P., Forysiak, J., Michczyńska, D. J., and Lamentowicz, M.: Drought as a stress driver of ecological changes in peatland – A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland, Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 272–291, https://doi.org/10.1016/j.palaeo.2016.08.038, 2016.
Słowiński, M., Zawiska, I., Ott, F., Noryśkiewicz, A. M., Plessen, B., Apolinarska, K., Rzodkiewicz, M., Michczyńska, D. J., Wulf, S., Skubała, P., Kordowski, J., Błaszkiewicz, M., and Brauer, A.: Differential proxy responses to late Allerød and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland, Quaternary Science Reviews, 158, 94–106, https://doi.org/10.1016/j.quascirev.2017.01.005, 2017.
Stastney, P. and Black, S.: Bog Microtopography and the Climatic Sensitivity of Testate Amoeba Communities: Implications for Transfer Function-Based Paleo-Water Table Reconstructions, Microb. Ecol., 80, 309–321, https://doi.org/10.1007/s00248-020-01499-5, 2020.
Stivrins, N.: Climate change impact on peatland dynamics during the Holocene in Latvia, Northeastern Europe, Catena, 254, https://doi.org/10.1016/j.catena.2025.108965, 2025.
Succow, M. and Joonsten, H. (Eds.): Landschaftsökologische Moorkunde, Schweizerbart Science Publishers, Stuttgart, Germany, ISBN 978-3-510-65198-6, 2012.
Swindles, G. T., Blundell, A., Roe, H. M., and Hall, V. A.: A 4500 year proxy climate record from peatlands in the North of Ireland: the identification of widespread summer “drought phases”?, Quaternary Science Reviews, 29, 1577–1589, https://doi.org/10.1016/j.quascirev.2009.01.003, 2010.
Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M., and Plunkett, G.: Ecohydrological feedbacks confound peat-based climate reconstructions, Geophysical Research Letters, 39, 2012GL051500, https://doi.org/10.1029/2012GL051500, 2012.
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. P., Amesbury, M. J., Lamentowicz, M., Turner, T. E., Gallego-Sala, A., Sim, T., Barr, I. D., Blaauw, M., Blundell, A., Chambers, F. M., Charman, D. J., Feurdean, A., Galloway, J. M., Gałka, M., Green, S. M., Kajukało, K., Karofeld, E., Korhola, A., Lamentowicz, Ł., Langdon, P., Marcisz, K., Mauquoy, D., Mazei, Y. A., McKeown, M. M., Mitchell, E. A. D., Novenko, E., Plunkett, G., Roe, H. M., Schoning, K., Sillasoo, Ü., Tsyganov, A. N., van der Linden, M., Väliranta, M., and Warner, B.: Widespread drying of European peatlands in recent centuries, Nat. Geosci., 12, 922–928, https://doi.org/10.1038/s41561-019-0462-z, 2019.
Swindles, G. T., Roland, T. P., Amesbury, M. J., Lamentowicz, M., McKeown, M. M., Sim, T. G., Fewster, R. E., and Mitchell, E. A. D.: Quantifying the effect of testate amoeba decomposition on peat-based water-table reconstructions, European Journal of Protistology, 74, 125693, https://doi.org/10.1016/j.ejop.2020.125693, 2020.
Swindles, G. T., Mullan, D. J., Brannigan, N. T., Fewster, R. E., Sim, T. G., Gallego-Sala, A., Blaauw, M., Lamentowicz, M., Jassey, V. E. J., Marcisz, K., Green, S. M., Roland, T. P., Loisel, J., Amesbury, M. J., Blundell, A., Chambers, F. M., Charman, D. J., Evans, C. R. C., Feurdean, A., Galloway, J. M., Gałka, M., Karofeld, E., Keaveney, E. M., Korhola, A., Lamentowicz, Ł., Langdon, P., Mauquoy, D., McKeown, M. M., Mitchell, E. A. D., Plunkett, G., Roe, H. M., Turner, T. E., Sillasoo, Ü., Väliranta, M., van der Linden, M., and Warner, B.: Climate and water-table levels regulate peat accumulation rates across Europe, PLoS One, 20, e0327422, https://doi.org/10.1371/journal.pone.0327422, 2025.
Szambelan, W., Niebieszczański, J., Karpińska-Kołaczek, M., Lamentowicz, M., Marcisz, K., Leszczyńska, K., Poolma, E., Amon, L., Veski, S., and Kołaczek, P.: Tracing the environmental footprint of a Lusatian Urnfield culture stronghold in northern Poland, Journal of Archaeological Science: Reports, 67, 105408, https://doi.org/10.1016/j.jasrep.2025.105408, 2025.
Tallis, J. H. and Birks, H. J. B.: The Past and Present Distribution of Scheuchzeria Palustris L. in Europe, The Journal of Ecology, 53, 287, https://doi.org/10.2307/2257976, 1965.
Theurer, T., Mauquoy, D., Hadden, R., Muirhead, D., Campbell-Lochrie, Z., Córdoba, S. V., Von Scheffer, C., and Coathup, D. T.: A novel proxy for energy flux in multi-era wildfire reconstruction, Sci. Rep., 14, 26409, https://doi.org/10.1038/s41598-024-78219-3, 2024.
Timmermann, T.: Sphagnum-Moore in Nordostbrandenburg: stratigraphisch-hydrodynamische Typisierung und Vegetationswandel seit 1923, PhD thesis, Technischen Univesität Berlin, ISBN 978-3-443-64217-4, 1998.
Timmermann, T.: Hydrologische Dynamik von Kesselmooren und ihre Bedeutung für die Gehölzentwicklung, Telma, 33, 85–107, 2003.
Timmermann, T.: Wasserstandsschwankungen und Vegetationsdynamik in Kesselmooren: interne und externe Faktoren., in: Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen, edited by: Kaiser, K., Libra, J., Merz, B., Bens, O., and Hüttl, R. F., Scientific Technical Report 10/10, Deutsches GeoForschungsZentrum, 218–223, https://doi.org/10.2312/GFZ.b103-10106, 2010.
Timmermann, T. and Succow, M.: Kesselmoore, Landschaftsökologische Moorkunde, 379–390, ISBN 9783510654543, 2001.
Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T., Zimmermann, L., and Zweifel, R.: Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps – implications for fire history reconstruction, The Holocene, 16, 287–292, https://doi.org/10.1191/0959683606hl925rr, 2006.
Tomlinson, P.: An aid to the identification of fossil buds, bud-scales and catkin-scales of British trees and shrubs, Circaea. Association for Environmental Archaeology, 3, 45–130, 1985.
Turetsky, M. R., Weston, D. J., Cox, W. D., Petro, C., and Shaw, A. J.: The challenging but unique eco-evolutionary aspects of Sphagnum moss, New Phytologist, 247, 1608–1621, https://doi.org/10.1111/nph.70233, 2025.
Turner, T. E., Swindles, G. T., and Roucoux, K. H.: Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change, Quaternary Science Reviews, 84, 65–85, https://doi.org/10.1016/j.quascirev.2013.10.030, 2014.
United Nations Environment Programme: Global Peatlands Assessment: The State of the World's Peatlands – Evidence for Action toward the Conservation, Restoration, and Sustainable Management of Peatlands, United Nations Environment Programme, https://doi.org/10.59117/20.500.11822/41222, 2022.
Väliranta, M., Korhola, A., Seppä, H., Tuittila, E.-S., Sarmaja-Korjonen, K., Laine, J., and Alm, J.: High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach, The Holocene, 17, 1093–1107, https://doi.org/10.1177/0959683607082550, 2007.
Väliranta, M., Blundell, A., Charman, D. J., Karofeld, E., Korhola, A., Sillasoo, Ü., and Tuittila, E.-S.: Reconstructing peatland water tables using transfer functions for plant macrofossils and testate amoebae: A methodological comparison, Quaternary International, 268, 34–43, https://doi.org/10.1016/j.quaint.2011.05.024, 2012.
Väliranta, M., Salonen, J. S., Heikkilä, M., Amon, L., Helmens, K., Klimaschewski, A., Kuhry, P., Kultti, S., Poska, A., Shala, S., Veski, S., and Birks, H. H.: Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe, Nat. Commun., 6, 6809, https://doi.org/10.1038/ncomms7809, 2015.
van Breemen, N.: How Sphagnum bogs down other plants, TREE, 10, 270–275, https://doi.org/10.1016/0169-5347(95)90007-1, 1995.
van der Linden, M. and van Geel, B.: Late Holocene climate change and human impact recorded in a south Swedish ombrotrophic peat bog, Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 649–667, https://doi.org/10.1016/j.palaeo.2006.03.039, 2006.
Verhoeven, J. T. A.: Wetlands in Europe: Perspectives for restoration of a lost paradise, Ecological Engineering, 66, 6–9, https://doi.org/10.1016/j.ecoleng.2013.03.006, 2014.
Veski, S., Seppä, H., and Ojala, A. E. K.: Cold event at 8200 yr B. P. recorded in annually laminated lake sediments in eastern Europe, Geol., 32, 681, https://doi.org/10.1130/G20683.1, 2004.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quaternary Science Reviews, 30, 3109–3123, https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S. P.: Holocene climate variability and change; a data-based review, JGS, 172, 254–263, https://doi.org/10.1144/jgs2013-101, 2015.
Yan, M. and Liu, J.: Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations, Clim. Past, 15, 265–277, https://doi.org/10.5194/cp-15-265-2019, 2019.
Zander, P. D., Żarczyński, M., Tylmann, W., Vogel, H., and Grosjean, M.: Subdecadal Holocene Warm-Season Temperature Variability in Central Europe Recorded by Biochemical Varves, Geophysical Research Letters, 51, e2024GL110871, https://doi.org/10.1029/2024GL110871, 2024a.
Żurek, S.: Abiotic natural environment in the area of selected raised mires, Monographiae Botanicae, 94, 19–36, 2005.
Short summary
We studied a peatland in northern Poland to see how climate and natural ecosystem changes shaped it over the past 11,500 years. By analysing preserved plants and microscopic life, we found clear shifts in wetness linked to climate and internal development. This longest complete peat record in the region shows how peatlands help us understand long-term environmental change and their future resilience to climate change.
We studied a peatland in northern Poland to see how climate and natural ecosystem changes shaped...