Articles | Volume 21, issue 10
https://doi.org/10.5194/cp-21-1779-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-1779-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chironomid- and pollen-based quantitative climate reconstructions for the post-Holsteinian (MIS 11b) in Central Europe
Tomasz Polkowski
CORRESPONDING AUTHOR
Institute of Geography and Spatial Organization Polish Academy of Sciences, Warsaw, 00-818, Poland
Agnieszka Gruszczyńska
Institute of Geography and Spatial Organization Polish Academy of Sciences, Warsaw, 00-818, Poland
Faculty of Physics and Earth System Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
Bartosz Kotrys
Polish Geological Institute – National Research Institute, Szczecin, 71-130, Poland
Artur Górecki
Institute of Botany, Jagiellonian University, Cracow, 30-387, Poland
Anna Hrynowiecka
Polish Geological Institute – National Research Institute, Gdańsk, 80-328, Poland
Marcin Żarski
Polish Geological Institute – National Research Institute, Warsaw, 00-975, Poland
Mirosław Błaszkiewicz
Institute of Geography and Spatial Organization Polish Academy of Sciences, Warsaw, 00-818, Poland
Jerzy Nitychoruk
Pope John Paul II State School of Higher Education, Biała Podlaska, 21-500, Poland
Monika Czajkowska
Institute of Geography and Spatial Organization Polish Academy of Sciences, Warsaw, 00-818, Poland
Stefan Lauterbach
Institute of Geography and Spatial Organization Polish Academy of Sciences, Warsaw, 00-818, Poland
GFZ Helmholtz Centre for Geosciences, Section 4.6 – Geomorphology, Working Group Terrestrial Climate Archives, 14473 Potsdam, Germany
Michał Słowiński
Institute of Geography and Spatial Organization Polish Academy of Sciences, Warsaw, 00-818, Poland
Related authors
No articles found.
Luke Oliver Andrews, Katarzyna Marcisz, Piotr Kołaczek, Leeli Amon, Siim Veski, Atko Heinsalu, Normunds Stivrins, Mariusz Bąk, Marco A. Aquino-Lopez, Anna Cwanek, Edyta Łokas, Monika Karpińska-Kołaczek, Sambor Czerwiński, Michał Słowiński, and Mariusz Lamentowicz
Biogeosciences, 22, 5849–5875, https://doi.org/10.5194/bg-22-5849-2025, https://doi.org/10.5194/bg-22-5849-2025, 2025
Short summary
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following substantial as well as small but sustained increases in alkalinity. Limited recovery was evident ~30 years post-pollution.
Agnieszka Halaś, Mariusz Lamentowicz, Milena Obremska, Dominika Łuców, and Michał Słowiński
Biogeosciences, 22, 4797–4822, https://doi.org/10.5194/bg-22-4797-2025, https://doi.org/10.5194/bg-22-4797-2025, 2025
Short summary
Short summary
Western Siberian peatlands regulate global climate, but their response to permafrost thaw remains poorly studied. Our study analyzed peat cores from a peat plateau and a lake edge to track changes over two centuries. We found that permafrost thawing, driven by rising temperatures, altered peatland hydrology, vegetation, and microbial life. These shifts may expand with further warming, affecting carbon storage and climate feedbacks. Our findings highlight early warning signs of ecosystem change.
Ewa Zin, Tomasz Związek, Marcin Klisz, Sandra Słowińska, Dominik Róg, Milena Obremska, Dominika Łuców, Jarosław Pietruczuk, Joachim Popek, Katarzyna Piotrowicz, Kamil Pilch, Krzysztof Szewczyk, Agnieszka Halaś, and Michał Słowiński
EGUsphere, https://doi.org/10.5194/egusphere-2025-3975, https://doi.org/10.5194/egusphere-2025-3975, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used a multi-proxy approach combining peat, tree ring, climate, and historical records to reconstruct >2,300 years of peatland dynamics in a Central European region. Results show a human-induced shift from alder to pine forest due to land use change and acidification, stressing the importance of long-term records for peatland conservation.
Eliise Poolma, Katarzyna Marcisz, Leeli Amon, Patryk Fiutek, Piotr Kołaczek, Karolina Leszczyńska, Dmitri Mauquoy, Michał Słowiński, Siim Veski, Friederike Wagner-Cremer, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2087, https://doi.org/10.5194/egusphere-2025-2087, 2025
Short summary
Short summary
We studied a peatland in northern Poland to see how climate and natural ecosystem changes shaped it over the past 11,500 years. By analysing preserved plants and microscopic life, we found clear shifts in wetness linked to climate and internal development. This longest complete peat record in the region shows how peatlands help us understand long-term environmental change and their future resilience to climate change.
Cited articles
Allen, A. P., Whittier, T. R., Kaufmann, P. R., Larsen, D. P., O'Connor, R. J., Hughes, R. M., Stemberger, R. S., Dixit, S. S., Brinkhurst, R. O., Herlihy, A. T., and Paulsen, S. G.: Concordance of taxonomic richness patterns across multiple assemblages in lakes of the northeastern United States, Can. J. Fish. Aquat. Sci., 56, 739–747, 1999.
Andersen, T., Sæther, O., Cranston, P., and Epler, J.: 9. The larvae of Orthocladiinae (Diptera: Chironomidae) of the Holarctic Region – Keys and diagnoses, in: The larvae of Chironomidae (Diptera) of the Holarctic region – Keys and diagnoses, edited by: Andersen, T., Cranston, P. S., and Epler J. H., Insect Syst. Evol. Suppl., 66, 189–386, 2013.
Andreev, A. A., Grosse, G., Schirrmeister, L., Kuzmina, S. A., Novenko, E. Yu., Bobrov, A. A., Tarasov, P. E., Ilyashuk, B. P., Kuznetsova, T. V., Krbetschek, M., Meyer, H., and Kunitsky, V. V.: Late Saalian and Eemian palaeoenvironmental history of the Bol'shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia), Boreas, 33, 319–348, https://doi.org/10.1111/j.1502-3885.2004.tb01244.x, 2004.
Ardenghi, N., Mulch, A., Koutsodendris, A., Pross, J., Kahmen, A., and Niedermeyer, E. M.: Temperature and moisture variability in the eastern Mediterranean region during Marine Isotope Stages 11–10 based on biomarker analysis of the Tenaghi Philippon peat deposit, Quat. Sci. Rev., 225, 105977, https://doi.org/10.1016/j.quascirev.2019.105977, 2019.
Atkinson, T. C., Briffa, K. R., and Coope, G. R.: Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains, Nature, 325, 587–592, https://doi.org/10.1038/325587a0, 1987.
Bailey, J. V., Cohen, A. S., and Kring, D. A.: Lacustrine Fossil Preservation in Acidic Environments: Implications of Experimental and Field Studies for the Cretaceous–Paleogene Boundary Acid Rain Trauma, Palaios, 20, 376–389, https://doi.org/10.2110/palo.2003.p03-88, 2005.
Battarbee, R. W.: Palaeolimnological approaches to climate change, with special regard to the biological record, Quat. Sci. Rev., 19, 107–124, 2000.
Bedford, A., Jones, Richard. T., Lang, B., Brooks, S., and Marshall, J. D.: A Late-glacial chironomid record from Hawes Water, northwest England, J. Quat. Sci., 19, 281–290, https://doi.org/10.1002/jqs.836, 2004.
Benham, S., Durrant, T., Caudullo, G., and de Rigo, D.:TTaxus baccata in Europe: distribution, habitat, usage and threats, Eur. Atlas For. Tree Species, e015921, 2016.
Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen analysis and pollen diagrams, Handb. Holocene Palaeoecol. Palaeohydrology, 455, 484–486, 1986.
Beug, H.-J.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, G. Fischer, https://cir.nii.ac.jp/crid/19711493848636326 (last access: October 2025), 1961.
Bińka, K., Szymanek, M., and Nitychoruk, J.: Climate and vegetation changes recorded in the post Holsteinian lake deposits at Ossówka (eastern Poland), Acta Geol. Pol., 341–354, 2023.
Blindow, I.: Decline of charophytes during eutrophication: comparison with angiosperms, Freshw. Biol., 28, 9–14, https://doi.org/10.1111/j.1365-2427.1992.tb00557.x, 1992.
Bolland, A., Kern, O. A., Allstädt, F. J., Peteet, D., Koutsodendris, A., Pross, J., and Heiri, O.: Summer temperatures during the last glaciation (MIS 5c to MIS 3) inferred from a 50,000-year chironomid record from Füramoos, southern Germany, Quat. Sci. Rev., 264, 107008, https://doi.org/10.1016/j.quascirev.2021.107008, 2021.
Boubee, J. A. T.: Past and present benthic fauna of Lake Maratoto with special reference to the chironomidae, The University of Waikato, https://hdl.handle.net/10289/12748 (last access: October 2025), 1983.
Briggs, D. E. G. and Kear, A. J.: Fossilization of Soft Tissue in the Laboratory, Science, 259, 1439–1442, https://doi.org/10.1126/science.259.5100.1439, 1993.
Brodersen, K. P. and Lindegaard, C.: Classification, assessment and trophic reconstruction of Danish lakes using chironomids, Freshw. Biol., 42, 143–157, https://doi.org/10.1046/j.1365-2427.1999.00457.x, 1999a.
Brodersen, K. P. and Lindegaard, C.: Mass occurance and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish lakes. Neo- and palaeolimnological records, J. Paleolimnol., 22, 41–52, https://doi.org/10.1023/A:1008032619776, 1999b.
Brondizio, E. S., O'Brien, K., Bai, X., Biermann, F., Steffen, W., Berkhout, F., Cudennec, C., Lemos, M. C., Wolfe, A., Palma-Oliveira, J., and Chen, C.-T. A.: Re-conceptualizing the Anthropocene: A call for collaboration, Glob. Environ. Change, 39, 318–327, https://doi.org/10.1016/j.gloenvcha.2016.02.006, 2016.
Brooks, S. J.: Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region, Quat. Sci. Rev., 25, 1894–1910, https://doi.org/10.1016/j.quascirev.2005.03.021, 2006.
Brooks, S. J., Langdon, P. G., and Heiri, O.: The identification and use of Palaearctic Chironomidae larvae in palaeoecology, Quat. Res. Assoc. Tech. Guide, i–vi, 1, 2007.
Brundin, L.: Chironomiden und andere bodentiere der südschwedischen urgebirgsseen : Ein beitrag zur kenntnis der bodenfaunistischen charakterzüge schwedischer oligotropher seen, Fiskeristyrelsen, https://urn.kb.se/resolve?urn=urn:nbn:se:havochvatten:diva-403 (last access: October 2025), 1949.
Butler, M. G.: A 7-year life cycle for two Chironomus species in arctic Alaskan tundra ponds (Diptera: Chironomidae), Can. J. Zool., 60, 58–70, https://doi.org/10.1139/z82-008, 1982.
Camarero, J. J., Sánchez-Salguero, R., Sangüesa-Barreda, G., Lechuga, V., Viñegla, B., Seco, J. I., Taïqui, L., Carreira, J. A., and Linares, J. C.: Reply to the letter to editor regarding Camarero et al. (2021): Overgrazing and pollarding threaten Atlas cedar conservation under forecasted aridification regardless stakeholders' nature, For. Ecol. Manag., 503, 119779, https://doi.org/10.1016/j.foreco.2021.119779, 2022.
Candy, I., Schreve, D. C., Sherriff, J., and Tye, G. J.: Marine Isotope Stage 11: Palaeoclimates, palaeoenvironments and its role as an analogue for the current interglacial, Earth-Sci. Rev., 128, 18–51, https://doi.org/10.1016/j.earscirev.2013.09.006, 2014.
Charlton, M. N.: Hypolimnion Oxygen Consumption in Lakes: Discussion of Productivity and Morphometry Effects, Can. J. Fish. Aquat. Sci., 37, 1531–1539, https://doi.org/10.1139/f80-198, 1980.
Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate reconstruction techniques for late Quaternary studies, Earth-Sci. Rev., 210, 103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
Cornette, R., Gusev, O., Nakahara, Y., Shimura, S., Kikawada, T., and Okuda, T.: Chironomid Midges (Diptera, Chironomidae) Show Extremely Small Genome Sizes, Zoolog. Sci., 32, 248–254, https://doi.org/10.2108/zs140166, 2015.
Danks, H. V.: Overwintering of some north temperate and arctic chironomidae: II. Chironomid biology, Can. Entomol., 103, 1875–1910, https://doi.org/10.4039/Ent1031875-12, 1971.
Davis, S., Golladay, S. W., Vellidis, G., and Pringle, C. M.: Macroinvertebrate Biomonitoring in Intermittent Coastal Plain Streams Impacted by Animal Agriculture, J. Environ. Qual., 32, 1036–1043, https://doi.org/10.2134/jeq2003.1036, 2003.
Del Wayne, R. N., Herrmann, S. J., Sublette, J. E., Melnykov, I. V., Helland, L. K., Romine, J. A., Carsella, J. S., Herrmann-Hoesing, L. M., Turner, J. A., and Heuvel, B. D. V.: Occurrence of Chironomid Species (Diptera: Chironomidae) in the High Se-78 Concentrations and High pH of Fountain Creek Watershed, Colorado, USA, West. North Am. Nat., 78, 39–64, https://doi.org/10.3398/064.078.0106, 2018.
de Vernal, A. and Hillaire-Marcel, C.: Natural Variability of Greenland Climate, Vegetation, and Ice Volume During the Past Million Years, Science, 320, 1622–1625, https://doi.org/10.1126/science.1153929, 2008.
Donato, M. and Paggi, A. C.: Polypedilum parthenogeneticum (Diptera: Chironomidae): a new parthenogenetic species from Eryngium L. (Apiaceae) phytotelmata, Aquat. Insects, 30, 51–60, https://doi.org/10.1080/01650420701829633, 2008.
Drozd, M. and Trzepla, M.: Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000, Arkusz Kock (676), https://bazadata.pgi.gov.pl/data/smgp/arkusze_txt/smgp0676.pdf (last access: October 2025), 2007.
Druzhinina, O., Kublitskiy, Y., Stančikaitė, M., Nazarova, L., Syrykh, L., Gedminienė, L., Uogintas, D., Skipityte, R., Arslanov, K., Vaikutienė, G., Kulkova, M., and Subetto, D.: The Late Pleistocene–Early Holocene palaeoenvironmental evolution in the SE Baltic region: a new approach based on chironomid, geochemical and isotopic data from Kamyshovoye Lake, Russia, Boreas, 49, 544–561, https://doi.org/10.1111/bor.12438, 2020.
Dumayne-Peaty, L.: Human Impact on the Environment during the Iron Age and Romano-British Times: Palynological Evidence from Three Sites near the Antonine Wall, Great Britain, J. Archaeol. Sci., 25, 203–214, https://doi.org/10.1006/jasc.1997.0205, 1998.
Eggermont, H. and Heiri, O.: The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications, Biol. Rev., 87, 430–456, https://doi.org/10.1111/j.1469-185X.2011.00206.x, 2012.
Engels, S., Bohncke, S. J. P., Bos, J. A. A., Brooks, S. J., Heiri, O., and Helmens, K. F.: Chironomid-based palaeotemperature estimates for northeast Finland during Oxygen Isotope Stage 3, J. Paleolimnol., 40, 49–61, https://doi.org/10.1007/s10933-007-9133-y, 2008.
Erdtman, G.: Pollen walls and angiosperm phylo-geny., Bot. Not., 113, 41–45, https://doi.org/10.5555/19601603471, 1960.
Fawcett, P. J., Werne, J. P., Anderson, R. S., Heikoop, J. M., Brown, E. T., Berke, M. A., Smith, S. J., Goff, F., Donohoo-Hurley, L., Cisneros-Dozal, L. M., Schouten, S., Sinninghe Damsté, J. S., Huang, Y., Toney, J., Fessenden, J., WoldeGabriel, G., Atudorei, V., Geissman, J. W., and Allen, C. D.: Extended megadroughts in the southwestern United States during Pleistocene interglacials, Nature, 470, 518–521, https://doi.org/10.1038/nature09839, 2011.
Fernández Arias, S., Förster, M. W., and Sirocko, F.: Rieden tephra layers in the Dottinger Maar lake sediments: Implications for the dating of the Holsteinian interglacial and Elsterian glacial, Glob. Planet. Change, 227, 104143, https://doi.org/10.1016/j.gloplacha.2023.104143, 2023.
Fjellberg, A.: Present and late Weichselian occurrence of Corynocera ambigua Zett.(Dipt., Chironomidae) in Norway, Entomol Tidsskr, 19, 59–61, http://www.entomologi.no/journals/nje/old/V19/NET_19_01_1972.pdf (last access: October 2025), 1972.
Forsberg, C.: Nutritional Studies of Chara in Axenic Cultures, Physiol. Plant., 18, 275–290, https://doi.org/10.1111/j.1399-3054.1965.tb06890.x, 1965.
Foster, G. L. and Rae, J. W. B.: Reconstructing Ocean pH with Boron Isotopes in Foraminifera, Annu. Rev. Earth Planet. Sci., 44, 207–237, https://doi.org/10.1146/annurev-earth-060115-012226, 2016.
Gandouin, E., Ponel, P., Andrieu-Ponel, V., Franquet, É., Beaulieu, J.-L. de, Reille, M., Guiter, F., Brulhet, J., Lallier-Vergès, É., Keravis, D., Grafenstein, U. von, and Veres, D.: Past environment and climate changes at the last Interglacial/Glacial transition (Les Échets, France) inferred from subfossil chironomids (Insecta), Comptes Rendus Géoscience, 339, 337–346, https://doi.org/10.1016/j.crte.2007.03.002, 2007.
Gandouin, E., Rioual, P., Pailles, C., Brooks, S. J., Ponel, P., Guiter, F., Djamali, M., Andrieu-Ponel, V., Birks, H. J. B., Leydet, M., Belkacem, D., Haas, J. N., Van der Putten, N., and de Beaulieu, J. L.: Environmental and climate reconstruction of the late-glacial-Holocene transition from a lake sediment sequence in Aubrac, French Massif Central: Chironomid and diatom evidence, Palaeogeogr. Palaeoclimatol. Palaeoecol., 461, 292–309, https://doi.org/10.1016/j.palaeo.2016.08.039, 2016.
Gedminienė, L., Spiridonov, A., Stančikaitė, M., Skuratovič, Ž., Vaikutienė, G., Daumantas, L., and Salonen, J. S.: Temporal and spatial climate changes in the mid-Baltic region in the Late Glacial and the Holocene: Pollen-based reconstructions, Catena, 252, 108851, https://doi.org/10.1016/j.catena.2025.108851, 2025.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL025734, 2006.
Górecki, A.: Plant succession as an indicator of climatic oscillations during Masovian Interglacial (MIS 11c), PhD Thesis, https://ruj.uj.edu.pl/xmlui/bitstream/handle/item/319201/gorecki_abstract_2023.pdf?sequence=3&isAllowed=y (last access: October 2025), 2023.
Górecki, A., Żarski, M., Drzewicki, W., Pleśniak, Ł., Zalewska-Gałosz, J., and Hrynowiecka, A.: New climatic oscillations during MIS 11c in the record of the Skrzynka II site (Eastern Poland) based on palynological and isotope analysis, Quat. Int., 632, 4–20, https://doi.org/10.1016/j.quaint.2021.09.017, 2022.
Guiot, J.: Methodology of the last climatic cycle reconstruction in France from pollen data, Palaeogeogr. Palaeoclimatol. Palaeoecol., 80, 49–69, https://doi.org/10.1016/0031-0182(90)90033-4, 1990.
Gusev, O., Nakahara, Y., Vanyagina, V., Malutina, L., Cornette, R., Sakashita, T., Hamada, N., Kikawada, T., Kobayashi, Y., and Okuda, T.: Anhydrobiosis-Associated Nuclear DNA Damage and Repair in the Sleeping Chironomid: Linkage with Radioresistance, Plos One, 5, e14008, https://doi.org/10.1371/journal.pone.0014008, 2010.
Halkiewicz, A.: Corynocera ambigua (Insecta, Diptera) subfossils occurrence in recent sediments of four shallow Polesie lakes, in: Annales Universitatis Mariae Curie-Sklodowska, 31, https://doi.org/10.2478/v10067-008-0016-z, 2008.
Hamburger, K., Dall, P. C., and Lindegaard, C.: Energy metabolism of Chironomus anthracinus (Diptera: Chironomidae) from the profundal zone of Lake Esrom, Denmark, as a function of body size, temperature and oxygen concentration, Hydrobiologia, 294, 43–50, https://doi.org/10.1007/BF00017624, 1994.
Harrington, C. A. and Gould, P. J.: Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species, Front. Plant Sci., 6, 1–12, https://doi.org/10.3389/fpls.2015.00120, 2015.
Heino, J.: Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry, Hydrobiologia, 418, 229–242, https://doi.org/10.1023/A:1003969217686, 2000.
Heiri, O.: Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes, J. Paleolimnol., 32, 67–84, https://doi.org/10.1023/B:JOPL.0000025289.30038.e9, 2004.
Heiri, O. and Lotter, A. F.: Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids, J. Paleolimnol., 26, 343–350, https://doi.org/10.1023/A:1017568913302, 2001.
Heiri, O. and Millet, L.: Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France), J. Quat. Sci., 20, 33–44, https://doi.org/10.1002/jqs.895, 2005.
Herzschuh, U., Böhmer, T., Li, C., Chevalier, M., Hébert, R., Dallmeyer, A., Cao, X., Bigelow, N. H., Nazarova, L., Novenko, E. Y., Park, J., Peyron, O., Rudaya, N. A., Schlütz, F., Shumilovskikh, L. S., Tarasov, P. E., Wang, Y., Wen, R., Xu, Q., and Zheng, Z.: LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond, Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, 2023a.
Herzschuh, U., Böhmer, T., Chevalier, M., Hébert, R., Dallmeyer, A., Li, C., Cao, X., Peyron, O., Nazarova, L., Novenko, E. Y., Park, J., Rudaya, N. A., Schlütz, F., Shumilovskikh, L. S., Tarasov, P. E., Wang, Y., Wen, R., Xu, Q., and Zheng, Z.: Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends, Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, 2023b.
Hofmann, W. and Winn, K.: The Littorina Transgression in the Western Baltic Sea as Indicated by Subfossil Chironomidae (Diptera) and Cladocera (Crustacea), Int. Rev. Hydrobiol., 85, 267–291, https://doi.org/10.1002/(SICI)1522-2632(200004)85:2/3<267::AID-IROH267>3.0.CO;2-Q, 2000.
Horne, D. J.: A Mutual Temperature Range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda, Quat. Sci. Rev., 26, 1398–1415, https://doi.org/10.1016/j.quascirev.2007.03.006, 2007.
Horne, D. J., Ashton, N., Benardout, G., Brooks, S. J., Coope, G. R., Holmes, J. A., Lewis, S. G., Parfitt, S. A., White, T. S., Whitehouse, N. J., and Whittaker, J. E.: A terrestrial record of climate variation during MIS 11 through multiproxy palaeotemperature reconstructions from Hoxne, UK, Quat. Res., 111, 21–52, https://doi.org/10.1017/qua.2022.20, 2023.
Hrynowiecka, A. and Pidek, I. A.: Older and Younger Holsteinian climate oscillations in the palaeobotanical record of the Brus profile (SE Poland), Geol. Q., 61, 723–737, https://doi.org/10.7306/gq.1358, 2017.
Hrynowiecka, A. and Winter, H.: Palaeoclimatic changes in the Holsteinian Interglacial (Middle Pleistocene) on the basis of indicator-species method – Palynological and macrofossils remains from Nowiny Żukowskie site (SE Poland), Quat. Int., 409, 255–269, https://doi.org/10.1016/j.quaint.2015.08.036, 2016.
Hrynowiecka, A., Żarski, M., and Drzewicki, W.: The rank of climatic oscillations during MIS 11c (OHO and YHO) and post-interglacial cooling during MIS 11b and MIS 11a in eastern Poland, Geol. Q., 63, 375–394, https://doi.org/10.7306/gq.1470, 2019.
Ilyashuk, E. A., Ilyashuk, B. P., Hammarlund, D., and Larocque, I.: Holocene climatic and environmental changes inferred from midge records (Diptera: Chironomidae, Chaoboridae, Ceratopogonidae) at Lake Berkut, southern Kola Peninsula, Russia, The Holocene, 15, 897–914, https://doi.org/10.1191/0959683605hl865ra, 2005.
Ilyashuk, E. A., Ilyashuk, B. P., Kolka, V. V., and Hammarlund, D.: Holocene climate variability on the Kola Peninsula, Russian Subarctic, based on aquatic invertebrate records from lake sediments, Quat. Res., 79, 350–361, https://doi.org/10.1016/j.yqres.2013.03.005, 2013.
Ilyashuk, E. A., Ilyashuk, B. P., Heiri, O., and Spötl, C.: Summer temperatures and lake development during the MIS 5a interstadial: New data from the Unterangerberg palaeolake in the Eastern Alps, Austria, Palaeogeogr. Palaeoclimatol. Palaeoecol., 560, 110020, https://doi.org/10.1016/j.palaeo.2020.110020, 2020.
Ilyashuk, E. A., Ilyashuk, B. P., Heiri, O., and Spötl, C.: Summer temperatures and environmental dynamics during the Middle Würmian (MIS 3) in the Eastern Alps: Multi-proxy records from the Unterangerberg palaeolake, Austria, Quat. Sci. Adv., 6, 100050, https://doi.org/10.1016/j.qsa.2022.100050, 2022.
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record, 1, 269–305, https://epic.awi.de/id/eprint/41839/1/Imbrie-etal_1984.pdf (last access: October 2025), 1984.
Iovino, A. J.: Extant chironomid larval populations and the representativeness and nature of their remains in lake sediments., Indiana University, PhD Thesis, https://search.proquest.com/openview/0a29e11fa504f529ad04d21e50c89f98/1?pq-origsite=gscholar&cbl=18750&diss=y (last access: October 2025), 1975.
Janczyk-Kopikowa, Z.: The Ferdynand6w Interglacial in Poland, Geol. Q., 35, 71–80, 1991.
Jesionkiewicz, P.: Nowe stanowisko interglacjału mazowieckiego w Krępie koło Kocka, Geol. Q., 26, 423–430, 1982.
Juggins, S.: C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version 1.5), Newctle. Tyne Newctle. Univ., 77, 680, https://www.academia.edu/download/84693763/C2.pdf (last access: October 2025), 2007.
Juggins, S.: riojaPlot: Stratigraphic diagrams in R, package version (0.1-20), https://cran.r-project.org/package=riojaPlot (last access: October 2025), 2022.
Juggins, S.: rioja: Analysis of Quaternary Science Data, R package version 1.0-7, CRAN [code], https://cran.r-project.org/package=rioja (last access: October 2025), 2024.
Juggins, S. and Birks, H. J. B.: Quantitative Environmental Reconstructions from Biological Data, in: Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Springer Netherlands, Dordrecht, 431–494, https://doi.org/10.1007/978-94-007-2745-8_14, 2012.
Kansanen, P. H.: Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna, Ann. Zool. Fenn., 22, 57–90, 1985.
Kleinen, T., Brovkin, V., and Munhoven, G.: Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11, Clim. Past, 12, 2145–2160, https://doi.org/10.5194/cp-12-2145-2016, 2016.
Klink, A. G. and Moller Pillot, H.: Chironomidae larvae: key to the higher taxa and species of the lowlands of Northwestern Europe, https://www.cabidigitallibrary.org/doi/full/10.5555/20053034382 (last access: October 2025), 2003.
Kokkinn, M. J.: Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont chironomid, Tanytarsus barbitarsis Freeman, Mar. Freshw. Res., 37, 243–250, https://doi.org/10.1071/mf9860243, 1986.
Kondratiene, O. and Gudelis, W.: Morskie osady plejstoceńskie na obszarze Pribałtyki, Przegląd Geol., 31, 497, 1983.
Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, J. Biogeogr., 31, 713–732, https://doi.org/10.1111/j.1365-2699.2003.01043.x, 2004.
Kotrys, B., Płóciennik, M., Sydor, P., and Brooks, S. J.: Expanding the Swiss-Norwegian chironomid training set with Polish data, Boreas, 49, 89–107, https://doi.org/10.1111/bor.12406, 2020.
Kotrys, B., Górecki, A., Hrynowiecka, A., Polkowski, T., Gruszczyńska, A., Lauterbach, S., Słowiński, M., Żarski, M., Błaszkiewicz, M., Czajkowska, M., andNitychoruk, J.: Chironomidae and pollen data for Krępa site, Zenodo [data set], https://doi.org/10.5281/zenodo.17378964, 2025.
Kousis, I., Koutsodendris, A., Peyron, O., Leicher, N., Francke, A., Wagner, B., Giaccio, B., Knipping, M., and Pross, J.: Centennial-scale vegetation dynamics and climate variability in SE Europe during Marine Isotope Stage 11 based on a pollen record from Lake Ohrid, Quat. Sci. Rev., 190, 20–38, https://doi.org/10.1016/j.quascirev.2018.04.014, 2018.
Koutsodendris, A.: Palynological data and pollen-based climate reconstructions from Lake Ohrid during MIS 12-11, PANGAEA, 2020. Mothes, G.: Einige ökologisch interessante Chironomiden aus dem Stechlinseegebiet, Ann. Zool. Fenn., 5, 92–96, 1968.
Koutsodendris, A., Müller, U. C., Pross, J., Brauer, A., Kotthoff, U., and Lotter, A. F.: Vegetation dynamics and climate variability during the Holsteinian interglacial based on a pollen record from Dethlingen (northern Germany), Quat. Sci. Rev., 29, 3298–3307, https://doi.org/10.1016/j.quascirev.2010.07.024, 2010.
Koutsodendris, A., Pross, J., Müller, U. C., Brauer, A., Fletcher, W. J., Kühl, N., Kirilova, E., Verhagen, F. T. M., Lücke, A., and Lotter, A. F.: A short-term climate oscillation during the Holsteinian interglacial (MIS 11c): An analogy to the 8.2 ka climatic event?, Glob. Planet. Change, 92–93, 224–235, https://doi.org/10.1016/j.gloplacha.2012.05.011, 2012.
Kreyling, J.: Winter climate change: A critical factor for temperate vegetation performance, Ecology, 91, 1939–1948, https://doi.org/10.1890/09-1160.1, 2010.
Krupiński, K. M.: Taxus in plant communities of the Mazovian interglacial age in Central Europe and its climatostratigraphical consequences, Bull. Pol. Acad. Sci. Earth Sci., 43, 29–41, http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-2cb6def3-0d71-4f06-801c-b8cf70351c17 (last access: October 2025), 1995.
Krzeminski, W. and Jarzembowski, E.: Aenne triassica sp.n., the oldest representative of the family Chironomidae [Insecta: Diptera], Pol. Pismo Entomol., 68, 445–449, http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-b1e269a8-12db-4907-aa7b-5759651a2eb2 (last access: October 2025), 1999.
Kühl, N. and Gobet, E.: Climatic evolution during the Middle Pleistocene warm period of Bilshausen, Germany, compared to the Holocene, Quat. Sci. Rev., 29, 3736–3749, https://doi.org/10.1016/j.quascirev.2010.08.006, 2010.
Kupryjanowicz, M., Nalepka, D., Pidek, I. A., Walanus, A., Balwierz, Z., Bińka, K., Fiłoc, M., Granoszewski, W., Kołaczek, P., Majecka, A., Malkiewicz, M., Nita, M., Noryśkiewicz, B., and Winter, H.: The east-west migration of trees during the Eemian Interglacial registered on isopollen maps of Poland, Quat. Int., 467, 178–191, https://doi.org/10.1016/j.quaint.2017.08.034, 2018.
Lackmann, A. R., McEwen, D. C., and Butler, M. G.: Evidence of parthenogenetic populations from the Paratanytarsus laccophilus species group (Diptera: Chironomidae) in the Alaskan Arctic, Chironomus J. Chironomidae Res., 48–58, https://doi.org/10.5324/cjcr.v0i33.3478, 2020.
Łanczont, M., Pidek, I. A., Bogucki, A., Wieliczkiewicz, F., and Wojtanowicz, J.: Kluczowy profil interglacjału mazowieckiego w Krukienicach na międzyrzeczu Sanu i Dniestru (Ukraina), Przegląd Geol., 51, 597–608, 2003.
Lapellegerie, P., Millet, L., Rius, D., Duprat-Oualid, F., Luoto, T., and Heiri, O.: Chironomid-inferred summer temperature during the Last Glacial Maximum in the Southern Black Forest, Central Europe, Quat. Sci. Rev., 345, 109016, https://doi.org/10.1016/j.quascirev.2024.109016, 2024.
Larocque-Tobler, I., Grosjean, M., Heiri, O., and Trachsel, M.: High-resolution chironomid-inferred temperature history since ad 1580 from varved Lake Silvaplana, Switzerland: comparison with local and regional reconstructions, The Holocene, 19, 1201–1212, https://doi.org/10.1177/0959683609348253, 2009.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Lauer, T. and Weiss, M.: Timing of the Saalian- and Elsterian glacial cycles and the implications for Middle – Pleistocene hominin presence in central Europe, Sci. Rep., 8, 5111, https://doi.org/10.1038/s41598-018-23541-w, 2018.
Lauer, T., Weiss, M., Bernhardt, W., Heinrich, S., Rappsilber, I., Stahlschmidt, M. C., von Suchodoletz, H., and Wansa, S.: The Middle Pleistocene fluvial sequence at Uichteritz, central Germany: Chronological framework, paleoenvironmental history and early human presence during MIS 11, Geomorphology, 354, 107016, https://doi.org/10.1016/j.geomorph.2019.107016, 2020.
Lenarczyk, J.: The Algal Genus “pediastrum Meyen” (chlorophyta) in Poland, W. Szafer Institute of Botany, Polish Academy of Sciences, https://www.botany.pl/images/Books/Lenarczyk_2014_The_algal_genus_Pediastrum_Meyen_Chlorophyta.pdf (last access: October 2025), 2014.
Lencioni, V.: Survival strategies of freshwater insects in cold environments, J. Limnol., 63, 45–55, https://agris.fao.org/search/en/providers/122415/records/6473690153aa8c89630d8c78 (last access: October 2025), 2004.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, https://doi.org/10.1029/2004PA001071, 2005.
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and Xoplaki, E.: The Mediterranean climate: An overview of the main characteristics and issues, in: Developments in Earth and Environmental Sciences, vol. 4, edited by: Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R., Elsevier, 1–26, https://doi.org/10.1016/S1571-9197(06)80003-0, 2006.
Lotter, A. F., Birks, H. J. B., Hofmann, W., and Marchetto, A.: Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate, J. Paleolimnol., 18, 395–420, https://doi.org/10.1023/A:1007982008956, 1997.
Luoto, T. P. and Sarmaja-Korjonen, K.: Midge-inferred Holocene effective moisture fluctuations in a subarctic lake, northern Lapland, Boreas, 40, 650–659, https://doi.org/10.1111/j.1502-3885.2011.00217.x, 2011.
Luoto, T. P., Nevalainen, L., and Sarmaja-Korjonen, K.: Multiproxy evidence for the `Little Ice Age' from Lake Hampträsk, Southern Finland, J. Paleolimnol., 40, 1097–1113, https://doi.org/10.1007/s10933-008-9216-4, 2008.
Magny, M., Aalbersberg, G., Bégeot, C., Benoit-Ruffaldi, P., Bossuet, G., Disnar, J.-R., Heiri, O., Laggoun-Defarge, F., Mazier, F., Millet, L., Peyron, O., Vannière, B., and Walter-Simonnet, A.-V.: Environmental and climatic changes in the Jura mountains (eastern France) during the Lateglacial–Holocene transition: a multi-proxy record from Lake Lautrey, Quat. Sci. Rev., 25, 414–445, https://doi.org/10.1016/j.quascirev.2005.02.005, 2006.
Mamakowa, K. and Rylova, T. B.: The interglacial from Korchevo in Belarus in the light of new palaeobotanical studies, Acta Palaeobot., 47, 425–453, http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-93eba296-a9fe-43c1-9599-40de8acc5417 (last access: October 2025), 2007.
Marks, L.: Quaternary stratigraphy of Poland–current status, Acta Geol. Pol., 73, 307–340, 2023.
Marks, L., Karabanov, A., Nitychoruk, J., Bahdasarau, M., Krzywicki, T., Majecka, A., Pochocka-Szwarc, K., Rychel, J., Woronko, B., Zbucki, Ł., Hradunova, A., Hrychanik, M., Mamchyk, S., Rylova, T., Nowacki, Ł., and Pielach, M.: Revised limit of the Saalian ice sheet in central Europe, Quat. Int., 478, 59–74, https://doi.org/10.1016/j.quaint.2016.07.043, 2018.
Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd, S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Barnola, J. M., Chappellaz, J., Krinner, G., Johnsen, S., Röthlisberger, R., Hansen, J., Mikolajewicz, U., and Otto-Bliesner, B.: EPICA Dome C record of glacial and interglacial intensities, Quat. Sci. Rev., 29, 113–128, https://doi.org/10.1016/j.quascirev.2009.09.030, 2010.
Matzinger, A., Müller, B., Niederhauser, P., Schmid, M., and Wüest, A.: Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes, Limnol. Oceanogr., 55, 2073–2084, https://doi.org/10.4319/lo.2010.55.5.2073, 2010.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation, Quat. Sci. Rev., 112, 109–127, https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.
McGarrigle, M. L.: The Distribution of Chironomid Communities and Controlling Sediment Parameters in L. Derravaragh, Ireland, in: Chironomidae, edited by: Murray, D. A., Pergamon, 275–282, https://doi.org/10.1016/B978-0-08-025889-8.50043-X, 1980.
Mothes, G.: Einige ökologisch interessante Chironomiden aus dem Stechlinseegebiet, Ann. Zool. Fenn., 5, 92–96, 1968.
Mousavi, S. K.: Boreal chironomid communities and their relations to environmental factors: the impact of lake depth, size and acidity, Boreal Chironomid Communities Their Relat. Environ. Factors Impact Lake Depth Size Acidity, 7, 63–75, 2002.
Muhs, D. R., Pandolfi, J. M., Simmons, K. R., and Schumann, R. R.: Sea-level history of past interglacial periods from uranium-series dating of corals, Curaçao, Leeward Antilles islands, Quat. Res., 78, 157–169, https://doi.org/10.1016/j.yqres.2012.05.008, 2012.
Müller, B., Bryant, L. D., Matzinger, A., and Wüest, A.: Hypolimnetic Oxygen Depletion in Eutrophic Lakes, Environ. Sci. Technol., 46, 9964–9971, https://doi.org/10.1021/es301422r, 2012.
Nazarova, L. B., Subetto, D. A., Syrykh, L. S., Grekov, I. M., and Leontev, P. A.: Reconstructions of Paleoecological and Paleoclimatic Conditions of the Late Pleistocene and Holocene according to the Results of Chironomid Analysis of Sediments from Medvedevskoe Lake (Karelian Isthmus), Dokl. Earth Sci., 480, 710–714, https://doi.org/10.1134/S1028334X18060144, 2018.
Nienstaedt, H.: Chilling requirements in seven Picea species, Silvae Genet., 16, 65–68, 1967.
Nitychoruk, J., Bińka, K., Hoefs, J., Ruppert, H., and Schneider, J.: Climate reconstruction for the Holsteinian Interglacial in eastern Poland and its comparison with isotopic data from Marine Isotope Stage 11, Quat. Sci. Rev., 24, 631–644, https://doi.org/10.1016/j.quascirev.2004.07.023, 2005.
Nitychoruk, J., Bińka, K., Ruppert, H., and Schneider, J.: Holsteinian Interglacial=Marine Isotope Stage 11?, Quat. Sci. Rev., 25, 2678–2681, https://doi.org/10.1016/j.quascirev.2006.07.004, 2006.
Nitychoruk, J., Bińka, K., Sienkiewicz, E., Szymanek, M., Chodyka, M., Makos, M., Ruppert, H., and Tudryn, A.: A multiproxy record of the Younger Holsteinian Oscillation (YHO) in the Ossówka profile, eastern Poland, Boreas, 47, 855–868, https://doi.org/10.1111/bor.12308, 2018.
Nondula, N., Marshall, D. J., Baxter, R., Sinclair, B. J., and Chown, S. L.: Life history and osmoregulatory ability of Telmatogeton amphibius (Diptera, Chironomidae) at Marion Island, Polar Biol., 27, 629–635, https://doi.org/10.1007/s00300-004-0619-z, 2004.
Oliveira, D., Desprat, S., Rodrigues, T., Naughton, F., Hodell, D., Trigo, R., Rufino, M., Lopes, C., Abrantes, F., and Goni, M. F. S.: The complexity of millennial-scale variability in southwestern Europe during MIS 11, Quat. Res., 86, 373–387, https://doi.org/10.1016/j.yqres.2016.09.002, 2016.
Orel, O. and Semenchenko, A.: Morphological description and DNA barcodes of adult males of Tanytarsus heliomesonyctios Langton, 1999 (Diptera, Chironomidae) in northeast of Russia, Zootaxa, 4686, https://doi.org/10.11646/zootaxa.4686.1.6, 2019.
Overpeck, J. T., Iii, T. W., and Prentice, I. C.: Quantitative Interpretation of Fossil Pollen Spectra: Dissimilarity Coefficients and the Method of Modern Analogs, Quat. Res., 23, 87–108, https://doi.org/10.1016/0033-5894(85)90074-2, 1985.
PalDat: Palynological database, https://www.paldat.org (last access: October 2025), 2000.
Park, L. E.: Geochemical and Paleoenvironmental Analysis of Lacustrine Arthropod-Bearing Concretions of the Barstow Formation, Southern California, Palaios, 10, 44–57, https://doi.org/10.2307/3515006, 1995.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pinder, L. C. V. and Reiss, F.: The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic region-Keys and diagnoses, Larvae, https://cir.nii.ac.jp/crid/1570854175201464448 (last access: October 2025), 1983.
Plikk, A., Engels, S., Luoto, T. P., Nazarova, L., Salonen, J. S., and Helmens, K. F.: Chironomid-based temperature reconstruction for the Eemian Interglacial (MIS 5e) at Sokli, northeast Finland, J. Paleolimnol., 61, 355–371, https://doi.org/10.1007/s10933-018-00064-y, 2019.
Płóciennik, M.: Zastosowanie subfosylnych szczątków ochotkowatych (Diptera: Chironomidae) w badaniach nad paleoklimatem i rekonstrukcją zmian w środowisku, Kosmos, 54, 401–406, 2005.
Płóciennik, M., Self, A., Birks, H. J. B., and Brooks, S. J.: Chironomidae (Insecta: Diptera) succession in Żabieniec bog and its palaeo-lake (central Poland) through the Late Weichselian and Holocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 307, 150–167, https://doi.org/10.1016/j.palaeo.2011.05.010, 2011.
Płóciennik, M., Kruk, A., Michczyńska, D. J., and Birks, J. B.: Kohonen Artificial Neural Networks and the IndVal Index as Supplementary Tools for the Quantitative Analysis of Palaeoecological Data, Geochronometria, 42, https://doi.org/10.1515/geochr-2015-0021, 2015.
Płóciennik, M., Pawłowski, D., Vilizzi, L., and Antczak-Orlewska, O.: From oxbow to mire: Chironomidae and Cladocera as habitat palaeoindicators, Hydrobiologia, 847, 3257–3275, https://doi.org/10.1007/s10750-020-04327-6, 2020.
Pochocka-Szwarc, K., Żarski, M., Hrynowiecka, A., Górecki, A., Pidek, I. A., Szymanek, M., Stachowicz-Rybka, R., Stachowicz, K., and Skoczylas–Śniaz, S.: Mazovian Interglacial sites in the Sosnowica Depression and the Parczew-Kodeń Heights (Western Polesie, SE Poland), and their stratigraphic, palaeogeographic and palaeoenvironmental significance, Geol. Q., 68, https://doi.org/10.7306/gq.1746, 2024.
Posit team: RStudio: Integrated Development Environment for R, Posit Software, PBC, Boston, MA, USA, http://www.posit.co/ (last access: October 2025), 2025.
Prokopenko, A. A., Bezrukova, E. V., Khursevich, G. K., Solotchina, E. P., Kuzmin, M. I., and Tarasov, P. E.: Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia, Clim. Past, 6, 31–48, https://doi.org/10.5194/cp-6-31-2010, 2010.
Ralska-Jasiewiczowa, M., Nalepka, D., and Goslar, T.: Some problems of forest transformation at the transition to the oligocratic/ Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe, Veg. Hist. Archaeobotany, 13, 71–71, https://doi.org/10.1007/s00334-003-0027-2, 2004.
Raymo, M. E. and Mitrovica, J. X.: Collapse of polar ice sheets during the stage 11 interglacial, Nature, 483, 453–456, https://doi.org/10.1038/nature10891, 2012.
Reille, M. and de Beaulieu, J.-L.: Long Pleistocene Pollen Records from the Praclaux Crater, South-Central France, Quat. Res., 44, 205–215, https://doi.org/10.1006/qres.1995.1065, 1995.
Reyes-Maldonado, R., Marie, B., and Ramírez, A.: Rearing methods and life cycle characteristics of Chironomus sp. Florida (Chironomidae: Diptera): A rapid-developing species for laboratory studies, Plos One, 16, e0247382, https://doi.org/10.1371/journal.pone.0247382, 2021.
Rigterink, S., Krahn, K. J., Kotrys, B., Urban, B., Heiri, O., Turner, F., Pannes, A., and Schwalb, A.: Summer temperatures from the Middle Pleistocene site Schöningen 13 II, northern Germany, determined from subfossil chironomid assemblages, Boreas, bor.12658, https://doi.org/10.1111/bor.12658, 2024.
Roberts, J., Kaczmarek, K., Langer, G., Skinner, L. C., Bijma, J., Bradbury, H., Turchyn, A. V., Lamy, F., and Misra, S.: Lithium isotopic composition of benthic foraminifera: A new proxy for paleo-pH reconstruction, Geochim. Cosmochim. Acta, 236, 336–350, https://doi.org/10.1016/j.gca.2018.02.038, 2018.
Roberts, M.: Investigation into the population dynamics and key life history characteristics of non-biting midge (Diptera: Chironomidae) which can be utilised to improve nuisance control at Lake Joondalup, Western Australia, Theses Honours, 2003.
Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A., and Montoya, M.: MIS-11 duration key to disappearance of the Greenland ice sheet, Nat. Commun., 8, 16008, https://doi.org/10.1038/ncomms16008, 2017.
Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F., and Naughton, F.: Iberian Margin sea surface temperature during MIS 15 to 9 (580–300 ka): Glacial suborbital variability versus interglacial stability, Paleoceanography, 26, https://doi.org/10.1029/2010PA001927, 2011.
Rohling, E. J., Braun, K., Grant, K., Kucera, M., Roberts, A. P., Siddall, M., and Trommer, G.: Comparison between Holocene and Marine Isotope Stage-11 sea-level histories, Earth Planet. Sci. Lett., 291, 97–105, https://doi.org/10.1016/j.epsl.2009.12.054, 2010.
Rohrig, R., Beug, H., Trettin, R., and Morgenstern, P.: Subfossil chironomid assemblages as paleoenvironmental indicators in lake faulersee (Germany), Stud. Quat., 117–127, 2004.
Rylova, T. and Savachenko, I.: Reconstruction of palaeotemperatures of pleistocene interglacial intervals of Belarus from palynological evidences, Pol. Geol. Inst. Spec. Pap., 16, 83–93, http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUS6-0021-0064 (last access: October 2025), 2005.
Saether, O. A.: Chironomid communities as water quality indicators, Ecography, 2, 65–74, https://doi.org/10.1111/j.1600-0587.1979.tb00683.x, 1979.
Sageman, B. B. and Hollander, D. J.: Cross correlation of paleoecological and geochemical proxies: A holistic approach to the study of past global change, Spec. Pap. Geol. Soc. Am., 332, 365–384, https://doi.org/10.1130/0-8137-2332-9.365, 1999.
Samartin, S., Heiri, O., Kaltenrieder, P., Kühl, N., and Tinner, W.: Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy, Quat. Sci. Rev., 143, 107–119, https://doi.org/10.1016/j.quascirev.2016.04.005, 2016.
San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., and Mauri, A.: European atlas of forest tree species, Publication Office of the European Union, Luxembourg, https://doi.org/10.2788/4251, 2016.
Sassoon, D., Lebreton, V., Combourieu-Nebout, N., Peyron, O., and Moncel, M.-H.: Palaeoenvironmental changes in the southwestern Mediterranean (ODP site 976, Alboran sea) during the MIS 12/11 transition and the MIS 11 interglacial and implications for hominin populations, Quat. Sci. Rev., 304, 108010, https://doi.org/10.1016/j.quascirev.2023.108010, 2023.
Sassoon, D., Combourieu-Nebout, N., Peyron, O., Bertini, A., Toti, F., Lebreton, V., and Moncel, M.-H.: Pollen-based climatic reconstructions for the interglacial analogues of MIS 1 (MIS 19, 11, and 5) in the southwestern Mediterranean: insights from ODP Site 976, Clim. Past, 21, 489–515, https://doi.org/10.5194/cp-21-489-2025, 2025.
Schmid, P. E.: Random patch dynamics of larval Chironomidae (Diptera) in the bed sediments of a gravel stream, Freshw. Biol., 30, 239–255, https://doi.org/10.1111/j.1365-2427.1993.tb00806.x, 1993.
Shumilovskikh, L. S., Shumilovskikh, E. S., Schlütz, F., and van Geel, B.: NPP-ID: Non-Pollen Palynomorph Image Database as a research and educational platform, Veg. Hist. Archaeobotany, 31, 323–328, https://doi.org/10.1007/s00334-021-00849-8, 2022.
Simpson, G. L. and Oksanen, J.: analogue: Analogue and weighted averaging methods for palaeoecology, CRAN [code], https://doi.org/10.32614/CRAN.package.analogue, 2025.
Stockmarr, J.: 1971: Tablets with spores used in absolute pollen analysis, Pollen et Spores 13, 615–621, 1971.
Stuchlik, L.: Atlas of pollen and spores of the Polish Neogene, W. Szafer Institute of Botany, Polish Acadamy of Sciences, https://szukaj.bu.umk.pl/discovery/fulldisplay/alma991010006199706926/48OMNIS_UMKWT:UMK (last access: October 2025), 2001.
Stuchlik, L.: Atlas of Pollen and Spores of the Polish Neogene: Gymnosperms, W. Szafer Institute of Botany, Polish Acadamy of Sciences, https://biblioteka.botany.pl/cgi-bin/koha/opac-detail.pl?biblionumber=2338 (last access: October 2025), 2002.
Stuchlik, L.: Atlas of pollen and spores of the Polish Neogene. 3. Angiosperms (1), W. Szafer Inst. of Botany, Polish Academy of Sciences, https://biblioteka.botany.pl/bib/5239 (last access: October 2025), 2009.
Szal, M., Kupryjanowicz, M., Wyczółkowski, M., and Tylmann, W.: The Iron Age in the Mrągowo Lake District, Masuria, NE Poland: the Salęt settlement microregion as an example of long-lasting human impact on vegetation, Veg. Hist. Archaeobotany, 23, 419–437, https://doi.org/10.1007/s00334-014-0465-z, 2014.
Szymanek, M.: Elemental geochemistry of freshwater snail shells: palaeolimnology of a Holsteinian (MIS 11) deposit from eastern Poland, Boreas, 47, 643–655, https://doi.org/10.1111/bor.12283, 2018.
Takagi, S., Kikuchi, E., Doi, H., and Shikano, S.: Swimming Behaviour of Chironomus acerbiphilus Larvae in Lake Katanuma, Hydrobiologia, 548, 153–165, https://doi.org/10.1007/s10750-005-5196-9, 2005.
Tarkowska-Kukuryk, M.: Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect of macrophyte species and food resources, Limnology, 15, 141–153, https://doi.org/10.1007/s10201-014-0425-4, 2014.
Tarr, T. L., Baber, M. J., and Babbitt, K. J.: Macroinvertebrate community structure across a wetland hydroperiod gradient in southern New Hampshire, USA, Wetl. Ecol. Manag., 13, 321–334, https://doi.org/10.1007/s11273-004-7525-6, 2005.
ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages, Hydrobiologia, 269, 485–502, https://doi.org/10.1007/BF00028046, 1993.
ter Braak, C. J. F., H., van D., Juggins, S., and Birks, H. J. B.: Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species–environment calibration, in: Multivariate Environmental Statistics, edited by: Patil, G. P. and Rao, C. R., Elsevier, Amsterdam, the Netherlands, 525–556, https://edepot.wur.nl/249353 (last access: October 2025), 1993.
Tokeshi, M.: Life cycles and population dynamics, in: The Chironomidae: Biology and ecology of non-biting midges, edited by: Armitage, P. D., Cranston, P. S., and Pinder, L. C. V., Springer Netherlands, Dordrecht, 225–268, https://doi.org/10.1007/978-94-011-0715-0_10, 1995.
Tye, G. J., Sherriff, J., Candy, I., Coxon, P., Palmer, A., McClymont, E. L., and Schreve, D. C.: The δ18O stratigraphy of the Hoxnian lacustrine sequence at Marks Tey, Essex, UK: implications for the climatic structure of MIS 11 in Britain, J. Quat. Sci., 31, 75–92, https://doi.org/10.1002/jqs.2840, 2016.
Tzedakis, P. C.: The MIS 11 – MIS 1 analogy, southern European vegetation, atmospheric methane and the ”early anthropogenic hypothesis”, Clim. Past, 6, 131–144, https://doi.org/10.5194/cp-6-131-2010, 2010.
Tzedakis, P. C., Hooghiemstra, H., and Pälike, H.: The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends, Quat. Sci. Rev., 25, 3416–3430, https://doi.org/10.1016/j.quascirev.2006.09.002, 2006.
Ustrnul, Z., Wypych, A., Marosz, M., Biernacik, D., Czekierda, D., Chodubska, A., Wasielewska, K., Kusek, K., and Kopaczka, D.: Climate of Poland 2021, IMGW-PIB, https://www.imgw.pl/sites/default/files/2022-06/imgw-pib-klimat-polski-2021-eng-final.pdf (last access: October 2025), 2021.
van Asch, N., Kloos, M. E., Heiri, O., de Klerk, P., and Hoek, W. Z.: The younger dryas cooling in northeast Germany: summer temperature and environmental changes in the Friedländer Große Wiese region, J. Quat. Sci., 27, 531–543, https://doi.org/10.1002/jqs.2547, 2012.
Velle, G., Brooks, S. J., Birks, H. J. B., and Willassen, E.: Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia, Quat. Sci. Rev., 24, 1429–1462, https://doi.org/10.1016/j.quascirev.2004.10.010, 2005.
Vera-Polo, P., Sadori, L., Jiménez-Moreno, G., Masi, A., Giaccio, B., Zanchetta, G., Tzedakis, P. C., and Wagner, B.: Climate, vegetation, and environmental change during the MIS 12-MIS 11 glacial-interglacial transition inferred from a high-resolution pollen record from the Fucino Basin of central Italy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 655, 112486, https://doi.org/10.1016/j.palaeo.2024.112486, 2024.
Walker, I. R. and Mathewes, R. W.: Late-quaternary fossil chironomidae (diptera) from hippa lake, queen charlotte islands, british columbia, with special reference to corynocera zett., Can. Entomol., 120, 739–751, https://doi.org/10.4039/Ent120739-8, 1988.
Walker, I. R. and Mathewes, R. W.: Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient, J. Paleolimnol., 2, 61–80, https://doi.org/10.1007/BF00156985, 1989.
Walker, I. R., Fernando, C. H., and Paterson, C. G.: The chironomid fauna of four shallow, humic lakes and their representation by subfossil assemblages in the surficial sediments, Hydrobiologia, 112, 61–67, https://doi.org/10.1007/BF00007667, 1984.
Wiederholm, T.: Chironomidae of the holarctic region. Keys and diagnoses. Part 1: larva, Ent. Scand. Suppl., 19, 1–457, 1983.
Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan, R., Armitage, S., de Hoog, C.-J., Alfimov, V., Christl, M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., and Collins, M. J.: Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland, Science, 317, 111–114, https://doi.org/10.1126/science.1141758, 2007.
Wörner, S. and Pester, M.: The Active Sulfate-Reducing Microbial Community in Littoral Sediment of Oligotrophic Lake Constance, Front. Microbiol., 10, https://doi.org/10.3389/fmicb.2019.00247, 2019.
Yin, Q. Z. and Berger, A.: Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years, Clim. Dyn., 38, 709–724, https://doi.org/10.1007/s00382-011-1013-5, 2012.
Żarski, M., Nita, M., and Winter, H.: Nowe stanowiska interglacjalne w rejonie dolin Wilgi i Okrzejki na Wysoczyźnie Żelechowskiej (Polska południowo-wschodnia), Przegląd Geol., 53, 137–144, 2005.
Żarski, M., Hrynowiecka, A., Górecki, A., Winter, H., and Pochocka-Szwarc, K.: The maximum extent of the Odranian Glaciation (Saalian, MIS 6) in the South Podlasie Lowland (SE Poland) in the light of sites with lacustrine deposits of the Mazovian Interglacial, Acta Geol. Pol., e14–e14, https://doi.org/10.24425/agp.2024.150006, 2024.
Short summary
In our study, we investigate changes in environment and climate that occured during post-Holsteinian period in Krępa palaeolake (eastern Poland). To achieve this goal we reconstructed summer temperature at the time using Chironomidae larvae head capsules and pollen data. This is first research from Central Europe with both chironomids and pollen used to trace climate change through post-Holsteinian period. We hope to encourage scientific community to carry out further research in the region.
In our study, we investigate changes in environment and climate that occured during...