Articles | Volume 21, issue 7
https://doi.org/10.5194/cp-21-1383-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-1383-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate variability off Africa's southern Cape over the past 260 000 years
Karl Purcell
Department of Earth Sciences, University of Bergen, Bergen, 5007, Norway
SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, 5020, Norway
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Margit H. Simon
CORRESPONDING AUTHOR
NORCE, Norwegian Research Centre, Bergen, 5007, Norway
SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, 5020, Norway
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Ellie J. Pryor
Department of Earth Sciences, University of Bergen, Bergen, 5007, Norway
SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, 5020, Norway
Simon J. Armitage
Department of Geography, Royal Holloway University of London, Surrey, TW20 0EX, United Kingdom
SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, 5020, Norway
H. J. L. van der Lubbe
Department of Earth Sciences, Vrije Universiteit, Amsterdam, 1081 HV, the Netherlands
Eystein Jansen
Department of Earth Sciences, University of Bergen, Bergen, 5007, Norway
SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, 5020, Norway
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Related authors
No articles found.
Akbar Aydin Oglu Huseynov, Jan Wijbrans, Klaudia Kuiper, and Jeroen van der Lubbe
Geochronology, 7, 173–197, https://doi.org/10.5194/gchron-7-173-2025, https://doi.org/10.5194/gchron-7-173-2025, 2025
Short summary
Short summary
This study explores quartz veins in Germany's Rursee area, formed during the Variscan Orogeny and later reactivated by tectonic activity in the Jurassic–Cretaceous period. Using advanced isotopic dating techniques, it examines how these veins influenced fluid flow and quartz recrystallization. By tackling the challenges of dating fluid activity, this research offers new insights into argon gas degassing in quartz minerals.
Wanyee Wong, Bjørg Risebrobakken, Malin Ödalen, Amandine Aline Tisserand, Kirsten Fahl, Ruediger Stein, and Eystein Jansen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1542, https://doi.org/10.5194/egusphere-2025-1542, 2025
Short summary
Short summary
Sea ice variability in the eastern Fram Strait between, and within, individual Greenland Stadials and Interstadials is documented by high-resolution proxy reconstructions. Unlike the southeastern Nordic Seas and North Atlantic, these changes were less linked to Greenland climate oscillations. Instead, they were driven by ocean heat transport, regulated by the interplay between AMOC strength and sea ice cover in the southeastern Nordic Seas.
Chloe A. Brashear, Tyler R. Jones, Valerie Morris, Bruce H. Vaughn, William H. G. Roberts, William B. Skorski, Abigail G. Hughes, Richard Nunn, Sune Olander Rasmussen, Kurt M. Cuffey, Bo M. Vinther, Todd Sowers, Christo Buizert, Vasileios Gkinis, Christian Holme, Mari F. Jensen, Sofia E. Kjellman, Petra M. Langebroek, Florian Mekhaldi, Kevin S. Rozmiarek, Jonathan W. Rheinlænder, Margit H. Simon, Giulia Sinnl, Silje Smith-Johnsen, and James W. C. White
Clim. Past, 21, 529–546, https://doi.org/10.5194/cp-21-529-2025, https://doi.org/10.5194/cp-21-529-2025, 2025
Short summary
Short summary
We use a series of spectral techniques to quantify the strength of high-frequency climate variability in northeastern Greenland to 50 000 ka before present. Importantly, we find that variability consistently decreases hundreds of years prior to Dansgaard–Oeschger warming events. Model simulations suggest a change in North Atlantic sea ice behavior contributed to this pattern, thus providing new information on the conditions which preceded abrupt climate change during the Last Glacial Period.
Hubert B. Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kévin Di Modica, Gregory Abrams, Marjan A. P. van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen H. J. L. van der Lubbe
Clim. Past, 20, 2741–2758, https://doi.org/10.5194/cp-20-2741-2024, https://doi.org/10.5194/cp-20-2741-2024, 2024
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neanderthal child. In this study, we present new uranium series ages of stalagmites from the archeological sequence that allow more precise dating of the archeological finds. One key result is that the Neanderthal child may be slightly older than previously thought.
Claire Waelbroeck, Jerry Tjiputra, Chuncheng Guo, Kerim H. Nisancioglu, Eystein Jansen, Natalia Vázquez Riveiros, Samuel Toucanne, Frédérique Eynaud, Linda Rossignol, Fabien Dewilde, Elodie Marchès, Susana Lebreiro, and Silvia Nave
Clim. Past, 19, 901–913, https://doi.org/10.5194/cp-19-901-2023, https://doi.org/10.5194/cp-19-901-2023, 2023
Short summary
Short summary
The precise geometry and extent of Atlantic circulation changes that accompanied rapid climate changes of the last glacial period are still unknown. Here, we combine carbon isotopic records from 18 Atlantic sediment cores with numerical simulations and decompose the carbon isotopic change across a cold-to-warm transition into remineralization and circulation components. Our results show that the replacement of southern-sourced by northern-sourced water plays a dominant role below ~ 3000 m depth.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Milankovitch
Accurately calibrated X-ray fluorescence core scanning (XRF-CS) record of Ti ∕ Al reveals Early Pleistocene aridity and humidity variability over North Africa and its close relationship to low-latitude insolation
Mid-Cretaceous paleoenvironmental changes in the western Tethys
The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Cinzia Bottini and Elisabetta Erba
Clim. Past, 14, 1147–1163, https://doi.org/10.5194/cp-14-1147-2018, https://doi.org/10.5194/cp-14-1147-2018, 2018
Short summary
Short summary
The mid-Cretaceous (ca. 121 to 94 Ma) was characterized by a generally warm climate punctuated by supra-regional to global phenomena of widespread ocean anoxia. In this work we present the first complete record of temperature and fertility variations through the mid-Cretaceous in the western Tethys based on calcareous nannofossils. The new record indicates that temperatures and fertility were rather fluctuating but mostly independently, and they were not systematically associated with anoxia.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
Cited articles
Ai, X. E., Studer, A. S., Sigman, D. M., Martínez-garcía, A., Fripiat, F., Schmitt, M., Oleynik, S., Jaccard, S. L., and Haug, G. H.: Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO2 change, Science, 80, 1348–1352, https://doi.org/10.1126/science.abd2115, 2021.
Bar-Matthews, M., Marean, C. W., Jacobs, Z., Karkanas, P., Fisher, E. C., Herries, A. I. R., Brown, K., Williams, H. M., Bernatchez, J., Ayalon, A., and Nilssen, P. J.: A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa, Quaternary Sci. Rev., 29, 2131–2145, https://doi.org/10.1016/j.quascirev.2010.05.009, 2010.
Behrensmeyer, A. K.: Climate Change and Human Evolution, Science, 311, 476–478, https://doi.org/10.1126/science.1116051, 2006.
Benedetti, M. F., Menard, O., Noack, Y., Carvalho, A., and Nahon, D.: Water-rock interactions in tropical catchments: field rates of weathering and biomass impact, Chem. Geol., 118, 203–220, https://doi.org/10.1016/0009-2541(94)90177-5, 1994.
Beyin, A., Wright, D. K., Wilkins, J., and Olszewski, D.: Handbook of Pleistocene Archaeology of Africa, Springer, 2146 pp., https://doi.org/10.1007/978-3-031-20290-2, 2023.
Bosmans, J. H. C., Hilgen, F. J., Tuenter, E., and Lourens, L. J.: Obliquity forcing of low-latitude climate, Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, 2015.
Bouchet, M., Landais, A., Grisart, A., Parrenin, F., Prié, F., Jacob, R., Fourré, E., Capron, E., Raynaud, D., Lipenkov, V. Y., Loutre, M.-F., Extier, T., Svensson, A., Legrain, E., Martinerie, P., Leuenberger, M., Jiang, W., Ritterbusch, F., Lu, Z.-T., and Yang, G.-M.: The Antarctic Ice Core Chronology 2023 (AICC2023) chronological framework and associated timescale for the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core, Clim. Past, 19, 2257–2286, https://doi.org/10.5194/cp-19-2257-2023, 2023.
Bradfield, J., Lombard, M., Reynard, J., and Wurz, S.: Further evidence for bow hunting and its implications more than 60 000 years ago: Results of a use-trace analysis of the bone point from Klasies River Main site, South Africa, Quaternary Sci. Rev., 236, 106295, https://doi.org/10.1016/j.quascirev.2020.106295, 2020.
Braun, K., Bar-Matthews, M., Matthews, A., Ayalon, A., Zilberman, T., Cowling, R. M., Fisher, E. C., Herries, A. I. R., Brink, J. S., and Marean, C. W.: Comparison of climate and environment on the edge of the Palaeo-Agulhas Plain to the Little Karoo (South Africa) in Marine Isotope Stages 5–3 as indicated by speleothems, Quaternary Sci. Rev., 235, 105803, https://doi.org/10.1016/j.quascirev.2019.06.025, 2020.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, 1–4, https://doi.org/10.1029/2005GL024546, 2006.
Brown, K. S., Marean, C. W., Herries, A. I. R., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, M. C., and Bernatchez, J.: Fire as an engineering tool of early modern humans, Science, 325, 859–862, https://doi.org/10.1126/science.1175028, 2009.
Caley, T., Kim, J.-H., Malaizé, B., Giraudeau, J., Laepple, T., Caillon, N., Charlier, K., Rebaubier, H., Rossignol, L., Castañeda, I. S., Schouten, S., and Sinninghe Damsté, J. S.: High-latitude obliquity as a dominant forcing in the Agulhas current system, Clim. Past, 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011, 2011.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L., Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., Jimenez-Espejo, F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry, S. J., Charlier, K., Wary, M., Gourves, P. Y., Billy, I., and Giraudeau, J.: A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa, Nature, 560, 76–79, https://doi.org/10.1038/s41586-018-0309-6, 2018.
Castañeda, I. S., Caley, T., Dupont, L., Kim, J. H., Malaizé, B., and Schouten, S.: Middle to Late Pleistocene vegetation and climate change in subtropical southern East Africa, Earth Planet. Sci. Lett., 450, 306–316, https://doi.org/10.1016/j.epsl.2016.06.049, 2016.
Cawthra, H. C., Cowling, R. M., Andò, S., and Marean, C. W.: Geological and soil maps of the Palaeo-Agulhas Plain for the Last Glacial Maximum, Quaternary Sci. Rev., 235, 105858, https://doi.org/10.1016/j.quascirev.2019.07.040, 2020a.
Cawthra, H. C., Anderson, R. J., De Vynck, J. C., Jacobs, Z., Jerardino, A., Kyriacou, K., and Marean, C. W.: Migration of Pleistocene shorelines across the Palaeo-Agulhas Plain: Evidence from dated sub-bottom profiles and archaeological shellfish assemblages, Quaternary Sci. Rev., 235, 106107, https://doi.org/10.1016/j.quascirev.2019.106107, 2020b.
Chase, B., Harris, C., deWit, M. J., Kramers, J., Doel, S., and Stankiewicz, J.: South African speleothems reveal influence of high and lowlatitude forcing over the past 113.5 k.y., Geology, 49, 1353–1357, https://doi.org/10.1130/G49323.1, 2021.
Chase, B. M.: Orbital forcing in southern Africa: Towards a conceptual model for predicting deep time environmental change from an incomplete proxy record, Quaternary Sci. Rev., 265, 107050, https://doi.org/10.1016/j.quascirev.2021.107050, 2021.
Chase, B. M. and Meadows, M. E.: Late Quaternary dynamics of southern Africa's winter rainfall zone, Earth-Sci. Rev., 84, 103–138, https://doi.org/10.1016/j.earscirev.2007.06.002, 2007.
Chase, B. M. and Quick, L. J.: Influence of Agulhas forcing of Holocene climate change in South Africa's southern Cape, Quat. Res. (United States), 90, 303–309, https://doi.org/10.1017/qua.2018.57, 2018.
Chase, B. M., Chevalier, M., Boom, A., and Carr, A. S.: The dynamic relationship between temperate and tropical circulation systems across South Africa since the last glacial maximum, Quaternary Sci. Rev., 174, 54–62, https://doi.org/10.1016/j.quascirev.2017.08.011, 2017.
Chase, B. M., Faith, J. T., Mackay, A., Chevalier, M., Carr, A. S., Boom, A., Lim, S., and Reimer, P. J.: Climatic controls on Later Stone Age human adaptation in Africa's southern Cape, J. Hum. Evol., 114, 35–44, https://doi.org/10.1016/j.jhevol.2017.09.006, 2018.
Chase, B. M., Niedermeyer, E. M., Boom, A., Carr, A. S., Chevalier, M., He, F., Meadows, M. E., Ogle, N., and Reimer, P. J.: Orbital controls on Namib Desert hydroclimate over the past 50,000 years, Geology, 47, 867–871, https://doi.org/10.1130/G46334.1, 2019.
Cohen, M. X.: A better way to define and describe Morlet wavelets for time-frequency analysis, Neuroimage, 199, 81–86, https://doi.org/10.1016/j.neuroimage.2019.05.048, 2019.
Collins, J. A., Schefuß, E., Govin, A., Mulitza, S., and Tiedemann, R.: Insolation and glacial-interglacial control on southwestern African hydroclimate over the past 140000 years, Earth Planet. Sci. Lett., 398, 1–10, https://doi.org/10.1016/j.epsl.2014.04.034, 2014.
Cook, K. H.: The South Indian convergence zone and interannual rainfall variability over Southern Africa, J. Climate, 13, 3789–3804, https://doi.org/10.1175/1520-0442(2000)013<3789:TSICZA>2.0.CO;2, 2000.
Cowling, R. M.: The occurrence of 3 Carbon and 4 Carbon pathways in Fynbos and allied shrublands in the Southeastern Cape South Africa, Oecologia, 58, 121–127, 1983.
Cowling, R. M., Potts, A. J., Franklin, J., Midgley, G. F., Engelbrecht, F., and Marean, C. W.: Describing a drowned Pleistocene ecosystem: Last Glacial Maximum vegetation reconstruction of the Palaeo-Agulhas Plain, Quaternary Sci. Rev., 235, 105866, https://doi.org/10.1016/j.quascirev.2019.105866, 2020.
Croudace, I. W. and Rothwell, R. G.: ITRAX: Description and evaluation of a new multi-function X-ray core scanner, Geol. Soc. Spec. Publ., 267, 51–63, https://doi.org/10.1144/GSL.SP.2006.267.01.04, 2006.
Croudace, I. W. and Rothwell, R. G.: Micro-XRF Studies of Sediment Cores. Applications of a Non-destructive Tool for the Environmental Sciences, Springer, Dordrecht, 668 pp., https://doi.org/10.1007/978-94-017-9849-5, 2015.
Daniau, A. L., Loutre, M. F., Swingedouw, D., Laepple, T., Bassinot, F., Malaizé, B., Kageyama, M., Charlier, K., and Carfantan, H.: Precession and obliquity forcing of the South African monsoon revealed by sub-tropical fires, Quaternary Sci. Rev., 310, 108128, https://doi.org/10.1016/j.quascirev.2023.108128, 2023.
Davies, S. J., Lamb, H. F., and Roberts, S. J.: Micro-XRF Core Scanning in Palaeolimnology: Recent Developments, in: Micro-XRF Studies of Sediment Cores, edited by: Croudace, I. W. and Rothwell, R. G., Springer, 189–226, https://doi.org/10.1007/978-94-017-9849-5_7, 2015.
Dean, W. E. J.: Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods, J. Sed. Pet., 44, 242–248, 1974.
d'Errico, F. and Henshilwood, C. S.: Additional evidence for bone technology in the southern African Middle Stone Age, J. Hum. Evol., 52, 142–163, https://doi.org/10.1016/j.jhevol.2006.08.003, 2007.
Driessen, P., Deckers, J., Spaargaren, O., and Nachtergaele, F. (Eds.): Lectures on the major soils of the world, 308 pp., https://openknowledge.fao.org/handle/20.500.14283/y1899e (last access: 14 July 2025), 2001.
Dunlea, A. G., Murray, R. W., Tada, R., Alvarez-Zarikian, C. A., Anderson, C. H., Gilli, A., Giosan, L., Gorgas, T., Hennekam, R., Irino, T., Murayama, M., Peterson, L. C., Reichart, G. J., Seki, A., Zheng, H., and Ziegler, M.: Intercomparison of XRF Core Scanning Results From Seven Labs and Approaches to Practical Calibration, Geochem. Geophys. Geosyst., 21, e2020GC009248, https://doi.org/10.1029/2020GC009248, 2020.
Dupont, L. M., Zhao, X., Charles, C., Faith, J. T., and Braun, D.: Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479), Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, 2022.
Engelbrecht, F. A., Marean, C. W., Cowling, R. M., Engelbrecht, C. J., Neumann, F. H., Scott, L., Nkoana, R., O'Neal, D., Fisher, E., Shook, E., Franklin, J., Thatcher, M., McGregor, J. L., Van der Merwe, J., Dedekind, Z., and Difford, M.: Downscaling Last Glacial Maximum climate over southern Africa, Quaternary Sci. Rev., 226, 105879, https://doi.org/10.1016/j.quascirev.2019.105879, 2019.
Faith, J. T., Chase, B. M., and Avery, D. M.: Late Quaternary micromammals and the precipitation history of the southern Cape, South Africa, Quat. Res. (United States), 91, 729–750, https://doi.org/10.1017/qua.2018.105, 2019.
Faith, J. T., Chase, B. M., and Pargeter, J.: The Last Glacial Maximum climate at Boomplaas Cave, South Africa, Quaternary Sci. Rev., 329, 108557, https://doi.org/10.1016/j.quascirev.2024.108557, 2024.
Franzese, A. M., Hemming, S. R., Goldstein, S. L., and Anderson, R. F.: Reduced Agulhas Leakage during the Last Glacial Maximum inferred from an integrated provenance and flux study, Earth Planet. Sci. Lett., 250, 72–88, https://doi.org/10.1016/j.epsl.2006.07.002, 2006.
Franzese, A. M., Hemming, S. R., and Goldstein, S. L.: Use of strontium isotopes in detrital sediments to constrain the glacial position of the agulhas retroflection, Paleoceanography, 24, 1–12, https://doi.org/10.1029/2008PA001706, 2009.
Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., and Villa, I. M.: Provenance versus weathering control on the composition of tropical river mud (southern Africa), Chem. Geol., 366, 61–74, https://doi.org/10.1016/j.chemgeo.2013.12.016, 2014.
Göktürk, O. M., Simon, M. H., Sobolowski, S. P., Zhang, Z., Van Der Bilt, W., Mørkved, P. T., D'Andrea, W. J., van Niekerk, K. L., Henshilwood, C. S., Armitage, S. J., and Jansen, E.: Behaviourally modern humans in coastal southern Africa experienced an increasingly continental climate during the transition from Marine Isotope Stage 5 to 4, Front. Earth Sci., 11, 1–20, https://doi.org/10.3389/feart.2023.1198068, 2023.
Gottschalk, J., Hodell, D. A., Skinner, L. C., Crowhurst, S. J., Jaccard, S. L., and Charles, C.: Past Carbonate Preservation Events in the Deep Southeast Atlantic Ocean (Cape Basin) and Their Implications for Atlantic Overturning Dynamics and Marine Carbon Cycling, Paleoceanogr. Paleoclimatol., 33, 643–663, https://doi.org/10.1029/2018PA003353, 2018.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in Atlantic surface sediments (36° N–49° S): Imprint of terrigenous input and continental weathering, Geochemistry, Geophys. Geosyst., 13, 1–23, https://doi.org/10.1029/2011GC003785, 2012.
Gray, W. R., de Lavergne, C., Jnglin Wills, R. C., Menviel, L., Spence, P., Holzer, M., Kageyama, M., and Michel, E.: Poleward Shift in the Southern Hemisphere Westerly Winds Synchronous With the Deglacial Rise in CO2, Paleoceanogr. Paleoclimatol., 38, 1–23, https://doi.org/10.1029/2023PA004666, 2023.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Hahn, A., Schefuß, E., Groeneveld, J., Miller, C., and Zabel, M.: Glacial to interglacial climate variability in the southeastern African subtropics (25–20° S), Clim. Past, 17, 345–360, https://doi.org/10.5194/cp-17-345-2021, 2021a.
Hahn, A., Neumann, F. H., Miller, C., Finch, J., Frankland, T., Cawthra, H. C., Schefuß, E., and Zabel, M.: Mid-to Late Holocene climatic and anthropogenic influences in Mpondoland, South Africa, Quaternary Sci. Rev., 261, 106938, https://doi.org/10.1016/j.quascirev.2021.106938, 2021b.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Henshilwood, C. S., d'Errico, F., and Watts, I.: Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa, J. Hum. Evol., 57, 27–47, https://doi.org/10.1016/j.jhevol.2009.01.005, 2009.
Henshilwood, C. S., D'Errico, F., Van Niekerk, K. L., Coquinot, Y., Jacobs, Z., Lauritzen, S. E., Menu, M., and García-Moreno, R.: A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa, Science, 334, 219–222, https://doi.org/10.1126/science.1211535, 2011.
Henshilwood, C. S., van Niekerk, K. L., Wurz, S., Delagnes, A., Armitage, S. J., Rifkin, R. F., Douze, K., Keene, P., Haaland, M. M., Reynard, J., Discamps, E., and Mienies, S. S.: Klipdrift Shelter, southern cape, south africa: Preliminary report on the howiesons poort layers, J. Archaeol. Sci., 45, 284–303, https://doi.org/10.1016/j.jas.2014.01.033, 2014.
Henshilwood, C. S., d'Errico, F., van Niekerk, K. L., Dayet, L., Queffelec, A., and Pollarolo, L.: An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa, Nature, 562, 115–118, https://doi.org/10.1038/s41586-018-0514-3, 2018.
Hernández-Almeida, I., Ausín, B., Saavedra-Pellitero, M., Baumann, K. H., and Stoll, H. M.: Quantitative reconstruction of primary productivity in low latitudes during the last glacial maximum and the mid-to-late Holocene from a global Florisphaera profunda calibration dataset, Quaternary Sci. Rev., 205, 166–181, https://doi.org/10.1016/j.quascirev.2018.12.016, 2019.
Hines, S. K. V., Bolge, L., Goldstein, S. L., Charles, C. D., Hall, I. R., and Hemming, S. R.: Little Change in Ice Age Water Mass Structure From Cape Basin Benthic Neodymium and Carbon Isotopes, Paleoceanogr. Paleoclimatol., 36, e2021PA004281, https://doi.org/10.1029/2021PA004281, 2021.
Hodell, D. A., Charles, C. D., and Sierro, F. J.: Late Pleistocene evolution of the ocean's carbonate system, Earth Planet. Sci. Lett., 192, 109–124, https://doi.org/10.1016/S0012-821X(01)00430-7, 2001.
Huybers, P.: Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing, Science, 313, 508–511, https://doi.org/10.1126/science.1125249, 2006.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial antarctic climate variability over the past 800,000 years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007.
Jury, M. R., Valentine, H. R., and Lutjeharms, J. R. E.: Influence of the Agulhas Current on Summer Rainfall along the Southeast Coast of South Africa, J. Appl. Meteorol., 32, 1282–1287, https://doi.org/10.1175/1520-0450(1993)032<1282:IOTACO>2.0.CO;2, 1993.
Koutsodendris, A., Nakajima, K., Kaboth-Bahr, S., Berke, M. A., Franzese, A. M., Hall, I. R., Hemming, S. R., Just, J., Levay, L. J., Pross, J., Robinson, R., Barker, S., Brentegani, L., Caley, T., Cartagena-Sierra, A., Charles, C. D., Coenen, J. J., Crespin, J. G., Gruetzner, J., Han, X., Hines, S. K. V., Espejo, F. J. J., Kubota, K., Lathika, N., Norris, R. D., Dos Santos, T. P., Rolinson, J. M., Simon, M. H., Tangunan, D., van der Lubbe, J. J. L., Yamane, M., and Zhang, H.: A plio-pleistocene (C. 0–4 ma) cyclostratigraphy for iodp site u1478 (mozambique channel, sw indian ocean): Exploring an offshore record of paleoclimate and ecosystem variability in se africa, Newsletters Stratigr., 54, 159–181, https://doi.org/10.1127/nos/2020/0608, 2021.
Kylander, M. E., Ampel, L., Wohlfarth, B., and Veres, D.: High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: New insights from chemical proxies, J. Quat. Sci., 26, 109–117, https://doi.org/10.1002/jqs.1438, 2011.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Lazenby, M. J., Todd, M. C., and Wang, Y.: Climate model simulation of the South Indian Ocean Convergence Zone: Mean state and variability, Clim. Res., 68, 59–71, https://doi.org/10.3354/cr01382, 2016.
Li, M., Hinnov, L., and Kump, L.: Acycle: Time-series analysis software for paleoclimate research and education, Comput. Geosci., 127, 12–22, https://doi.org/10.1016/j.cageo.2019.02.011, 2019.
Lim, S., Chase, B. M., Chevalier, M., and Reimer, P. J.: 50,000 years of vegetation and climate change in the southern Namib Desert, Pella, South Africa, Palaeogeogr. Palaeoclimatol. Palaeoecol., 451, 197–209, https://doi.org/10.1016/j.palaeo.2016.03.001, 2016.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, 1–17, https://doi.org/10.1029/2004PA001071, 2005.
Little, M. G., Schneider, R. R., Kroon, D., Price, B., Summerhayes, C. P., and Segl, M.: Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub-Milankovitch climate variability, Paleoceanography, 12, 568–576, https://doi.org/10.1029/97PA00823, 1997.
Lougheed, B. C. and Obrochta, S. P.: MatCal: Open Source Bayesian 14C Age Calibration in Matlab, J. Open Res. Softw., 4, 42, https://doi.org/10.5334/jors.130, 2016.
Lougheed, B. C. and Obrochta, S. P.: A Rapid, Deterministic Age-Depth Modeling Routine for Geological Sequences With Inherent Depth Uncertainty, Paleoceanogr. Paleoclimatol., 34, 122–133, https://doi.org/10.1029/2018PA003457, 2019.
Ludwig, W. and Probst, J. L.: River sediment discharge to the oceans; present-day controls and global budgets, Am. J. Sci., 298, 265–295, 1998.
Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P., and Balkanski, Y.: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum, Earth-Sci. Rev., 99, 61–97, https://doi.org/10.1016/j.earscirev.2009.12.001, 2010.
März, C., Hoffmann, J., Bleil, U., de Lange, G. J., and Kasten, S.: Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean), Mar. Geol., 255, 118–130, https://doi.org/10.1016/j.margeo.2008.05.013, 2008.
Maslin, M. A. and Ridgwell, A. J.: Mid-Pleistocene revolution and the “eccentricity myth,” Geol. Soc. Spec. Publ., 247, 19–34, https://doi.org/10.1144/GSL.SP.2005.247.01.02, 2005.
Mcbrearty, S. and Brooks, A. S.: The revolution that wasn't: A new interpretation of the origin of modern human behavior, J. Hum. Evol., 39, 453–563, https://doi.org/10.1006/jhev.2000.0435, 2000.
McCall, G. S. and Thomas, J. T.: Still Bay and Howiesons Poort Foraging Strategies: Recent Research and Models of Culture Change, African Archaeol. Rev., 29, 7–50, https://doi.org/10.1007/s10437-012-9107-y, 2012.
McCave, I. N., Thornalley, D. J. R., and Hall, I. R.: Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the `Mud Current Meter,' Deep. Res. Part I, 127, 1–12, https://doi.org/10.1016/j.dsr.2017.07.003, 2017.
Mcgee, D.: Glacial – Interglacial Precipitation Changes, Ann. Rev. Mar. Sci., 12, 525–557, https://doi.org/10.1146/annurev-marine-010419-010859, 2020.
Miller, C., Hahn, A., Liebrand, D., Zabel, M., and Schefuß, E.: Mid- and low latitude effects on eastern South African rainfall over the Holocene, Quaternary Sci. Rev., 229, 106088, https://doi.org/10.1016/j.quascirev.2019.106088, 2020.
Moreno, P. I., Lowell, T. V., Jacobson Jr., G. L., and Denton, G. H.: Abrupt Vegetation and Climate Changes During the Last Glacial Maximumand Last Termination in The Chilean Lake District: A Case Study from Canal De La Puntilla (41oS), Geogr. Ann. Ser. A Phys. Geogr., 81, 285–311, https://doi.org/10.1111/1468-0459.00059, 1999.
Mourre, V., Villa, P., and Henshilwood, C. S.: Early Use of Pressure Flaking on Lithic, Science, 330, 659–662, 2010.
Partridge, T. C., Demenocal, P. B., Lorentz, S. A., Paiker, M. J., and Vogel, J. C.: Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria Saltpan, Quaternary Sci. Rev., 16, 1125–1133, https://doi.org/10.1016/S0277-3791(97)00005-X, 1997.
Pryor, E. J., Tangunan, D., van der Lubbe, H. J. L., Simon, M. H., and Hall, I. R.: Recommended centrifuge method: Specific grain size separation in the < 63 µm fraction of marine sediments, MethodsX, 12, 102718, https://doi.org/10.1016/j.mex.2024.102718, 2024.
Quick, L. J., Meadows, M. E., Bateman, M. D., Kirsten, K. L., Mäusbacher, R., Haberzettl, T., and Chase, B. M.: Vegetation and climate dynamics during the last glacial period in the fynbos-afrotemperate forest ecotone, southern Cape, South Africa, Quaternary Int., 404, 136–149, https://doi.org/10.1016/j.quaint.2015.08.027, 2016.
R Core Team: R: A language and Environment for Statistical Computing, https://www.r-project.org/ (last access: 15 December 2023), 2023.
Reason, C. J. C. and Mulenga, H.: Relationships between South African rainfall and SST anomalies in the southwest Indian Ocean, Int. J. Climatol., 19, 1651–1673, https://doi.org/10.1002/(SICI)1097-0088(199912)19:15<1651::AID-JOC439>3.0.CO;2-U, 1999.
Reimer, P. J. and Reimer, R. W.: A marine reservoir correction database and on-line interface, Radiocarbon, 43, 461–463, https://doi.org/10.1017/s0033822200038339, 2001.
Rial, J. A.: Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity, Science, 285, 564–568, https://doi.org/10.1126/science.285.5427.564, 1999.
Rickaby, R. E. M., Elderfield, H., Roberts, N., Hillenbrand, C. D., and Mackensen, A.: Evidence for elevated alkalinity in the glacial Southern Ocean, Paleoceanography, 25, 1–15, https://doi.org/10.1029/2009PA001762, 2010.
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Pätzold, J.: Forcing of wet phases in southeast Africa over the past 17,000 years, Nature, 480, 509–512, https://doi.org/10.1038/nature10685, 2011.
Sealy, J., Lee-Thorp, J., Loftus, E., Faith, J. T., and Marean, C. W.: Late Quaternary environmental change in the Southern Cape, South Africa, from stable carbon and oxygen isotopes in faunal tooth enamel from Boomplaas Cave, J. Quat. Sci., 31, 919–927, https://doi.org/10.1002/jqs.2916, 2016.
Sealy, J., Naidoo, N., Hare, V. J., Brunton, S., and Faith, J. T.: Climate and ecology of the palaeo-Agulhas Plain from stable carbon and oxygen isotopes in bovid tooth enamel from Nelson Bay Cave, South Africa, Quaternary Sci. Rev., 235, 105974, https://doi.org/10.1016/j.quascirev.2019.105974, 2020.
Shi, N., Schneider, R., Beug, H. J., and Dupont, L. M.: Southeast trade wind variations during the last 135 kyr: Evidence from pollen spectra in eastern South Atlantic sediments, Earth Planet. Sci. Lett., 187, 311–321, https://doi.org/10.1016/S0012-821X(01)00267-9, 2001.
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer, A. M., Graham, R. M., and Bopp, L.: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Model-data comparison, Quaternary Sci. Rev., 64, 104–120, https://doi.org/10.1016/j.quascirev.2012.12.008, 2013.
Simon, M. H., Ziegler, M., Bosmans, J., Barker, S., Reason, C. J. C., and Hall, I. R.: Eastern South African hydroclimate over the past 270,000 years, Sci. Rep., 5, 1–10, https://doi.org/10.1038/srep18153, 2015.
Singarayer, J. S. and Burrough, S. L.: Interhemispheric dynamics of the African rainbelt during the late Quaternary, Quaternary Sci. Rev., 124, 48–67, https://doi.org/10.1016/j.quascirev.2015.06.021, 2015.
Starr, A., Hall, I. R., Barker, S., Nederbragt, A., Owen, L., and Hemming, S. R.: Shifting Antarctic Circumpolar Current south of Africa over the past 1.9 million years, Sci. Adv., 11, eadp1692, https://doi.org/10.1126/sciadv.adp1692, 2025.
Stuut, J. B. W., Prins, M. A., Schneider, R. R., Weltje, G. J., Fred Jansen, J. H., and Postma, G.: A 300-kyr record of aridity and wind strength in southwestern Africa: Inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic, Mar. Geol., 180, 221–233, https://doi.org/10.1016/S0025-3227(01)00215-8, 2002.
Suescún, D., Villegas, J. C., León, J. D., Flórez, C. P., García-Leoz, V., and Correa-Londoño, G. A.: Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes, Reg. Environ. Chang., 17, 827–839, https://doi.org/10.1007/s10113-016-1071-7, 2017.
Tangunan, D., Berke, M. A., Cartagena-Sierra, A., Flores, J. A., Gruetzner, J., Jiménez-Espejo, F., LeVay, L. J., Baumann, K. H., Romero, O., Saavedra-Pellitero, M., Coenen, J. J., Starr, A., Hemming, S. R., Hall, I. R., Barker, S., Brentegani, L., Caley, T., Charles, C. D., Crespin, J. G., Franzese, A. M., Han, X., Hines, S. K. V., Jimenez Espejo, F. J., Just, J., Koutsodendris, A., Kubota, K., Lathika, N., Norris, R. D., dos Santos, T. P., Robinson, R. S., Rolison, J. M., Simon, M. H., Tangunan, D., van der Lubbe, J. J. L., Yamane, M., and Zhang, H.: Strong glacial-interglacial variability in upper ocean hydrodynamics, biogeochemistry, and productivity in the southern Indian Ocean, Commun. Earth Environ., 2, 80, https://doi.org/10.1038/s43247-021-00148-0, 2021.
Taylor, S. P., Patterson, M. O., Lam, A. R., Jones, H., Woodard, S. C., Habicht, M. H., Thomas, E. K., and Grant, G. R.: Expanded North Pacific Subtropical Gyre and Heterodyne Expression During the Mid-Pleistocene, Paleoceanogr. Paleoclimatol., 37, 1–22, https://doi.org/10.1029/2021PA004395, 2022.
Thomson, J., Higgs, N. C., and Colley, S.: Diagenetic redistributions of redox-sensitive elements in northeast Atlantic glacial/interglacial transition sediments, Earth Planet. Sci. Lett., 139, 365–377, https://doi.org/10.1016/0012-821X(96)00031-3, 1996.
Tim, N., Zorita, E., Hünicke, B., and Ivanciu, I.: The impact of the Agulhas Current system on precipitation in southern Africa in regional climate simulations covering the recent past and future, Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, 2023.
Timmermann, A., Friedrich, T., Timm, O. E., Chikamoto, M. O., Abe-Ouchi, A., and Ganopolski, A.: Modeling obliquity and CO2 effects on southern hemisphere climate during the past 408 ka, J. Climate, 27, 1863–1875, https://doi.org/10.1175/JCLI-D-13-00311.1, 2014.
Tjallingii, R., Röhl, U., Kölling, M., and Bickert, T.: Influence of the water content on X-ray fluorescence corescanning measurements in soft marine sediments, Geochem. Geophys. Geosyst., 8, 1–12, https://doi.org/10.1029/2006GC001393, 2007.
Todd, M. C., Washington, R., and Palmer, P. I.: Water vapour transport associated with tropical-temperate trough systems over southern Africa and the southwest Indian Ocean, Int. J. Climatol., 24, 555–568, https://doi.org/10.1002/joc.1023, 2004.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, 1–15, https://doi.org/10.1029/2005PA001154, 2006.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, Bull. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Tzedakis, P. C., Crucifix, M., Mitsui, T., and Wolff, E. W.: A simple rule to determine which insolation cycles lead to interglacials, Nature, 542, 427–432, https://doi.org/10.1038/nature21364, 2017.
Uenzelmann-Neben, G. and Huhn, K.: Sedimentary deposits on the southern South African continental margin: Slumping versus non-deposition or erosion by oceanic currents?, Mar. Geol., 266, 65–79, https://doi.org/10.1016/j.margeo.2009.07.011, 2009.
van Aken, H. M., Ridderinkhof, H., and De Ruijter, W. P. M.: North Atlantic deep water in the south-western Indian Ocean, Deep. Res. Part I, 51, 755–776, https://doi.org/10.1016/j.dsr.2004.01.008, 2004.
van Zinderen Bakker, E. M.: The evolution of late Quaternary paleoclimates of Southern Africa, Palaeoecol. Africa, 9, 160–202, 1976.
Vazquez Riveiros, N. and Waelbroeck, C.: MD 225 / ACCLIMATE-2 cruise, RV Marion Dufresne, 171 pp., https://doi.org/10.17600/18001350, 2020.
Weltje, G. J. and Tjallingii, R.: Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application, Earth Planet. Sci. Lett., 274, 423–438, https://doi.org/10.1016/j.epsl.2008.07.054, 2008.
West, S., Jansen, J. H. F., and Stuut, J. B.: Surface water conditions in the Northern Benguela Region (SE Atlantic) during the last 450 ky reconstructed from assemblages of planktonic foraminifera, Mar. Micropaleontol., 51, 321–344, https://doi.org/10.1016/j.marmicro.2004.01.004, 2004.
Wurz, S.: Variability in the Middle Stone Age lithic sequence, 115,000–60,000 years ago at Klasies River, South Africa, J. Archaeol. Sci., 29, 1001–1015, https://doi.org/10.1006/jasc.2001.0799, 2002.
Wurz, S.: The Transition to Modern Behavior, Nat. Educ. Knowl., 3, 1–9, 2012.
Yu, J., Menviel, L., Jin, Z. D., Anderson, R. F., Jian, Z., Piotrowski, A. M., Ma, X., Rohling, E. J., Zhang, F., Marino, G., and McManus, J. F.: Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion, Nat. Geosci., 13, 628–633, https://doi.org/10.1038/s41561-020-0610-5, 2020.
Zabel, M., Schneider, R. R., Wagner, T., Adegbie, A. T., De Vries, U., and Kolonic, S.: Late quaternary climate changes in central Africa as inferred from terrigenous input to the Niger fan, Quat. Res., 56, 207–217, https://doi.org/10.1006/qres.2001.2261, 2001.
Ziegler, M., Simon, M. H., Hall, I. R., Barker, S., Stringer, C., and Zahn, R.: Development of Middle Stone Age innovation linked to rapid climate change, Nat. Commun., 4, 1905–1909, https://doi.org/10.1038/ncomms2897, 2013.
Short summary
During the past 260 000 years, rains over southern South Africa underwent many fluctuations which could have affected the behaviour and innovations of humans living there. In this study we reconstruct the rainfall during this period in this area using X-ray analysis of a sediment core retrieved in the ocean south of South Africa. We confirmed that a 23 000-year cycle of the orbit of the Earth affected rainfall and that rainfall was higher around 117 000, 93 000 and 72 000 years ago.
During the past 260 000 years, rains over southern South Africa underwent many fluctuations...