Articles | Volume 20, issue 4
https://doi.org/10.5194/cp-20-891-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-891-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial variability of marine-terminating ice sheet retreat in the Puget Lowland
Marion A. McKenzie
CORRESPONDING AUTHOR
Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA
now at: Geology and Geological Engineering Department, Colorado School of Mines, 1105 Illinois St., Golden, CO 80201, USA
Lauren E. Miller
Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA
Allison P. Lepp
Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA
Regina DeWitt
Department of Physics, East Carolina University, 1000 E. 5th St., Greenville, NC 27858-4353, USA
Related authors
No articles found.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Marion A. McKenzie, Lauren E. Miller, Jacob S. Slawson, Emma J. MacKie, and Shujie Wang
The Cryosphere, 17, 2477–2486, https://doi.org/10.5194/tc-17-2477-2023, https://doi.org/10.5194/tc-17-2477-2023, 2023
Short summary
Short summary
Topographic highs (“bumps”) across glaciated landscapes have the potential to affect glacial ice. Bumps in the deglaciated Puget Lowland are assessed for streamlined glacial features to provide insight on ice–bed interactions. We identify a general threshold in which bumps significantly disrupt ice flow and sedimentary processes in this location. However, not all bumps have the same degree of impact. The system assessed here has relevance to parts of the Greenland Ice Sheet and Thwaites Glacier.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Annette Kadereit, Sebastian Kreutzer, Christoph Schmidt, and Regina DeWitt
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-3, https://doi.org/10.5194/gchron-2020-3, 2020
Preprint withdrawn
Lauren M. Simkins, Sarah L. Greenwood, and John B. Anderson
The Cryosphere, 12, 2707–2726, https://doi.org/10.5194/tc-12-2707-2018, https://doi.org/10.5194/tc-12-2707-2018, 2018
Short summary
Short summary
Using thousands of grounding line landforms in the Ross Sea, Antarctica, we observe two distinct landform types associated with contrasting styles of grounding line retreat. We characterise landform morphology, examine factors that control landform morphology and distribution, and explore drivers of grounding line (in)stability. This study highlights the importance of understanding thresholds which may destabilise a system and of controls on grounding line retreat over a range of timescales.
Related subject area
Subject: Ice Dynamics | Archive: Terrestrial Archives | Timescale: Holocene
Duration and ice thickness of a Late Holocene outlet glacier advance near Narsarsuaq, southern Greenland
Glacier response to Holocene warmth inferred from in situ 10Be and 14C bedrock analyses in Steingletscher's forefield (central Swiss Alps)
In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size
Glacial history of Inglefield Land, north Greenland from combined in situ 10Be and 14C exposure dating
Wet avalanches: long-term evolution in the Western Alps under climate and human forcing
Peter J. K. Puleo and Yarrow Axford
Clim. Past, 19, 1777–1791, https://doi.org/10.5194/cp-19-1777-2023, https://doi.org/10.5194/cp-19-1777-2023, 2023
Short summary
Short summary
We used two lake sediment records at different elevations and landscape evidence to find that a southern Greenland outlet glacier advanced ~ 3700 years ago and then retreated ~ 1600 years ago. This retreat is unlike other nearby outlet glaciers, possibly because of the complex local ice structure or greater sensitivity to snowfall. We also find that the advanced ice surface had an elevation of ~ 670 m a.s.l. (~ 250 m higher than today) from ~ 3700 to 1600 years ago.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Laurent Fouinat, Pierre Sabatier, Fernand David, Xavier Montet, Philippe Schoeneich, Eric Chaumillon, Jérôme Poulenard, and Fabien Arnaud
Clim. Past, 14, 1299–1313, https://doi.org/10.5194/cp-14-1299-2018, https://doi.org/10.5194/cp-14-1299-2018, 2018
Short summary
Short summary
In the context of a warming climate, mountain environments are especially vulnerable to a change in the risk pattern. Our study focuses on the past evolution of wet avalanches, likely triggered by warmer temperatures destabilizing the snow cover. In the last 3300 years we observed an increase of wet avalanche occurrence related to human activities, intensifying pressure on forest cover, as well as favorable climate conditions such as warmer temperatures coinciding with retreating glacier phases.
Cited articles
Alexanderson, H., Henriksen, M., Ryen, H. T., Landvik, J. Y., and Peterson, G.: 200 ka of glacial events in NW Svalbard: an emergence cycle facies model and regional correlations, Arktos, 4, 1–25, https://doi.org/10.1007/s41063-018-0037-z, 2018.
Alley, R. B., Holschuh, N., MacAyeal, D. R., Parizek, B. R., Zoet, L., Riverman, K., Muto, A., Christianson, K., Clyne, E., Anandakrishnan, S., Stevens, N., Smith, A., Arthern, R., Bingham, R., Brisbourne, A., Eisen, O., Hofstede, C., Kulessa, B., Sterns, L., Winberry, P., Bodart, J., Borthwick, L., Case, E., Gustafson, C., Kingslake, J., Ockenden, H., Schoonman, C., and Schwans, E.: Bedforms of Thwaites Glacier, West Antarctica: Character and Origin, J. Geophys. Res.-Earth, 126, e2021JF006339, https://doi.org/10.1029/2021JF006339, 2021.
Anderson, J. B., Kurtz, D. D., Domack, E. W., and Balshaw, K. M.: Glacial and Glacial Marine Sediments of the Antarctic Continental Shelf, J. Geol., 88, 4, https://doi.org/10.1086/628524, 1980.
Anundsen, K., Abella, S., Leopold, E., Stuiver, M., and Turner, S.: Late-Glacial and Early Holocene Sea-Level Fluctuations in the Central Puget Lowland, Washington, Inferred from Lake Sediments, Quaternary Res., 42, 149–161, https://doi.org/10.1006/qres.1994.1064, 1994.
Armstrong, J. E., Crandell, D. R., Easterbrook, D. J., and Noble, J. B.: Late Pleistocene Stratigraphy and Chronology in Southwestern British Columbia and Northwestern Washington, GSA, 76, 321–330, https://doi.org/10.1130/0016-7606(1965)76[321:LPSACI]2.0.CO;2, 1965.
Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for feldspar IRSL using SAR, Rad Measurements, 37, 487–492, https://doi.org/10.1016/S1350-4487(03)00018-0, 2003.
Bateman, M. D., Swift, D. A., Piotrowski, J. A., and Sanderson, D. C. W: Investigating the effects of glacial shearing of sediment on luminescence, Quaternary Geol., 10, 230–236, https://doi.org/10.1016/j.quageo.2011.11.012, 2012.
Booth, D.: Glaciofluvial infilling and scour of the Puget Lowland, Washington, during ice sheet glaciation, J. Geol., 22, 695–698, https://doi.org/10.1130/0091-7613(1994)022<0695:GIASOT>2.3.CO;2, 1994.
Booth, D. B.: Glacier dynamics and the development of glacial landforms in the eastern Puget lowland, PhD, Washington, https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/6696/8419116.pdf?sequence=1&isAllowed=y (last access: 5 April 2024), 1984.
Booth, D. B.: Timing and processes of deglaciation along the southern margin of the Cordilleran ice sheet, in: North America and Adjacent Oceans During the Last Deglaciation, edited by: Ruddiman, W. F. and Wright, H. E., 71–90, GSA, https://doi.org/10.1130/DNAG-GNA-K3.71, 1987.
Booth, D. B. and Hallet, B.: Channel networks carved by subglacial water: Observations and reconstruction in the eastern Puget Lowland of Washington, GSA Bulletin, 105, 671–683, https://doi.org/10.1130/0016-7606(1993)105<0671:CNCBSW>2.3.CO;2, 1993.
Booth, D. B., Troost, K. G., Clague, J. J., and Waitt, R. B.: The Cordilleran Ice Sheet, Dev. Quaternary Res., 1, 17–43, https://doi.org/10.1016/S1571-0866(03)01002-9, 2003.
Boulton, G. S. and Deynoux, M.: Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences, Precambrian Res., 15, 397–422, https://doi.org/10.1016/0301-9268(81)90059-0, 1981.
Bretz, J. H.: Glaciation of the Puget Sound region, Wash. Div. Mines Geol. Bulletin., 8, 244, https://www.dnr.wa.gov/publications/ger_b8_glaciation_pugetsound.pdf (last access: 5 April 2024), 1913.
Bretz, J. H.: The Juan de Fuca lobe of the Cordilleran ice sheet, J. Geol., 28, 333–339, https://www.jstor.org/stable/30062566 (last access: 5 April 2024), 1920.
Carter, R. M., Carter, L., and Johnson, D. P.: Submergent shorelines in the SW Pacific: evidence for an episodic post-glacial transgression, Sedimentology, 33, 629–649, https://doi.org/10.1111/j.1365-3091.1986.tb01967.x, 1986.
Clague, J. J.: Sedimentology and paleohydrology of Late Wisconsinan outwash, Rocky Mountain trench, southeastern British Columbia, in: Glaciofluvial and Glaciolacustrine Sedimentation, edited by: Jopling, A. V. and McDonald, B. C., Society of Economic Paleontologists and Mineralogists Special Publication No. 23, Tulsa, Oklahoma, 233–237, October ISBN 0608129488, 9780608129488, 1975.
Clague, J. J.: Quadra Sand and its relation to the late Wisconsin glaciation of southwest British Columbia, Can. J. Earth Sci., 13, 717–875, https://doi.org/10.1139/e76-083, 1976.
Clague, J. J.: Late Quaternary geology and geochronology of British Columbia, Part 2, GSC, 80–35, 41, ISBN 066010928X, 1981.
Clark, P. U.: Unstable Behavior of the Laurentide Ice Sheet over Deforming Sediment and Its Implications for Climate Change, Quaternary Sci. Rev., 41, 19–25, https://doi.org/10.1006/qres.1994.1002, 1994.
Clarke, G. K. C., Nitsan, U., and Paterson, W. S. B.: Strain heating and creep instability in glaciers and ice sheets, Rev. Geophys., 15, 235, https://doi.org/10.1029/RG015i002p00235, 1977.
Crandell, D. R., Mullineaux, D. R., and Waldron, H. H.: Age and origin of the Puget Sound trough in western Washington, U.S. Geol. Sur., 525, B132–B136, 1966.
Cuffey, K. and Paterson, W. S. B. (Eds.): The physics of glaciers, 4th edn., Butterworth-Heinemann/Elsevier, United States of America, ISBN 9780123694614, 2010.
Dalton, A. S., Margold, M., Stokes, C. R., Tarasov, L., Dyke, A. S., Adams, R. S., Allard, S., Arends, H. E., Atkinson, N., Attig, J. W., Barnett, P. J., Barnett, R. L., Batterson, M., Bernatchez, P., Borns, H. W., Breckenridge, A., Briner, J. P., Brouard, E., Campbell, J. E., Carlson, A. E., Clague, J. J., Curry, B. B., Daigneault, R. A., Dubé-Loubert, H., Easterbrook, D. J., Franzi, D. A., Friedrich, H. G., Funder, S., Gauthier, M. S., Gowan, A. S., Harris, K. L., Hétu, B., Hooyer, T. S., Jennings, C. E., Johnson, M. D., Kehew, A. E., Kelley, S. E., Kerr, D., King, E. L., Kjeldsen, K. K., Knaeble, A. R., Lajeunesse, P., Lakeman, T. R., Lamothe, M., Larson, P., Lavoie, M., Loope, H. M., Lowell, T. V., Lusardi, B. A., Manz, L., McMartin, I., Nixon, F. C., Occhietti, S., Parkhill, M. A., Piper, D. J. W., Pronk, A. G., Richard, P. J. H., Ridge, J. C., Ross, M., Roy, M., Seaman, A., Shaw, J., Stea, R. R., Teller, J. T., Thompson, W. B., Thorleifson, L. H., Utting, D. J., Veillette, J. J., Ward, B. C., Weddle, T. K., and Wright, H. E.: An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex, Quaternary Sci. Rev., 234, 106223, https://doi.org/10.1016/j.quascirev.2020.106223, 15 April 2020.
Demet, B. P., Nittrouer, J. A., Anderson, J. B., and Simkins, L. M.: Sedimentary processes at ice sheet grounding-zone wedges revealed by outcrops, Washington State (USA), Earth Surf. Proc. Land., 44, 1209–1220, https://doi.org/10.1002/esp.4550, 2019.
Dethier, D. P., Pessl Jr., F., Keuler, R. F., Balzarini, M. A., and Pevear, D. R.: Late Wisconsinan glaciomarine deposition and isostatic rebound, northern Puget Lowland, Washington, GSA Bulletin, 107, 1288–1303, https://doi.org/10.1130/0016-7606(1995)107<1288:LWGDAI>2.3.CO;2, 1995.
Domack, E. W.: Facies of late Pleistocene glacial-marine sediments on Whidbey Island, Washington: An isostatic glacial-marine sequence, in: Glacial-Marine Sedimentation, edited by: Molnia, B. F., Plenum, New York, 535–570, https://repository.rice.edu/server/api/core/bitstreams/de97b6e1-b915-4231-9cfa-bae1bc1dfefe/content (last access: 5 April 2024), 1983.
Domack, E. W.: Rhythmically bedded glaciomarine sediments on Whidbey Island, Washington, J. Sediment Res., 54, 589–602, https://hdl.handle.net/1911/19043 (last access: 8 April 2024), 1984.
Duller, G. A. T.:The Analyst software package for luminescence data: overview and recent improvements, Luminescence Analyst, 4.11 edn., Aberystwyth University, http://www.ancienttl.org/ATL_33-1_2015/ATL_33-1_Duller_p35-42.pdf (last access: 5 April 2024), 2013.
Duller, G. A. T.: Luminescence dating, in: Encyclopedia of Scientific Dating Methods, edited by: Rink, W. J. and Thompson, J. W., in: Encyclopedia of Earth Science Series, Springer Nature, 390–404, https://link.springer.com/referenceworkentry/10.1007/978-94-007-6304-3_125 (last access: 8 April 2024), 2015.
Duller, G. A. T.: Luminescence Dating, in: Encyclopedia of Scientific Dating Methods, Springer Netherlands, Dordrecht, 1–21, https://doi.org/10.1007/978-94-007-6326-5_125-1, 2014.
Durand, G., Gagliardini, O., Favier, L., Zwinger, T., and Le Meur, E.: Impact of bedrock description on modeling ice sheet dynamics, Geophys. Res. Lett., 38, L20501, https://doi.org/10.1029/2011GL048892, 2011.
Easterbrook, D. J.: Advance and retreat of Cordilleran ice sheets in Washington, USA, Geogr. Phys. Quatern., 46, 51–68, https://doi.org/10.7202/032888ar, 1992.
Easterbrook, D. J.: Late Pleistocene Glacial Events and Relative Sea-Level Changes in the Northern Puget Lowland, Washington, GSA Bulletin, 74, 1465–1483, https://doi.org/10.1130/0016-7606(1963)74[1465:LPGEAR]2.0.CO;2, 1963.
Easterbrook, D. J.: Pleistocene stratigraphy of Island County, Washington, Wash Div. Water Res. Bulletin, 25, 1–34, 1968.
Easterbrook, D. J.: The last glaciation of northwest Washington, in: Cenozoic Paleogeography of the Western United States, edited by: Armentrout, J. M., Cole, M. R., and Terbest, H., Pacific Coast Paleogeography Symposium 3, Los Angeles, Pacific Coast Section, Soc Economic Paleo and Mineralogists, 177—189, https://archives.datapages.com/data/pac_sepm/024/024001/pdfs/177.htm (last access: 5 April 2024), 1979.
Easterbrook, D. J.: Stratigraphy and chronology of Quaternary deposits of the Puget Lowland and Olympic Mountains of Washington and the Cascade Mountains of Washington and Oregon, Quaternary Sci. Rev., 5, 145–159, 1986.
Easterbrook, D. J., Crandell, D. R., and Leopold, E. B.: Pre-Olympia Pleistocene stratigraphy and chronology in the central Puget Lowland, Washington, GSA Bulletin, 78, 13–20, 1967.
Easterbrook, D.: Pleistocene Chronology of the Puget Lowland and San Juan Islands, Washington, GSA Bulletin, 80, 2273–2286, 1969.
Ehlers, J., Gibbard, P. L., and Hughes, P. D.: Quaternary Glaciations – Extent and Chronology, http://booksite.elsevier.com/9780444534477//index.php (last access: 11 April 2017), 2010.
Evans, D. J. A. and Thompson, S. A.: Glacial sediments and landforms of Holderness, eastern England: A glacial depositional model for the North Sea Lobe of the British-Irish Ice Sheet, Earth Sci. Rev., 101, 147–189, https://doi.org/10.1016/j.earscirev.2010.04.003, 2010.
Evans, D. J. A., Phillips, E. R., Hiemstra, J. F., and Auton, C. A.: Subglacial till: Formation, sedimentary characteristics and classification, Earth Sci. Rev., 78, 115–176, https://doi.org/10.1016/j.earscirev.2006.04.001, 2006.
Eyles, N., Arbelaez Moreno, L., and Sookhan, S.: Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America, Quaternary Sci. Rev., 179, 87–122, https://doi.org/10.1016/j.quascirev.2017.10.027, 2018.
Favier, L., Pattyn, F., Berger, S., and Drews, R.: Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica, The Cryosphere, 10, 2623–2635, https://doi.org/10.5194/tc-10-2623-2016, 2016.
Folk, R. L. and Ward, W. C.: Brazos River bar [Texas]; a study in the significance of grain size parameters, J. Sediment. Res., 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957.
Goebel, T. Waters, M., and O'Rourke, D.: The Late Pleistocene Dispersal of Modern Humans in the Americas, Science, 319, 1497, https://doi.org/10.1126/science.1153569, 2011.
Goldstein, B.: Drumlins of the Puget lowland, Washington state, USA, Sediment. Geol., 91, 299–311, https://doi.org/10.1016/0037-0738(94)90136-8, 1994.
Hagg, W.: Glacial Sedimentation, in: Glaciology and Glacial Geomorphology, Berlin, Heidelberg: Springer Berlin Heidelberg, 151–165, ISBN 9783662647134, 2022.
Hatfield, R. G., Stoner, J. S., Reilly, B. T., Tepley, F. J., Wheeler, B. H., and Housen, B. A.: Grain size dependent magnetic discrimination of Iceland and South Greenland terrestrial sediments in the northern North Atlantic sediment record, Earth Planet. Sc. Lett., 474, 474–489, https://doi.org/10.1016/j.epsl.2017.06.042, 2017.
Heaton, T. H. and Grady, F.: The Late Wisconsin Vertebrate History of Prince of Wales Island, Southeast Alaska, in: Ice Cave Faunas of North America, Schubert, B. W., Mead, J. I., and Graham, R. W., Indiana U Press, 2, 17–53, ISBN 9780253342683, 2003.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D., Totten, R. L., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K., Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020.
Jamieson, S. S. R., Vieli, A., Livingstone, S. J., Cofaigh, C. Ó., Stokes, C., Hillenbrand, C. D., and Dowdeswell, J. A.: Ice-stream stability on a reverse bed slope, Nat. Geosci., 5, 799–802, https://doi.org/10.1038/ngeo1600, 2012.
King, G. E., Robinson, R. A. J., and Finch, A. A.: Towards successful OSL sampling strategies in glacial environments: deciphering the influence of depositional processes on bleaching of modern glacial sediments from Jostedalen, Southern Norway, Quaternary Sci. Rev., 89, 94–107, https://doi.org/10.1016/j.quascirev.2014.02.001, 2014.
Kirshner, A. E., Anderson, J. B., Jakobsson, M., O'Regan, M., Majewski, W., and Nitsche, F. O.: Post-LGM deglaciation in Pine island Bay, west Antarctica, Quaternary Sci. Rev., 38, 11–26, https://doi.org/10.1016/j.quascirev.2012.01.017, 2012.
Kjær, K. H., Sultan, L., Krüger, J., and Schomacker, A.: Architecture and sedimentation of outwash fans in front of the Mýrdalsjökull ice cap, Iceland, Sediment. Geol., 172, 139–163, https://doi.org/10.1016/j.sedgeo.2004.08.002, 2004.
Komar, P.: Beach Processes and Sedimentation- an introduction in: Handbook of coastal processes and erosion, edited by: Komar, P. and Moore, J. R., Taylor and Francis Group, Boca Raton, Florida, 1–20, ISBN 0849302250, 1977.
Kovanen, D. J. and Slaymaker, O.: Relict Shorelines and Ice Flow Patterns of the Northern Puget Lowland from Lidar Data and Digital Terrain Modelling, Geogr. Ann. A, 86, 385–400, https://www.jstor.org/stable/3566155 (last access: 5 April 2024), 2004.
Leopold, E. B., Nickmann, R., Hedges, J. I., and Ertel, J. R.: Pollen and Lignin Records of Late Quaternary Vegetation, Lake Washington, Science, 218, 1305–1307, https://doi.org/10.1126/science.218.4579.1305, 1982.
Lesnek, A. J., Briner, J. P., Lindqvist, C., Baichtal, J. F., and Heaton, T. H.: Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas, Science Advances, 4, 1–8, https://doi.org/10.1126/sciadv.aar5040, 2018.
Mandryk, C. A. S., Josenhans, H., Fedje, D. W., and Mathewes, R. W.: Late Quaternary paleoenvironments of Northwestern North America: implications for inland versus coastal migration routes, Quaternary Sci. Rev., 20, 301–314, https://doi.org/10.1016/S0277-3791(00)00115-3, 2001.
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide Ice Sheet: Identification, characteristics and comparison to modern ice sheets, Earth-Sci. Rev., 143, 117–146, https://doi.org/10.1016/j.earscirev.2015.01.011, 2015.
McCabe, A. M.: Glaciomarine facies deposited by retreating tidewater glaciers; an example from the late Pleistocene of Northern Ireland, J. Sediment. Res., 56, 880–894, https://doi.org/10.1306/212F8A76-2B24-11D7-8648000102C1865D, 1986.
McKenzie, M. A., Miller, L. E., Slawson, J. S., MacKie, E. J., and Wang, S.: Differential impact of isolated topographic bumps on ice sheet flow and subglacial processes, The Cryosphere, 17, 2477–2486, https://doi.org/10.5194/tc-17-2477-2023, 2023.
McKenzie, M. A., Miller, L., Lepp, A., and DeWitt, R.: XRF data from coastal outcrop samples of West Beach 2 from Whidbey Island, Washington state, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965545, 2024.
Menounos, B., Goehring, B., Osborn, G., Margold, M., Ward, B., Bond, J., Clarke, G., Clague, J., Lakeman, T., Koch, J., Caffee, M., Gosse, J., Stroeven, A., Seguinot, J., and Heyman, J.: Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination, Science, 358, 781–784, https://doi.org/10.1126/science.aan3001, 2017.
Mullineaux, D. R., Waldron, H. H., and Rubin, M.: Stratigraphy and chronology of late interglacial and early Vashon time in the Seattle area, Washington, U.S., Geol. Surv. Bulletin, 1194-O, 10, https://doi.org/10.3133/b1194O, 1965.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Rad. Measurements, 32, 57–73, https://doi.org/10.1016/S1350-4487(99)00253-X, 2000.
Nield, G. A., Barletta, V. R., Bordoni, A., King, M. A., Whitehouse, P. L., Clarke, P. J., Domack, E., Scambos, T. A., and Berthier, E.: Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading, Earth Planet. Sc. Lett., 397, 32–41, https://doi.org/10.1016/j.epsl.2014.04.019, 2014.
NOSAMS: General Statement of 14C Procedures at the National Ocean Sciences AMS Facility, Woods Hole Oceanogrpahic Institute, https://www2.whoi.edu/site/nosams/wp-content/uploads/sites/124/2023/02/General-Statement-of-14C-Procedures_2023.pdf (last access: 1 February 2024), 2023.
O'Regan, M., Cronin, T. M., Reilly, B., Alstrup, A. K. O., Gemery, L., Golub, A., Mayer, L. A., Morlighem, M., Moros, M., Munk, O. L., Nilsson, J., Pearce, C., Detlef, H., Stranne, C., Vermassen, F., West, G., and Jakobsson, M.: The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland, The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, 2021.
Pessl Jr., F., Dethier, D. P., and Keuler, R. F.: Sedimentary Facies and Depositional Environments of Late Wisconsinian Glacial-Marine Deposits in Central Puget Lowland, Washington, AAPG Bulletin, 65, 969–970, https://web.archive.org/web/20200322123702id_/http://archives.datapages.com/data/bulletns/1980-81/images/pg/00650005/0950/09690a.pdf (last access: 5 April 2024), 1981.
Polenz, M., Slaughter, S. L., and Thorsen, G. W.: Geologic map of the Coupeville and part of the Port Townsend North 7.5-minute quadrangles, Island County, Washington, Washington Division of Geology and Earth Resources Geologic Map, GM-58, 1 sheet, scale 1: 24,000, https://www.dnr.wa.gov/publications/ger_gm57_geol_map_porttownsends_24k.pdf (last access: 5 April 2024), 2005.
Porter, S. C. and Swanson, T. W.: Radiocarbon Age Constraints on Rates of Advance and Retreat of the Puget Lobe of the Cordilleran Ice Sheet during the Last Glaciation, Quaternary Res., 50, 205–213. https://doi.org/10.1006/qres.1998.2004, 1998.
Powell, R. D.: Holocene glacimarine deposition by tide-water glaciers in Glacier Bay, Alaska, unpublished PhD thesis, Ohio State University, 1980.
Prothro, L. O., Simkins, L. M., Majewski, W., and Anderson, J. B.: Glacial retreat patterns and processes determined from integrated sedimentology and geomorphology records, Mar. Geol., 395, 104–119, https://doi.org/10.1016/j.margeo.2017.09.012, 2018.
Reilly, B. T., Stoner, J. S., Mix, A. C., Walczak, M. H., Jennings, A., Jakobsson, M., Dyke, L., Glueder, A., Nicholls, K., Hogan, K. A., Mayer, L. A., Hatfield, R. G., Albert, S., Marcott, S., Fallon, S., and Cheseby, M.: Holocene break-up and reestablishment of the Petermann Ice Tongue, Northwest Greenland, Quaternary Sci. Rev., 218, 322–342, https://doi.org/10.1016/j.quascirev.2019.06.023, 2019.
Rhodes, E. J.: Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years, Annu. Rev. Earth Pl. Sc., 39, 461–488, https://doi.org/10.1146/annurev-earth-040610-133425, 2011.
Rigg, G. B. and Gould, H. R.: Age of Glacier Peak eruption and chronology of post-glacial peat deposits in Washington and surrounding areas, Am. J. Sci., 255, 341–363, https://doi.org/10.2475/ajs.255.5.341, 1957.
Robel, A. A., Pegler, S. S., Catania, G., Felikson, D., and Simkins, L. M.: Ambiguous stability of glaciers at bed peaks, J. Glaciol., 68, 1177–1184, https://doi.org/10.1017/jog.2022.31, 2022.
Roberts, M. L., Elder, K. L., Jenkins, W. J., Gagnon, A. R., Xu, L., Hlavenka, J. D., and Longworth, B. E.: 14C Blank Corrections for 25–100 µg Samples at the National Ocean Sciences AMS Laboratory, Radiocarbon, 61, 1403–1411, https://doi.org/10.1017/RDC.2019.74, 2019.
Rosenbaum, J. G.: Magnetic properties of sediments in cores BL96-1,-2, and-3 from Bear Lake, Utah and Idaho, US Geol. Surv. Open-File Report, (1203), 13, https://pubs.usgs.gov/of/2005/1203/pdf/OFR-1203.pdf (last access: 5 April 2024), 2005.
Schmuck, N., Reuther, J., Baichtal, J. F., and Carlson, R. J.: Quantifying marine reservoir effect variability along the Northwest Coast of North America, Quaternary Res., 103, 160–181, https://doi.org/10.1017/qua.2020.131, 2021.
Sengupta, S.: Introduction to Sedimentology, 1st edn., London, Routledge, https://doi.org/10.1201/9780203749883, 2017.
Sheldon, C., Jennings, A., Andrews, J. T., Ó Cofaigh, C., Hogan, K., Dowdeswell, J. A., and Seidenkrantz, M.: Ice stream retreat following the LGM and onset of the west Greenland current in Uummannaq Trough, west Greenland, Quaternary Sci. Rev., 147, 27–46, https://goi.org/10.1016/j.quascirev.2016.01.019, 2016.
Sherrod, B. L., Blakely, R. J., Weaver, C. S., Kelsey, H. M., Barnett, E., Liberty, L., Meagher, K. L., and Pape, K.: Finding concealed active faults: Extending the southern Whidbey Island fault across the Puget Lowland, Washington, J. Geophys. Res., 113, B05313, https://doi.org/10.1029/2007JB005060, 2008.
Shugar, D. H., Walker, I. J., Lian, O. B., Eamer, J. B. R., Neudorf, C., McLaren, D., and Fedje, D.: Post-glacial sea-level change along the Pacific coast of North America, Quaternary Sci. Rev., 97, 170–192, https://doi.org/10.1016/j.quascirev.2014.05.022, 2014.
Simkins, L. M., Anderson, J. B., and Demet, B. P.: Grounding line processes of the southern Cordilleran Ice Sheet in the Puget Lowland, in: From the Puget Lowland to East of the Cascade Range: Geologic Excursions in the Pacific Northwest, edited by: Haugerud, R. A. and Kelsey, H. M., GSA, https://doi.org/10.1130/2017.0049(03), 2017.
Simkins, L. M., Greenwood, S. L., and Anderson, J. B.: Diagnosing ice sheet grounding line stability from landform morphology, The Cryosphere, 12, 2707–2726, https://doi.org/10.5194/tc-12-2707-2018, 2018.
Smith, J. A., Graham, A. G. C., Post, A. L., Hillenbrand, C., Bart, P. J., and Powell, R. D.: The marine geological imprint of Antarctic ice shelves, Nat. Commun., 10, 5635, https://doi.org/10.1038/s41467-019-13496-5, 2019.
Stuiver, M.: Workshop On 14C Data Reporting, Radiocarbon, 22, 964–966, https://doi.org/10.1017/S0033822200010389, 1980.
Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data, Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, F. G., Van Der Plicht, J., and Spurk, M.: INTCAL98 Radiocarbon age calibration 24,000–0 cal BP, Radiocarbon, 40, 1041–1083, https://doi.org/10.1017.S0033822200019123, 1998.
Swanson, T. W. and Caffee, M. L.: Determination of 36Cl Production Rates Derived from the Well-Dated Deglaciation Surfaces of Whidbey and Fidalgo Islands, Washington, Quaternary Res., 56, 366–382, https://doi.org/10.1006/qres.2001.2278, 2001.
Thompson, R. and Oldfield, F.: Environmental Magnetism, London, Allen and Unwin, ISBN 978-94-011-8038-2, 1986.
Thorson, R. M.: Ice-Sheet Glaciation of the Puget Lowland, Washington, during the Vashon Stade (Late Pleistocene), Quaternary Res., 13, 303–321, https://doi.org/10.1016/0033-5894(80)90059-9, 1980.
Thorson, R. M.: Isostatic effects of the last glaciation in the Puget lowland, Washington, U.S., Geol. Surv. Open-File Report, 81–370, 100, https://doi.org/10.3133/ofr81370, 1981.
Thorson, R.: Glacio-isostatic response of the Puget Sound area, Washington, GSA Bulletin, 101, 1163–1174, https://doi.org/10.1130/0016-7606(1989)101<1163:GIROTP>2.3.CO;2, 1989.
van der Wal, W., Whitehouse, P. L., and Schrama, E. J.: Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica, Earth Planet. Sc. Lett., 414, 134–143, https://doi.org/10.1016/j.epsl.2015.01.001, 2015.
Verosub, K. L. and Roberts, A. P.: Environmental magnetism: Past, present, and future, J. Geophys. Res.-Sol. Ea., 100, 2175–2192, https://doi.org/10.1029/94JB02713, 1995.
Waitt Jr., R. B. and Thorson, R. M.: The Cordilleran ice sheet in Washington, Idaho, and Montana, Late-quaternary environments of the US, 1, 53–70, 1983.
Wallinga, J. and Cunningham, A. C.: Luminescence dating, uncertainties and age range, Encyclopedia of Scientific Dating Methods, 440–445, https://doi.org/10.1007/978-94-007-6304-3_197, 2015.
Wallinga, J., Murray, A. S., and Bøtter-Jensen, L.: Measurement of the Dose in Quartz in the Presence of Feldspar Contamination, Rad. Protec. Dosimetry, 101, 367–370, https://doi.org/10.1093/oxfordjournals.rpd.a006003, 2002.
Walczak, M. H., Mix, A. C., Cowan, E. A., Fallon, S., Fifield, L. K., Alder, J. R., Du, J., Haley, B., Hobern, T., Padman, J., Praetorius, S. K., Schmittner, A., Stoner, J. S., and Zellers, S. D.: Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans, Science, 1979, eaba7096, https://doi.org/10.1126/science.aba7096, 2020.
Wan, J. X. W., Gomez, N., Latychev, K., and Han, H. K.: Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica, The Cryosphere, 16, 2203–2223, https://doi.org/10.5194/tc-16-2203-2022, 2022.
Ward, B. C., Wilson, M. C., Nagorsen, D. W., Nelson, D. E., Driver, J. C., and Wigen, R. J.: Port Eliza cave: North American West Coast interstadial environment and implications for human migrations, Quaternary Sci. Rev., 22, 1383e1388, https://doi.org/10.1016/S0277-3791(03)00092-1, 2003.
Weertman, J.: Stability of the Junction of an Ice Sheet and an Ice Shelf, J. Glaciol., 13, 3–11, https://doi.org/10.3189/S0022143000023327, 1974.
Wentworth, C. K.: A scale of grade and class terms for clastic sediments, J. Geol., 30, 377–392, http://www.jstor.org/stable/30063207 (last access: 5 April 2024), 1922.
Whillans, I. M. and van der veen, C. J.: The role of lateral drag in the dynamics of Ice Stream B, Antarctica, J. Glaciol., 43, 231–237, https://doi.org/10.3189/S0022143000003178, 1997.
Whitehouse, P. L.: Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions, Earth Surf. Dynam., 6, 401–429, https://doi.org/10.5194/esurf-6-401-2018, 2018.
Whitehouse, P. L., Gomez, N., King, M. A., and Wiens, D. A.: Solid Earth change and the evolution of the Antarctic Ice Sheet, Nat. Commun., 10, 503, https://doi.org/10.1038/s41467-018-08068-y, 2019.
Willis, B.: Drift phenomena of Puget Sound, GSA Bulletin, 9, 111–116, https://doi.org/10.1130/GSAB-9-111, 1897.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols, Rad. Measurements, 41, 369–391, https://doi.org/10.1016/j.radmeas.2005.11.001, 2006.
Yokoyama, Y. and Purcell, A.: On the geophysical processes impacting palaeo-sea-level observations, Geosci. Lett., 8, 13, https://doi.org/10.1186/s40562-021-00184-w, 2021.
Short summary
Records of the interaction between land and glacial ice movement in the Puget Lowland of Washington State are used to interpret that solid Earth movement provided stability to this marine-terminating glacial ice for at least 500 years. These results are significant because this landscape is similar to parts of the Greenland Ice Sheet and the Antarctic Peninsula, indicating that the interactions seen in this area are applicable to modern glaciated regions.
Records of the interaction between land and glacial ice movement in the Puget Lowland of...