Articles | Volume 20, issue 3
https://doi.org/10.5194/cp-20-637-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-637-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Weathering trends in the Norian through geochemical and rock magnetic analyses from the Pignola–Abriola section (Lagonegro Basin, Italy)
Matteo Maron
CORRESPONDING AUTHOR
Department of Engineering and Geology, University “G. d'Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
Tetsuji Onoue
Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Sara Satolli
Department of Engineering and Geology, University “G. d'Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
Katsuhito Soda
Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
Honami Sato
Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Department of Geosciences, University of Padua, Via G. Gradenigo 6, 35131 Padua, Italy
Giovanni Muttoni
Department of Earth Sciences “Ardito Desio”, University of Milan, Via L. Mangiagalli 34, 20133 Milan, Italy
Manuel Rigo
Department of Geosciences, University of Padua, Via G. Gradenigo 6, 35131 Padua, Italy
Institute of Geosciences and Earth Resources (IGG-CNR), Via G. Gradenigo 6, 35131 Padua, Italy
Related authors
No articles found.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
Sandro Rossato, Susan Ivy-Ochs, Silvana Martin, Alfio Viganò, Christof Vockenhuber, Manuel Rigo, Giovanni Monegato, Marco De Zorzi, Nicola Surian, Paolo Campedel, and Paolo Mozzi
Nat. Hazards Earth Syst. Sci., 20, 2157–2174, https://doi.org/10.5194/nhess-20-2157-2020, https://doi.org/10.5194/nhess-20-2157-2020, 2020
Short summary
Short summary
Rock avalanches are extremely dangerous, causing much damage worldwide. The
Masiere di Vedanais a rock avalanche deposit (9 km2, 170 Mm3) in NE Italy. We dated it back to late Roman to early Middle Ages. Identified drivers are the overall structural setting, exceptional rainfall events and seismic shakings. No exceptional event is required as a trigger. When dealing with heavily deformed bedrocks, especially in inhabited areas, the occurrence of a huge event like this must be considered.
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
D. V. Kent and G. Muttoni
Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, https://doi.org/10.5194/cp-9-525-2013, 2013
Related subject area
Subject: Feedback and Forcing | Archive: Terrestrial Archives | Timescale: Pre-Cenozoic
Enhanced climate variability in the tropics: a 200 000 yr annual record of monsoon variability from Pangea's equator
R. Y. Anderson
Clim. Past, 7, 757–770, https://doi.org/10.5194/cp-7-757-2011, https://doi.org/10.5194/cp-7-757-2011, 2011
Cited articles
Abrajevitch, A., Hori, R. S., and Kodama, K.: Rock magnetic record of the Triassic-Jurassic transition in pelagic bedded chert of the Inuyama section, Japan, Geology, 41, 803–806, https://doi.org/10.1130/G34343.1, 2013.
Aitchison, J.: The statistical analysis of compositional data, J. Roy. Stat. Soc. B Met., 44, 139–160, https://doi.org/10.1111/j.2517-6161.1982.tb01195.x, 1982.
Aitchison, J. and Shen, S. M.: Logistic-normal distributions – Some properties and uses, Biometrika, 67, 261–272, https://doi.org/10.2307/2335470, 1980.
Albarède, F.: Introduction to geochemical modeling, Cambridge University Press, Cambridge, UK, 543 pp., ISBN 0521578043, 1995.
Algeo, T. J. and Ingall, E.: Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeocl., 256, 130–155, https://doi.org/10.1016/j.palaeo.2007.02.029, 2007.
Algeo, T. J. and Li, C.: Redox classification and calibration of redox thresholds in sedimentary systems, Geochim. Cosmochim. Ac., 287, 8–26, https://doi.org/10.1016/j.gca.2020.01.055, 2020.
Ambrosi, J. P., Nahon, D., and Herbillon, A. J.: The epigenetic replacement of kaolinite by hematite in laterite – petrographic evidence and the mechanism involved, Geoderma, 37, 283–294, https://doi.org/10.1016/0016-7061(86)90030-3, 1986.
Amodeo, F.: Il Triassico terminale-Giurassico del Bacino Lagonegrese. Studi stratigrafici sugli Scisti Silicei della Basilicata (Italia meridionale), Mémoires de Géologie, Lausanne, Switzerland, 33, 1–123, 1999.
Amodeo, F., Molisso, F., Kozur, H., Marsella, E., and D'Argenio, B.: Age of transitional beds between Cherty Limestone (Calcari con Selce) and Radiolarites (Scisti Silicei) in the Lagonegro domain (Southern Italy). First evidence of Rhaetian Conodonts in Peninsular Italy, Boll. Serv. Geol. Ital., 110, 3–22, 1993.
Argnani, A.: Possible record of a Triassic ocean in the Southern Apennines, Boll. Soc. Geol. Ital., 124, 109–121, 2005.
Atkinson, A. C., Riani, M., and Cerioli, A.: Exploring Multivariate Data with the Forward Search, Springer–Verlag, New York, USA, 623 pp., https://doi.org/10.1007/978-0-387-21840-3, 2004.
Bazzucchi, P., Bertinelli, A., Ciarapica, G., Marcucci, M., Passeri, L., Rigo, M., and Roghi G.: The Late Triassic-Jurassic stratigraphic succession of Pignola (Lagonegro-Molise Basin, Southern Apennines, Italy), Boll. Soc. Geol. Ital., 124, 143–153, 2005.
Bertinelli, A., Casacci, M., Concheri, G., Gattolin, G., Godfrey, L., Katz, M. E., Maron, M., Mazza, M., Mietto, P., Muttoni, G., Rigo, M., Sprovieri, M., Stellin, F., and Zaffani, M.: The Norian/Rhaetian boundary interval at Pignola-Abriola section (Southern Apennines, Italy) as a GSSP candidate for the Rhaetian Stage: an update, Albertiana, 43, 5–18, 2016.
Best, M. E.: 11.15 Mineral Resources, in: Treatise on Geophysics, edited by: Schubert, G., Elsevier, Amsterdam, 525–556, https://doi.org/10.1016/B978-0-444-53802-4.00200-1, 2015.
Bloemendal, J. and DeMenocal, P.: Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements, Nature, 342, 897–900, https://doi.org/10.1038/342897a0, 1989.
Bloemendal, J., King, J. W., Hall, F. R., and Doh, S.-J.: Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology, J. Geophys. Res.-Sol. Ea., 97, 4361–4375, https://doi.org/10.1029/91JB03068, 1992.
Brigatti, M. F., Galan, E., and Theng, B. K. G.: Structures and mineralogy of clay minerals, in: Handbook of clay science, edited by: Bergaya, F., Theng, B. K. G., and Lagaly, G., Elsevier, Amsterdam, 19–86, https://doi.org/10.1016/S1572-4352(05)01002-0, 2006.
Casacci, M., Bertinelli, A., Algeo, T. J., and Rigo, M.: Carbonate to biosilica transition at the Norian-Rhaetian boundary controlled by rift-related subsidence in the western Tethyan Lagonegro Basin (southern Italy), Palaeogeogr. Palaeocl., 456, 21–36, https://doi.org/10.1016/j.palaeo.2016.05.007, 2016.
Ciarapica, G. and Passeri, L.: The palaeogeographic duplicity of the Apennines, Boll. Soc. Geol. Ital., Vol. Spec., 1, 67–75, 2002.
Ciarapica, G. and Passeri, L.: Ionian Tethydes in the Southern Apennines, in: CROP Project, Deep Seismic Exploration of the Central Mediterranean and Italy, edited by: Finetti, I. R., Elsevier, Amsterdam, 209–224, ISBN 0-444-50693-4, 2005.
Chang, L., Harrison, R. J., Zeng, F., Berndt, T. A., Robert, A. P., Heslop, D., and Zhao, X.: Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene-Eocene Thermal Maximum, Nat. Comm., 9, 4007, https://doi.org/10.1038/s41467-018-06472-y, 2018.
Clapham, M. E. and Renne, P. R.: Flood basalts and mass extinctions, Annu. Rev. Earth Pl. Sc., 47, 275–303, https://doi.org/10.1146/annurev-earth-053018-060136, 2018.
Day, R., Fuller, M., and Schmidt, V. A.: Hysteresis properties of titanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. In., 13, 260–267, https://doi.org/10.1016/0031-9201(77)90108-X, 1977.
Delavari, M., Dolati, A., Mohammadi, A., and Rostami, F.: The Permian volcanics of Central Alborz: Implications for passive continental margin along the southern border of Paleotethys, Ofioliti, 41, 59–74, https://doi.org/10.4454/ofioliti.v41i2.442, 2016.
Doroozi, R., Vaccaro, C., Masoudi, F., and Petrini, R.: Petrogenesis and mantle source characteristics of Triassic alkaline basaltic rocks of North Kamarbon, Northern Central Alborz, Iran, Solid Earth Sciences, 3, 115–129, https://doi.org/10.1016/j.sesci.2018.06.001, 2018.
Dunlop, D. J.: Thermal enhancement of magnetic susceptibility, J. Geophys., 40, 439–451, 1974.
Dunlop, D. J.: Theory and application of the Day plot ( versus ) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res.-Sol. Ea., 107, 2056, https://doi.org/10.1029/2001JB000486, 2002a.
Dunlop, D. J.: Theory and application of the Day plot ( versus ) 2. Application to data for rocks, sediments, and soils, J. Geophys. Res.-Sol. Ea., 107, 2057, https://doi.org/10.1029/2001JB000487, 2002b.
Dunlop, D. J.: High-temperature susceptibility of magnetite: a new pseudo-single-domain effect, Geophys. J. Int., 199, 707–716, https://doi.org/10.1093/gji/ggu247, 2014.
Dunlop, D. J. and Özdemir, Ö.: Magnetization in Rocks and Minerals, in: Treatise on Geophysics, vol. 5 Geomagnetism, edited by: Schubert, G., Elsevier, Amsterdam, 277–336, https://doi.org/10.1016/B978-044452748-6.00093-6, 2007.
Egli, R.: Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments, Stud. Geophys. Geod., 48, 391–446, https://doi.org/10.1023/B:SGEG.0000020839.45304.6d, 2004.
Egli, R.: VARIFORC: An optimized protocol for calculating non-regular first-order reversal curves (FORC) diagrams, Global Planet. Change, 110, 302–320, https://doi.org/10.1016/j.gloplacha.2013.08.003, 2013.
Egli, R. and Lowrie, W.: Anhysteretic remanent magnetization of fine magnetic particles, J. Geophys. Res.-Sol. Ea., 107, 2209, https://doi.org/10.1029/2001JB000671, 2002.
Ernst, R. E. and Buchan, K. L.: Large mafic magmatic events through time and links to mantle-plume heads, in: Mantle Plumes: Their Identification Through Time, edited by: Ernst, R. E. and Buchan, K. L., Geol. Soc. Am. Special Paper, 352, 483–575, https://doi.org/10.1130/0-8137-2352-3.483, 2001.
Finetti, I. R.: Structure and evolution of the Central Mediterranean (Pelagian and Ionian Sea), in: Geological evolution of the Mediterranean Basin, edited by: Stanley, D. J. and Wezel, F. C., Springer-Verlag, New York, 215–230, https://doi.org/10.1007/978-1-4613-8572-1_10, 1985.
Fürsich, F. T., Singh, I. B., Joachimski, M., Krumm, S., Schlirf, M., and Schlirf, S.: Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): an integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data, Palaeogeogr. Palaeocl., 217, 289–309, https://doi.org/10.1016/j.palaeo.2004.11.026, 2005.
Giordano, N., Rigo, M., Ciarapica, G., and Bertinelli, A.: New biostratigraphical constraints for the Norian/Rhaetian boundary: Data from Lagonegro Basin, southern Apennines, Italy, Lethaia, 43, 573–586, https://doi.org/10.1111/j.1502-3931.2010.00219.x, 2010.
Goddéris, Y., Donnadieu, Y., de Vargas, C., Pierrehumbert, R. T., Dromart, G., and van de Schootbrugge, B.: Causal or causal link between the rise of nannoplankton calcification and a tectonically-driven massive decrease in Late Triassic atmospheric CO2?, Earth Planet. Sc. Lett., 267, 247–255, https://doi.org/10.1016/j.epsl.2007.11.051, 2008.
Goldich, S. S.: A study in rock-weathering, J. Geol., 46, 17–58, https://doi.org/10.1086/624619, 1938.
Golub, G. H. and Van Loan, C. F.: Matrix Computations, 2nd ed., Johns Hopkins University Press, Baltimore, USA, 756 pp., ISBN 978-1-4214-0794-4, 1989.
Govindaraju, K.: 1994 compilation of working values and sample description for 383 geostandards, Geostandard. Newslett., 18, 1–158, https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1, 1994.
Haldar, S. K.: Chapter 4 – Exploration Geochemistry, in: Mineral Exploration, edited by: Haldar, S. K., Elsevier, Amsterdam, 55–71, https://doi.org/10.1016/B978-0-12-416005-7.00004-0, 2013.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: palaeontological statistics software package for education and data analysis, Palaeontol. Electron., 4, https://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 14 March 2024), 2001.
Harrison, R. J., and Feinberg, J. M.: FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing, Geochem. Geophy. Geosy., 9, Q05016, https://doi.org/10.1029/2008GC001987, 2008.
Hernández-Quiroz, M., Herre, A., Cram, S., Ponce de León, C., and Siebe, C.: Pedogenic, lithogenic – or anthropogenic origin of Cr, Ni and V in soils near a petrochemical facility in Southeast Mexico, Catena, 93, 49–57, https://doi.org/10.1016/j.catena.2012.01.005, 2012.
Hopkinson, J.: XIV. Magnetic and other physical properties of iron at a high temperature, Philos. T. R. Soc. A, 180, 443–465, https://doi.org/10.1098/rsta.1889.0014, 1889.
Kent, D. V. and Irving, E.: Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics, J. Geophys. Res.-Sol. Ea., 115, B10103, https://doi.org/10.1029/2009JB007205, 2010.
Kent, D. V. and Muttoni, G.: Equatorial convergence of India and early Cenozoic climate trends, P. Natl. Acad. Sci. USA, 105, 16065–16070, https://doi.org/10.1073/pnas.0805382105, 2008.
Kent, D. V. and Muttoni, G.: Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt, Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, 2013.
King, J. G. and Ranganai, R. T.: Determination of magnetite grain-size using the Hopkinson effect – examples from Botswana rocks, Botswana Journal of Earth Sciences, 5, 35–38, 2001.
Jaret, S. J., Hemming, S. R., Rasbury, E. T., Thompson, L. M., Glotch, T. D., Ramezani, J., and Spray, J. G.: Context matters – Ar–Ar results from in and around the Manicouagan Impact Structure, Canada: Implications for martian meteorite chronology, Earth Planet. Sc. Lett., 501, 78–89, https://doi.org/10.1016/j.epsl.2018.08.016, 2018.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Jin, X., Ogg, J. G., Lu, S., Shi, Z., Kemp, D. B., Hua, X., Onoue, T., and Rigo, M.: Terrestrial record of carbon-isotope shifts at the Norian/Rhaetian boundary: A high-resolution study from northwestern Sichuan Basin, South China, Global Planet. Change, 210, 103754, https://doi.org/10.1016/j.gloplacha.2022.103754, 2022.
Jones, C. E. and Jenkyns, H. C.: Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous, Am. J. Sci., 301, 112–149, https://doi.org/10.2475/ajs.301.2.112, 2001.
Just, J., Nowaczyk, N. R., Sagnotti, L., Francke, A., Vogel, H., Lacey, J. H., and Wagner, B.: Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans), Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, 2016.
Larrasoaña, J. C., Roberts, A. P., Musgrave, R. J., Gràcia, E., Piñero, E., Vega, M., and Martínez-Ruiz, F.: Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems, Earth Planet. Sc. Lett., 261, 350–366, https://doi.org/10.1016/j.epsl.2007.06.032, 2007.
Lascu, I., McLauchlan, K. K., Myrbo, A., Leavitt, P. R., and Banerjee, S. K.: Sediment-magnetic evidence for last millennium drought conditions at the prairie-forest ecotone of the northern United States, Palaeogeogr. Palaeocl., 337–338, 99–107, https://doi.org/10.1016/j.palaeo.2012.04.001, 2012.
Li, H.-Y. and Zhang, S.-H.: Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities, Chinese J. Geophys., 48, 1454–1461, https://doi.org/10.1002/cjg2.794, 2005.
Liu, P., Hirt, A. M., Schüler, D., Uebe, R., Zhu, P., Liu, T., and Zhang, H.: Numerical unmixing of weakly and strongly magnetic minerals: examples with synthetic mixtures of magnetite and hematite, Geophys. J. Int., 217, 280–287, https://doi.org/10.1093/gji/ggz022, 2019.
Lucas, S. G.: The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology, in: The Triassic timescale, edited by: Lucas, S. G., Geol. Soc. Spec. Publ., 334, 447–500, https://doi.org/10.1144/SP334.15, 2010.
Maron, M., Rigo, M., Bertinelli, A., Katz, M. E., Godfrey, L., Zaffani, M., and Muttoni, G.: Magnetostratigraphy, biostratigraphy and chemostratigraphy of the Pignola-Abriola section: new constraints for the Norian-Rhaetian boundary, Geol. Soc. Am. Bull., 127, 962–974, https://doi.org/10.1130/B31106.1, 2015.
Maron, M., Muttoni, G., Dekkers, M. J., Mazza, M., Roghi, G., Breda, A., Krijgsman, W., and Rigo, M.: Contribution to the magnetostratigraphy of the Carnian: new magneto-biostratigraphic constraints from Pignola-2 and Dibona marine sections, Italy, Newsl. Stratigr., 50, 187–203, https://doi.org/10.1127/nos/2017/0291, 2017.
Maron, M., Muttoni, G., Rigo, M., Gianolla, P., and Kent, D. V.: New magnetobiostratigraphic results from the Ladinian of the Dolomites and implications for the Triassic geomagnetic polarity timescale, Palaeogeogr. Palaeocl., 517, 52–73, https://doi.org/10.1016/j.palaeo.2018.11.024, 2019.
Maron, M., Onoue, T., Satolli, S., Soda, K., Sato, H., Muttoni, G., and Rigo, M.: Weathering trends in the Norian: geochemical and rock magnetic dataset from the Pignola-Abriola Section (Lagonegro Basin, Italy), V1, Mendeley Data [data set], https://doi.org/10.17632/bmbt8t2ywj.1, 2023.
Maxbauer, D. P., Feinberg, J. M., and Fox, D. L.: MAX UnMix: A web application for unmixing magnetic coercivity distribution, Comput. Geosci., 95, 140–145, https://doi.org/10.1016/j.cageo.2016.07.009, 2016a.
Maxbauer, D. P., Feinberg, J. M., and Fox, D. L.: Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges, Earth Sci. Rev., 155, 28–48, https://doi.org/10.1016/j.earscirev.2016.01.014, 2016b.
McLennan, S. M.: Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochem. Geophy. Geosy., 2, 2000GC000109, https://doi.org/10.1029/2000gc000109, 2001.
Middelburg, J. J., van der Weijden, C. H., and Woittiez, J. R. W.: Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks, Chem. Geol., 68, 253–273, https://doi.org/10.1016/0009-2541(88)90025-3, 1988.
Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M., and Berra, F.: The drift history of Iran from the Ordovician to the Triassic, Geol. Soc. Spec. Publ., 312, 7–29, https://doi.org/10.1144/SP312.2, 2009.
Nakada, R., Ogawa, K., Suzuki, N., Takahashi, S., and Takahashi, Y.: Late Triassic compositional changes of aeolian dusts in the pelagic Panthalassa: Response to the continental climatic change, Palaeogeogr. Palaeocl., 393, 61–75, https://doi.org/10.1016/j.palaeo.2013.10.014, 2014.
Nesbitt, H. W. and Young, G. M.: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, 715–717, https://doi.org/10.1038/299715a0, 1982.
Okay, A. I., Monod, O., and Monié, P.: Triassic blueschists and eclogites from northwest Turkey: vestiges of the Paleo-Tethyan subduction, Lithos, 64, 155–178, https://doi.org/10.1016/S0024-4937(02)00200-1, 2002.
Onoue, T., Yamashita, K., Fukuda, C., Soda, K., Tomimatsu, Y., Abate, B., and Rigo, M.: Sr isotope variations in the Upper Triassic succession at Pizzo Mondello, Sicily: Constraints on the timing of the Cimmerian Orogeny, Palaeogeogr. Palaeocl., 499, 131–137, https://doi.org/10.1016/j.palaeo.2018.03.025, 2018.
Onoue, T., Soda, K., and Isozaki, Y.: Development of Deep-Sea Anoxia in Panthalassa During the Lopingian (Late Permian): Insights from redox-sensitive elements and multivariate analysis, Front. Earth Sci., 8, 613126, https://doi.org/10.3389/feart.2020.613126, 2021.
Onoue, T., Michalík, J., Shirozu, H., Yamashita, M., Yamashita, K., Kusaka, S., and Soda, K.: Extreme continental weathering in the northwestern Tethys during the end-Triassic mass extinction, Palaeogeogr. Palaeocl., 593, 110934, https://doi.org/10.1016/j.palaeo.2022.110934, 2022.
Ortega, B., Caballero, C., Lozano, S., Israde, I., and Vilaclara, G.: 52000 years of environmental history in Zacapu basin, Michoacan, Mexico: the magnetic record, Earth Planet. Sc. Lett., 202, 663–675, https://doi.org/10.1016/S0012-821X(02)00802-6, 2002.
Paìlfy, J., Demény, A., Haas, J., Hetényi, M., Orchard, M. J., and Vetö, I.: Carbon isotope anomaly at the Triassic–Jurassic boundary from a marine section in Hungary, Geology, 29, 1047–1050, https://doi.org/10.1130/0091-7613(2001)029<1047:CIAAOG>2.0.CO;2, 2001.
Paterson, G. A., Zhao, X., Jackson, M., and Heslop, D.: Measuring, Processing, and Analyzing Hysteresis Data, Geochem. Geophy. Geosys., 19, 1925–1945, https://doi.org/10.1029/2018GC007620, 2018.
Pokrovsky, O. S., Schott, J., Kudryavtzev, D. I., and Dupré, B.: Basalt weathering in Central Siberia under permafrost conditions, Geochim. Cosmochim. Ac., 69, 5659–5680, https://doi.org/10.1016/j.gca.2005.07.018, 2005.
Price, G. D. and Sellwood, B. W.: Palaeotemperatures indicated by Upper Jurassic (Kimmeridgian-Tithonian) fossils from Mallorca determined by oxygen isotope composition, Palaeogeogr. Palaeocl., 110, 1–10, https://doi.org/10.1016/0031-0182(94)90106-6, 1994.
Prokoph, A., El Bilali, H., and Ernst, R.: Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution, Geosci. Front., 4, 263–276, https://doi.org/10.1016/j.gsf.2012.08.001, 2013.
Rampino, M. R. and Stothers, R. B.: Flood basalt volcanism during the past 250 million years, Science, 241, 663–668, https://doi.org/10.1126/science.241.4866.663, 1988.
Reggiani, L., Bertinelli, A., Ciarapica, G., Marcucci, M., Passeri, L., Ricci, C., and Rigo, M.: Triassic-Jurassic stratigraphy of the Madonna del Sirino succession (Lagonegro Basin, Southern Apennines, Italy), Boll. Soc. Geol. Ital., 124, 281–291, 2005.
Richoz, S., Krystyn, L., and Spötl, C.: Towards a carbon isotope reference curve of the Upper Triassic, New Mexico Museum of Natural History and Science Bulletin, 41, 366–367, 2007.
Rigo, M., De Zanche, V., Mietto, P., Preto, N., and Roghi, G.: Biostratigraphy of the Calcari con Selce formation, Boll. Soc. Geol. Ital., 124, 293–300, 2005.
Rigo, M., Preto, N., Franceschi, M., and Guaiumi, C.: Stratigraphy of the Carnian-Norian Calcari con Selce Formation in the Lagonegro Basin, southern Apennines, Riv. Ital. Paleontol. Stratigr, 118, 143–154, https://doi.org/10.13130/2039-4942/5995, 2012.
Rigo, M., Bertinelli, A., Concheri, G., Gattolin, G., Godfrey, L., Katz, M. E., Maron, M., Muttoni, G., Sprovieri, M., Stellin, F., and Zaffani, M.: The Pignola-Abriola section (southern Apennines, Italy): A new GSSP candidate for the base of the Rhaetian Stage, Lethaia, 49, 287–306, https://doi.org/10.1111/let.12145, 2016.
Rigo, M., Onoue, T., Tanner, L. H., Lucas, S. G., Godfrey, L., Katz, M. E., Zaffani, M., Grice, K., Cesar, J., Yamashita, D., Maron, M., Tackett, L. S., Campbell, H., Tateo, F., Concheri, F., Agnini, C., Chiari, M., and Bertinelli, A.: The Late Triassic Extinction at the Norian/Rhaetian boundary: Biotic evidence and geochemical signature, Earth Sci. Rev., 204, 103180, https://doi.org/10.1016/j.earscirev.2020.103180, 2020.
Roberts, A. P., Chang, L., Rowan, C. J., Horng, C.-S., and Florindo, F.: Magnetic properties of sedimentary greigite (Fe3S4): an update, Rev. Geophys., 49, RG1002, https://doi.org/10.1029/2010RG000336, 2011.
Roberts, A. P., Heslop, D., Zhao, X., and Pike, C. R.: Understanding fine magnetic particle systems through use of first-order reversal curve diagrams, Rev. Geophys., 52, 557–602, https://doi.org/10.1002/2014RG000462, 2014.
Rodelli, D., Jovane, L., Giorgioni, M., Rego, E. S., Cornaggia, F., Benites, M., Cedraz, P., Berbel, G. B. B., Braga, E. S., Ustra, A., Abreu, F., and Roberts, P.: Diagnenetic fate of biogenic soft and hard magnetite in chemically stratified sedimentary environments of Mamanguá Ría, Brazil, J. Geophys. Res.-Sol. Ea., 124, 2313–2330, https://doi.org/10.1029/2018JB016576, 2019.
Scandone, P.: Studi di geologia lucana: la serie calcareo-silico-marnosa, Bollettino Società Naturalisti Napoli, 76, 1–175, 1967.
Schaller, M. F., Wright, J. D., Kent, D. V., and Olsen, P. E.: Rapid emplacement of the Central Atlantic magmatic province as a net sink for CO2, Earth Planet. Sc. Lett., 323–324, 27–39, https://doi.org/10.1016/j.epsl.2011.12.028, 2012.
Schaller, M. F., Wright, J. D., and Kent, D. V.: A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering, Geol. Soc. Am. Bull., 127, 661–671, https://doi.org/10.1130/B31107.1, 2015.
Snowball, I., Sandgren P., and Petterson, G.: The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden, Holocene, 9, 353–362, https://doi.org/10.1191/095968399670520633, 1999.
Soda, K. and Onoue, T.: Multivariate analysis of geochemical compositions of bedded chert during the Middle Triassic (Anisian) oceanic anoxic events in the Panthalassic Ocean, Geochem. J., 53, 91–102, https://doi.org/10.2343/geochemj.2.0540, 2019.
Tanner, L. H.: The Triassic isotope record, in: The Triassic Timescale, edited by: Lucas, S. G., Geol. Soc. Spec. Publ., 334, 103–118, https://doi.org/10.1144/SP334.5, 2010.
Tauxe, L. and Kent, D. V.: A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? In: Timescales of the Paleomagnetic field, edited by: Channel, J. E. T., Kent, D. V., Lowrie, W., and Meert J. G., AGU Geophysical Monograph Series, 145, 101–115, https://doi.org/10.1029/145GM08, 2004.
Thouveny, N., de Beaulieu, J.-L., Bonifay, E., Creer, K. M., Guiot, J., Icole, M., Johnsen, S., Jouzel, J., Reille, M., Williams, T., and Williamson, D.: Climate variations in Europe over the past 140 kyr deduced from rock magnetism, Nature, 371, 503–506, https://doi.org/10.1038/371503a0, 1994.
Trotter, A. J., Williams, S. I., Nicora, A., Mazza, M., and Rigo, M.: Long-term cycles of Triassic climate change: A new δ18O record from conodont apatite, Earth Planet. Sc. Lett., 415, 165–174, https://doi.org/10.1016/j.epsl.2015.01.038, 2015.
Van der Post, K. D., Oldfield, F., Haworth, E. Y., Crooks, P. R. J., and Appleby, P. G.: A record of accelerated erosion in the recent sediments of Blelham Tarn in the English Lake district, J. Paleolimnol., 18, 103–120, https://doi.org/10.1023/A:1007922129794, 1997.
van de Schootbrugge, B., Payne, J. L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Föllmi, K. B., and Quan, T. M.: Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass extinction event, Geochem. Geophy. Geosys., 9, 1–16, https://doi.org/10.1029/2007GC001914, 2008.
Van Huffel, S. and Vanderwalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis, Society for Industrial and Applied Mathematics, Philadelphia, USA, 313 pp., ISBN 978-0-89871-275-9, 1991.
Vigliotti, L., Capotondi, L., and Torii, M.: Magnetic properties of sediment deposited in suboxic-anoxic environments: relationships with biological and geochemical proxies, in: Palaeomagnetism and Diagenesis in Sediments, edited by: Tarling, D. H. and Turner, P., Geol. Soc. Spec. Publ., 151, 71–83, https://doi.org/10.1144/GSL.SP.1999.151.01.08, 1999.
Villareal, D. P., Robinson, A. C., Carrapa, B., Worthington, J., Chapman, J. B., Oimahmadov, I., Gadoev, M., and MacDonald, B.: Evidence for Late Triassic crustal suturing of the Central and Southern Pamir, J. Asian Earth Sci.: X, 3, 100024, https://doi.org/10.1016/j.jaesx.2019.100024, 2020.
Vlag, P., Thouveny, N., Williamson, D., Andrieu, V., Icole, M., and van Velzen, A. J.: The rock magnetic signal of climate change in the maar lake sequence of Lac St Front (France), Geophys. J. Int., 131, 724–740, https://doi.org/10.1111/j.1365-246X.1997.tb06608.x, 1997.
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term stabilization of Earth's surface-temperature, J. Geophys. Res.-Oceans, 86, 9776–9782, https://doi.org/10.1029/JC086iC10p09776, 1981.
Wang, L., Pan, Y.-X., Li, J.-H., and Qin, H.-F.: Magnetic properties related to thermal treatment of pyrite, Sci. China Ser. D, 51, 1144–1153, https://doi.org/10.1007/s11430-008-0083-7, 2008.
Wang, L., Hu, S., Yu, G., Ma, M., Wang, Q., Zhang, Z., Liao, M., Gao, L., Ye, L., and Wang, X.: Magnetic characteristics of sediments from a radial sand ridge field in the South Yellow Sea, eastern China, and environmental implications during the mid- to late-Holocene, J. Asian Earth Sci., 163, 224–234, https://doi.org/10.1016/j.jseaes.2018.05.035, 2018.
Wang, X., Løvlie, R., Su, P., and Fan, X.: Magnetic signature of environmental change reflected by Pleistocene lacustrine sediments from the Nihewan Basin, North China, Palaeogeogr. Palaeocl., 260, 452–462, https://doi.org/10.1016/j.palaeo.2007.12.006, 2008.
Ward, P. D., Garrison, G. H., Haggart, J. W., Kring, D. A., and Beattie, M. J.: Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction, Earth Planet. Sc. Lett., 224, 589–600, https://doi.org/10.1016/j.epsl.2004.04.034, 2004.
Weaver, R., Roberts, A. P., and Barker, A. J.: A late diagenetic (syn-folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphides-bearing sediments, Earth Planet. Sc. Lett., 200, 371–386, https://doi.org/10.1016/S0012-821X(02)00652-0, 2002.
Wignall, P. B.: Large igneous provinces and mass extinctions, Earth Sci. Rev., 53, 1–33, https://doi.org/10.1016/S0012-8252(00)00037-4, 2001.
Wilmsen, M., Fürsich, F. T., Seyed-Emami, K., Majidifard, M. R., and Taheri, J.: The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland, Terra Nova, 21, 211–218, https://doi.org/10.1111/j.1365-3121.2009.00876.x, 2009.
Zanchetta, S., Worthington, J., Angiolini, L., Leven, E. J., Villa, I. M., and Zanchi, A.: The Bashgumbaz Complex (Tajikistan): Arc obduction in the Cimmerian orogeny of the Pamir, Gondwana Res., 57, 170–190, https://doi.org/10.1016/j.gr.2018.01.009, 2018.
Zaffani, M., Agnini, C., Concheri, G., Godfrey, L., Katz, M., Maron, M., and Rigo, M.: The Norian “chaotic carbon interval”: new clues from the δ13Corg record of the Lagonegro Basin (southern Italy), Geosphere, 13, 1133–1148, https://doi.org/10.1130/GES01459.1, 2017.
Short summary
For better knowledge of the climate perturbation that occurred in the lattermost part of the Triassic (Norian–Rhaetian), we investigated the geochemical and rock magnetic properties of the limestones of the Pignola–Abriola section (Lagonegro Basin, Italy). Our investigation revealed at least a major episode of enhanced weathering occurring in the late Norian (~217–211 Ma), possibly related to the Cimmerian orogen and/or the northward motion of Pangea across the equatorial humid belt.
For better knowledge of the climate perturbation that occurred in the lattermost part of the...