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Abstract. We investigated the geochemical and rock mag-
netic properties of the magnetostratigraphically calibrated
Pignola–Abriola section (Italy) in order to understand the
climatic perturbations that characterize the late Norian–early
Rhaetian interval (Late Triassic). We performed experiments
on anhysteretic and isothermal remanence (ARM and IRM)
and on magnetic susceptibility (χ ) to obtain the rock mag-
netic parameters necessary for our paleoclimatic investi-
gation. An episode of increase in the relative quantity of
hematite, suggesting the enhanced subaerial oxidation of iron
minerals, was identified in the Norian from ∼ 217 Ma in the
Alaunian up to∼ 211 Ma in the early Sevatian, followed by a
decline up to 207–206 Ma at the end of the Norian (late Seva-
tian). The results of geochemical and multivariate statistical
analyses support a long-term increase and reduction in rock
weathering, confirming and extending previous 87Sr / 86Sr
data from the Pizzo Mondello section (Italy). Possible causes
of these long-term weathering trends are the multiphase up-
lifting of the Cimmerian orogen, occurring at mid-northern
latitudes along the southern margin of Asia in the Late Trias-
sic, and/or the northward motion of Pangea across the equa-
torial humid belt. Rapid excursions in oxidized iron minerals
have also been observed across the Norian–Rhaetian bound-
ary, the origin of which still has to be determined.

1 Introduction

The late Norian–early Rhaetian interval (Late Triassic) is
characterized by climatic perturbations associated with a
biotic crisis (Rampino and Stothers, 1988; Wignall, 2001;
Jones and Jenkyns, 2001; Paìlfy et al., 2001; Ward et al.,
2004; Richoz et al., 2007; van de Schootbrugge et al., 2008;
Jenkyns, 2010; Lucas, 2010; Tanner, 2010; Trotter et al.,
2015; Clapham and Renne, 2018; Zaffani et al., 2017; Rigo
et al., 2020). Sedimentary rocks can record the effects of cli-
mate change through variations in water chemistry and sed-
imentary input. Geochemistry is therefore widely applied,
but rock magnetism can also effectively contribute to un-
veil paleoclimate variability (e.g., Bloemendal and DeMeno-
cal, 1989; Thouveny et al., 1994; Vlag et al., 1997; Van
der Post et al., 1997; Snowball et al., 1999; Vigliotti et al.,
1999; Ortega et al., 2002; X. Wang et al., 2008; Lascu et al.,
2012; Abrajevitch et al., 2013; Just et al., 2016; Chang et al.,
2018; L. Wang et al., 2018; Rodelli et al., 2019). In order
to obtain paleoclimatic information for the late Norian–early
Rhaetian, we provide new geochemical and rock magnetic
data from the Pignola–Abriola section (southern Apennines,
Italy), which is a Global Stratigraphic Sections and Points
candidate of the Rhaetian Stage (Rigo et al., 2016), already
provided with biostratigraphy (Bazzucchi et al., 2005; Rigo
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et al., 2005, 2016; Bertinelli et al., 2016), carbon isotope data
(Zaffani et al., 2017), and magnetostratigraphy (Maron et al.,
2015). We also examined stratigraphic variations in major
elements to trace changes in the degree of chemical weath-
ering in hinterland regions and applied principal component
analysis (PCA) to major element contents. The PCA results
allowed the separation of signals from multiple source mate-
rials and the constraint of the degree of hinterland weathering
(Soda and Onoue, 2019; Onoue et al., 2021, 2022).

2 Geological setting

The Pignola–Abriola section (40°33′23.5′′ N, 15°47′1.7′′ E)
is located on the western side of Monte Crocetta, along road
SP5 between the towns of Pignola and Abriola (Fig. 1).
The section comprises 63 m of a basinal sequence belong-
ing to the Calcari con Selce Formation deposited in the
Lagonegro Basin, a branch of the western Tethys Ocean that
has been active since the Permian (Scandone, 1967; Finetti,
1985; Amodeo et al., 1993; Amodeo, 1999; Ciarapica and
Passeri, 2002, 2005; Argnani, 2005; Bazzucchi et al., 2005;
Reggiani et al., 2005; Rigo et al., 2005, 2012, 2016; Gior-
dano et al., 2010; Maron et al., 2015, 2017; Bertinelli et
al., 2016; Zaffani et al., 2017). The studied interval cov-
ers the middle–upper Norian (Alaunian and Sevatian) and
the lower Rhaetian portion of the Calcari con Selce For-
mation. The dominant lithology is represented by bedded
cherty limestones, partially dolomitized in the lower part of
the section, with sporadic centimeter-thick calcarenites due
to turbiditic events or gravity flows (e.g., Amodeo, 1999;
Giordano et al., 2010; Bertinelli et al., 2016). Shales, ra-
diolarites, and marls become more abundant in the upper-
most part of the Calcari con Selce at the transition with
the overlying Scisti Silicei Formation, where the siliciclas-
tic fraction and the biosiliceous sedimentation are domi-
nant (e.g., Reggiani et al., 2005). Conodonts and radiolar-
ians are the most common fossils in the Pignola–Abriola
section (Amodeo, 1999; Bazzucchi et al., 2005; Rigo et al.,
2005, 2012, 2016; Giordano et al., 2010). The first appear-
ance datum of conodont Misikella posthernsteini s.s. marks
the Norian–Rhaetian boundary (hereafter NRB) at meter 44.9
(Giordano et al., 2010; Maron et al., 2015; Rigo et al., 2016)
and falls within the base of the Proparvicingula monili-
formis radiolarian zone, which defines the Rhaetian Stage.
The NRB is also marked by a δ13Corg negative excursion
recorded in marine (e.g., Pignola–Abriola, Monte Volturino,
and Madonna del Sirino in Italy, Wombat Basin in Australia,
Kiritehere in New Zealand, Kennecott Point in Canada, New
York Canyon in USA, and Kastelli in Greece; Maron et
al., 2015, 2019; Rigo et al., 2016, 2020; Bertinelli et al.,
2016; Zaffani et al., 2017) and terrestrial sections (e.g., Xu-
jiahe in China; Jin et al., 2022). The magnetostratigraphy
of Pignola–Abriola is represented by 10 magnetozones, 5
of normal polarity and 5 of reverse polarity and is coherent

with the magnetostratigraphy of the main stratigraphic sec-
tions of late Norian–early Rhaetian age (Maron et al., 2015,
2019). The magnetostratigraphic correlation to the Newark
Astrochronological Polarity Time Scale (Newark-APTS) as-
signed an age of 205.7 Ma to the Norian–Rhaetian boundary
at Pignola–Abriola (Maron et al., 2015, 2019).

3 Methods

3.1 Rock magnetism

Rock magnetism experiments have been performed on 136
non-oriented samples from the Pignola–Abriola section.
Analyses of mass susceptibility (χ ) has been performed with
an AGICO MFK2-A on all samples, while temperature-
dependent mass susceptibility (χ vs. T ) was measured in
a controlled atmosphere (argon) on 59 samples representa-
tive of the main lithologies and equally distributed along the
section, using an AGICO CS4 furnace apparatus. An ASC
Scientific D2000 AF demagnetizer has been used to apply
an anhysteretic remanent magnetization (ARM) to the sam-
ples, using a bias DC field of 0.1 mT and an AC field of
100 mT. The acquisition of isothermal remanent magnetiza-
tion (IRM) curves (maximum field is 1T ) was performed
with a Bussi pulse magnetizer. The unmixing of IRM ac-
quisition curves has been performed with the MAX UnMix
software (Maxbauer et al., 2016a). ARM and IRM were mea-
sured using an AGICO JR-6 spinner magnetometer (sensitiv-
ity is 2.4× 10−6 A m−1). The S ratio (Eq. 1),

S−0.3T = 0.5×
IRM1T − IRM−0.3T

IRM1T
, (1)

and HIRM (hard IRM) (Eq. 2),

H =
IRM−0.3T + IRM1T

2
, (2)

were calculated from IRM backfield data. To calculate the S
ratio, we used the formula of Bloemendal et al. (1992), which
better discriminates the contribution of high-coercivity anti-
ferromagnetic minerals (Maxbauer et al., 2016b). Hystere-
sis curves on 43 samples have been acquired with the Mi-
croSense EZ7 vibrating sample magnetometer. All analy-
ses have been performed at the paleomagnetic laboratories
CIMaN-ALP (Centro Interuniversitario di Magnetismo Nat-
urale – Alpine Laboratory of Paleomagnetism; Peveragno)
and LASA (Laboratorio Acceleratori e Superconduttività
Applicata; Segrate), Italy. The stratigraphic curves of the
rock magnetic parameters have been smoothed using local
regression (LOESS) and using PAST software (Hammer et
al., 2001).

3.2 Geochemistry

3.2.1 Major elements analysis

Samples for whole-rock geochemical analysis were collected
from 56 beds in the Pignola–Abriola section. The shale-
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Figure 1. (a) Location of the Pignola–Abriola section (40°33′23.5′′ N, 15°47′1.7′′ E) in the Lagonegro Basin (southern Apennines, Italy)
and paleogeographic reconstruction of the area in the Late Triassic (modified from Maron et al., 2015). (b) Paleogeographic reconstruction
of the Lagonegro Basin, located in the western Tethys during the Late Triassic.

dominated samples were crushed in an agate mortar and
washed with ultrapure water. After drying, the fragments
were carefully hand-picked to avoid contamination by al-
tered and weathered material. The hand-picked fragments
were then pulverized in an agate mortar.

Major element concentrations of 47 samples were deter-
mined by X-ray fluorescence spectrometry (PANalytical Ep-
silon 3XLE with a Mo X-ray tube), using pressed powder
pellets. Samples were calibrated using 19 standard rock sam-
ples issued by the Geological Survey of Japan. Reproducibil-
ity, based on the replicate analysis of four standards (JSd-1,
JSd-2, JLs-1, and JDo-1), was better than ±0.5 % for MgO,
Al2O3, SiO2, K2O, CaO, TiO2, and Fe2O3; better than±1 %
for Na2O and MnO; and better than ±10 % for P2O5 (see
Table S1 in Maron et al., 2023).

The bulk chemical composition of nine samples was also
determined by X-ray fluorescence spectroscopy (XRF) us-
ing a wavelength dispersive spectrometry (WDS) sequential
Philips PW 2400 spectrometer equipped with a 3 kW Rh X-
ray tube. The analyses, performed under vacuum conditions
and using the SuperQ software from PANalytical, were based
on calibrations calculated on geological reference standards
(Govindaraju, 1994). The sample powders were first used to
determine the loss on ignition (LOI) after heating them in

a furnace at 860 °C for 20 min and then at 980 °C for 2 h.
The calcined powders were then diluted with flux di-lithium
tetraborate Li2B4O7 (1 : 10 ratio) and melted with a fluxer
Claisse Fluxy (reaching a temperature of about 1150 °C) to
obtain glass beads for XRF analyses. Instrumental precision
(defined by several measurements performed on the same
sample) is within 0.6 % relative to major elements. The XRF
accuracy was checked by reference standards (Govindaraju,
1994) and was within 0.5 wt % for Si and lower than 3 % for
other major elements. The lowest detection limits of XRF
were within 0.02 wt % for Al2O3, MgO, and Na2O; within
0.4 wt % for SiO2; and within 0.005 wt % for TiO2, Fe2O3,
MnO, CaO, K2O, and P2O5. The stratigraphic curves of the
geochemical parameters have been smoothed using local re-
gression (LOESS) and using PAST software (Hammer et al.,
2001).

3.2.2 Principal component analysis

To extract paleoenvironmental changes from compositional
data, principal component analysis (PCA) was applied to
data of 10 major oxides (SiO2, TiO2, Al2O3, Fe2O3, MnO,
MgO, CaO, Na2O, K2O, and P2O5). The data were normal-
ized to the Ti contents and compared with those of upper
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continental crust (UCC; McLennan, 2001) in order to obtain
enrichment factors as in the following Eq. (3):

XEF =

(
Xsample
Tisample

)
(
XUCC
TiUCC

) , (3)

where X and Ti are the weight concentrations of elements X
and Ti, respectively.

PCA is an operation that synthesizes numerous observa-
tional variables into several orthogonalized components, in-
creasing the respective variances. Before applying Q-mode
PCA on the correlation coefficient matrix using singular
value decomposition (Golub and Van Loan, 1989; Van Huffel
and Vanderwalle, 1991; Albarède, 1995), the enrichment fac-
tors were converted into additive log ratios (alr’s) to map the
simplex sample space onto the Euclidean real sample space
for a constant sum constraint of compositional data (Aitchi-
son, 1982). This transformation has the advantage that most
of the transformed compositional data follow multivariate
normal distributions (Aitchison and Shen, 1980), which is
a prerequisite for PCA (Atkinson et al., 2004). The detailed
procedure of PCA for geochemical dataset is described in
Soda and Onoue (2019) and Onoue et al. (2021).

Element concentration and PCA, plotted against stratigra-
phy, are reported in Fig. A1.

4 Results

4.1 Rock magnetism

4.1.1 Stratigraphic trends

The complete set of rock magnetic data is reported in Ta-
ble S2 (see the online dataset in Maron et al., 2023) and
Fig. A1. Bulk susceptibility (χ ) increases from ∼ 2× 10−8

to ∼ 5× 10−8 SI between 41 and 44 m and then it decreases
around the NRB up to ∼ 46 m, only to increase again up to
∼ 48 m (Fig. 2a) and indicate an increase in more susceptible
ferromagnetic minerals (likely magnetite). There are two ma-
jor peaks in χ at ∼ 48, ∼ 44, and ∼ 30 m, with several minor
peaks from 0 to 25 m (Fig. 2a). The mean values of IRM1T
and ARM, respectively, 5.9×10−5 and 2.6×10−6 Am2 kg−1,
suggest relatively small but detectable quantities of ferro-
magnetic minerals. The IRM1T curve shows a general in-
creasing trend between 10 to 30 m and a further increase with
two peaks at ∼ 40 and ∼ 47 m, close to the NRB (Fig. 2b).

The ARM curve shows a similar trend in the lower part
of the section (10–30 m) but higher values between 35 and
45 m that decrease while approaching the NRB (similar to
the χ curve), showing peaks that mirror the IRM1T curve
(Fig. 2c).

In the lower part of the section (up to 15–17 m), a relevant
increase in high-coercivity phases is shown by the S ratio
(Fig. 2e) and HIRM (Fig. 2f), correlative to an increase in

the coercivity of remanence (Hcr; Fig. A1). Similarly, an in-
crease in high-coercivity minerals is recognized a few meters
above the NRB between ∼ 46 and ∼ 50 m (Fig. 2e, f). The
presence of resedimented calcarenites in this interval sug-
gests that the increased quantity of hard coercivity minerals
could be due to enhanced detrital input.

4.1.2 Magnetic mineralogy

Previous analysis of the thermal demagnetization of a three-
axis IRM (Maron et al., 2015) indicates that this high-
coercivity fraction is hematite. The preserved magnetostrati-
graphic record in the Pignola–Abriola section (Maron et al.,
2015) supports the primary origin of this hematite (together
with magnetite). Moreover, the application of the elonga-
tion/inclination statistical method of Tauxe and Kent (2004)
provided a flattening factor of 0.6 that is typical of detrital
grains (Maron et al., 2015).

The χ vs. T diagrams performed in the Ar atmosphere
show the presence of magnetite in both the heating and cool-
ing curves (Curie temperature is TC ≈ 580 °C; Fig. 3) and the
neoformation of magnetite, possibly from the conversion of
mineral precursors (see below). Hematite is not clearly visi-
ble in our χ vs. T diagrams (possibly due to its very low χ ),
although it was observed in Pignola–Abriola samples using
IRM thermal decay experiments (Maron et al., 2015).

A peak of susceptibility appearing between ∼ 400 and
500 °C in the heating curve (peak susceptibility [χH]/room
temperature susceptibility [χR] ranging from 4 to 50) is inter-
preted due to the mineralogical transformation during heat-
ing rather than a Hopkinson peak (Hopkinson, 1889; Dunlop,
1974; King and Ranganai, 2001; Dunlop and Özdemir, 2007;
Dunlop, 2014), where χH/χR should not exceed 2.2 (e.g.,
Dunlop, 2014). The presence of pyritized radiolarians (Baz-
zucchi et al., 2005; Rigo et al., 2005; Giordano et al., 2010;
Maron et al., 2015) indicate that pyrite could be the precursor
mineral that alters into magnetite. Oxidation of iron sulfides
is reported in both oxidizing (air) and inert (Ar) atmosphere
(e.g., Li and Zhang, 2005; L. Wang et al., 2008), starting
at ∼ 400 °C (Weaver et al., 2002). Ferromagnetic iron sul-
fides seem to be rare in the Pignola–Abriola section (see also
Maron et al., 2015). The χ vs. IRM1T /χ diagram (Larra-
soaña et al., 2007) indicates that most of the samples are in
the range of magnetite (IRM1T /χ < 15 kA m−1), with only
10 samples apparently also containing greigite (Fig. 4). Iron-
bearing clay minerals can also be involved in the formation
of new magnetite through heating.

The unmixing of IRM acquisition curves reveals at least
two low-coercivity components that can be attributed to mag-
netite (Fig. 5; Table 1) and a high-coercivity component that
can be attributed to hematite (Fig. 5; Table 1). The trend of
hematite contribution, as presented in Fig. 2g, mirrors the
HIRM and S-ratio curves. The total contribution of magnetite
is higher between∼ 25 and∼ 40 m and decreases up-section,
while fluctuating in a series of pulses (Fig. 2H). The un-
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Figure 2. Lithostratigraphy and rock magnetic parameters of the Pignola–Abriola section. (a) Low-field magnetic susceptibility χ at 1 kHz
of frequency. (b) Saturation IRM at 1T . (c) ARM acquired with an AC field of 100 mT under a bias DC field of 0.1 mT. (d) ARM / IRM1T
ratio. (e) S ratio. (f) HIRM. (g) Hematite contribution from IRM unmixing. The thick black/red line shows local regression smoothing
(LOESS). Greigite-bearing samples are marked as red squares alongside lithostratigraphy.
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Figure 3. Heating–cooling curves of susceptibility against temperature (χ vs. T ) of representative samples from the Pignola–Abriola section
(see text for discussion). Curves were obtained using Cureval software by AGICO.

Figure 4. The χ vs. IRM1T /χ plot (Larrasoaña et al., 2007) indi-
cates that almost the majority of the samples lack ferromagnetic iron
sulfides (greigite), with a 10th of them showing dominant greigite
or a mixture of magnetite and greigite.

mixing of IRM acquisition curves reveals at least two low-
coercivity components that can be attributed to magnetite
(MAG-1 and MAG-2; Fig. 5; Table 1) and a high-coercivity
component that can be attributed to hematite (Fig. 5; Ta-
ble 1). The dispersion parameter (DP; Table 1), defined as the
standard deviation of the coercivity distribution (Egli, 2004),
can be used to discriminate roughly the detrital component
of magnetite from the authigenic (i.e., biogenic) component.
Usually, detrital magnetite has a larger DP than biogenic
magnetite (Egli, 2004), although a threshold between detrital
and biogenic is hard to define. Our preliminary interpretation
of the two components considers MAG-1 detrital (larger DP)
and MAG-2 biogenic (smaller DP) (Fig. 5). The presence of
biogenic magnetite is also suggested by the central ridge vis-
ible in first-order reversal curve (FORC) diagrams, in partic-
ular around the NRB (e.g., sample PA+55 at 45.45 m; Ap-
pendix Fig. A2). The averaged FORC diagram shows a well-
defined central ridge dominated by low-coercivity phases
(Fig. A3), possibly due to soft biogenic magnetite (Roberts
et al., 2014). The samples containing greigite (Fig. 4) do not
seem to be strictly related to a high concentration of mag-
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Figure 5. IRM unmixing and acquisition curves of representative samples from the Pignola–Abriola section. Unmixing has been obtained
using MAX Unmix online software (Maxbauer et al., 2016a).

netite, except in the upper part of the section, in the lower
Rhaetian (Fig. 2).

4.1.3 Magnetic grain size

ARM values are generally higher in single-domain (SD)
magnetite grains (Egli and Lowrie, 2002); thus, a decrease
in ARM could be associated with an increase in magnetite
granulometry but also to an increase in high-coercivity min-
erals less susceptible to ARM. The grain-size-sensitive pa-
rameter ARM / IRM1T shows a decrease in grain size be-
tween ∼ 38 and ∼ 42 m just below the NRB (Fig. 2d). The
trend of the ARM / IRM1T curve mostly resembles the ARM
curve, especially in the 35–45 m interval, suggesting that
grain size plays a larger role in ARM intensity than miner-
alogy. To test the reliability of the ARM / IRM1T parameter
as a grain size indicator, we calculate the ARM / IRM ra-
tio with IRM acquired at the same field as ARM (100 mT)
in order to exclude the influence of high-coercivity miner-
als from the ARM / IRM ratio. The results show that the
trend of ARM / IRM100 mT is mostly similar to both the
ARM / IRM1T and ARM trends (Fig. A4). Thus, we can con-
fidently use the ARM / IRM1T as a grain size proxy.

Table 1. Ferromagnetic components from IRM unmixing.

Sample Component Contribution B1/2 DP
(%) (mT)

P15.46 (15.46 m) 1 5.3 21 2.0
2 18.2 108 2.0
3 76.5 1170 1.8

PARC6 (32.95 m) 1 34.4 60 2.9
2 47.9 113 1.7
3 17.6 1291 2.0

PA+3 (44.93 m) 1 28.0 39 2.4
2 33.4 89 1.9
3 38.6 1317 2.1

GNI19 (46.83 m) 1 28.4 68 2.9
2 10.5 65 1.5
3 61.1 1071 1.7

GNM84 (50.17 m) 1 29.0 30 2.5
2 46.3 82 1.9
3 24.7 1122 1.7

PAI173 (54.45 m) 1 6.5 7 2.2
2 80.2 51 2.2
3 13.3 1667 2.3
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The hysteresis curves, corrected for ubiquitous paramag-
netic signals (Fig. 6a), yielded parameters that place most
of the samples between the SD–MD and SP–SD mixing
curves of magnetite on a modified Day et al. (1977) plot
(Dunlop, 2002a, b) (Fig. 6b). We also plot in Fig. 6b the
hematite+magnetite mixing line of Liu et al. (2019) and the
SD–MD greigite mixing line of Roberts et al. (2011), none
of which seem to describe the data distribution of our sam-
ples, which are characterized by a more complex magnetic
mineralogy.

4.1.4 Summary

In summary, rock magnetism experiments indicate that mag-
netite and hematite are the main ferromagnetic minerals of
the Pignola–Abriola sedimentary sequence, with a minor
amount of iron sulfides, as possibly suggested by the χ
vs. T curves (Fig. 3). In general, magnetite appears to be
widespread, as suggested by the hysteresis data (Fig. 6). The
amount of hematite appears to be quite variable along the
section, showing a major increasing trend from 15 to 17 m
followed by a decreasing trend up to 23 m and finally a set
of rapid oscillations across the NRB between 39 and 50 m
(Fig. 2e, f, h). As suggested by previous data (Maron et al.,
2015), this hematite is detrital in origin. As indicated by the
ARM / IRM1T curve (Fig. 2d), the magnetite grain size is
quite stable along the section, except for a slight increase in
finer-grained magnetite between 38 and 42 m, possibly re-
lated to higher occurrence of authigenic (microbial?) mag-
netite.

4.2 Geochemistry

The major element data obtained for the 56 shale samples of
the Pignola–Abriola section are listed in Table S3 (see the
online dataset in Maron et al., 2023). In this study, we em-
ployed the chemical index of alteration (CIA; Nesbitt and
Young, 1982) to measure degree of chemical weathering in
hinterland from major oxides. Values of the CIA indicate the
extent of decomposition of feldspar minerals, which are the
most abundant mineral group in the UCC. Following the pre-
vious study (Casacci et al., 2016), we used a modified form
of the CIA equation (Eq. 4) in which CaO is omitted from
the denominator because of the high carbonate content of the
study units, which makes it difficult to accurately determine
the amount of non-carbonate CaO in each sample:

CIA∗ =
Al2O3

Al2O3+Na2O+K2O
× 100. (4)

Stratigraphic variations in CIA∗ values are shown in Fig. 7.
The CIA∗ values begin to increase from 40 m to the top of
the section. The value reaches its maximum from 45 m at the
NRB.

Table 2. Principal component loadings calculated from the major
element contents of the shales.

PC1 PC2 PC3 PC4

SiEF −0.82 0.47 −0.03 0.14
AlEF −0,86 0.07 0.21 0.35
FeEF −0.58 −0.25 −0.01 −0.03
MnEF −0.47 −0.16 −0.45 −0.65
MgEF −0.63 −0.57 −0.04 0.13
CaEF 0.09 0.09 −0.90 −0.03
NaEF −0.60 0.62 −0.17 −0.05
KEF −0.33 −0.85 0.12 −0.17
PEF 0.13 −0.35 −0.55 0.67
Eigenvalue 1.69 1.37 1.19 1.02
Proportion 31.7 20.8 15.6 11.7
Cumulative proportion 31.7 52.5 68.2 79.8

4.3 Principal component analysis

Table 2 lists the component loadings for the studied sam-
ples. PCA showed that the first four principal components
explain 79.8 % of the total variance in the dataset with their
high eigenvalues (> 1.0). The loadings of PC1 show strong
negative values (less than −0.80) for Si and Al, with sub-
ordinate negative values for Mg (−0.63), Na (−0.60), and
Fe (−0.58). PC2 is characterized by high negative loadings
for K (−0.80) and Mg (−0.57) and a high positive loading
of Na (0.62). PC3 has a prominent negative loading for Ca
(−0.90), with high negative loadings for P (−0.58) and Mn
(−0.45). The loadings of PC4 displayed the opposite direc-
tion between Mn (−0.65) and P (0.67), compared to the low
loadings of the others.

The PC1 scores represent the compositional variations as-
sociated with terrigenous detrital materials because of the
same directions in the relatively strong loadings for Al, Si,
Mg, Na, and Fe. The strong PC1 loadings in Al and Si rel-
ative to Mg, Na, and Fe (Fig. 8) reflect the typical order of
element mobility during weathering (Goldich, 1938; Middel-
burg et al., 1988; Pokrovsky et al., 2005). These elemental
behaviors in the PC1 axis indicate the intensity of chemi-
cal weathering. The PC3 axis explains the calcium carbon-
ate accumulation because the loadings show that a promi-
nent negative loading for Ca and the stratigraphic trend in
PC3 is largely similar to those in CaEF (Fig. A1; see Table
S3 in Maron et al., 2023). Similar negative loadings for Mn
and P suggest that this relates to the precipitation of Mn and
P into carbonate minerals at the time of deposition or dur-
ing burial diagenesis (e.g., Price and Sellwood, 1994), as re-
ported from a multivariate statistical analyses of a Rhaetian
carbonate–clastic deposit in the northwestern Tethys (Onoue
et al., 2022).

Although the interpretations for PC2 and PC4 need to be
verified by mineralogical and organic geochemical data in
future studies, the character of each loading might be in-
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Figure 6. Coercivity analysis from the Pignola–Abriola section. (a) Hysteresis loops of representative samples. (b) Day plot (Day
et al., 1977; Dunlop et al., 2002a) indicating that most of the grains are located between the pseudo-single domain (PSD) and sin-
gle domain-superparamagnetic (SD–SP) size. Magnetite SD+MD, SP+SD, MD, and SP mixing curves are from Dunlop (2002a). The
hematite+magnetite mixing curve is from Liu et al. (2019). The greigite SD+MD mixing curve is from Roberts et al. (2011). The correction
of hysteresis loops in panel (a) was made with HystLab (Paterson et al., 2018).

terpreted as follows. The PC2 axis might indicate crystal-
lographic structural changes in clay minerals between illite
and smectite groups (Brigatti et al., 2006) because of the op-
posite direction between K and Mg (interlayer cations for
illite and chlorite) and Na (exchangeable cation for smec-

tite) (Fig. 8). The positive scores for PC4 could be explained
by the preservation of organic matter under reducing condi-
tions. Phosphorous is transferred to the sediment mainly as
organically bound P, most of which is subsequently liberated
through the re-mineralization of organic matter (Algeo and
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Figure 7. tratigraphic variations in PC scores and CIA∗ (Casacci et al., 2016) in the Pignola–Abriola section. The thick black/red line is the
local regression smoothing curve (LOESS).

Ingall, 2007). Organic-bound P is expected to be preserved
under suboxic conditions, where Mn is reduced to Mn(II) and
forms soluble cations (Algeo and Li, 2020); this explains the
opposite direction between P and Mn in PC4.

5 Discussion

5.1 Long-term weathering trends

Rock magnetic data (Fig. 9a) show a long-term increasing
trend of detrital hematite from at least∼ 217 Ma in the Alau-
nian to ∼ 211 Ma in the middle Sevatian, followed by an en-
suing long-term decreasing trend of detrital hematite up to
∼ 207–206 Ma in the latest Sevatian.

As hematite is a relevant component of soils (e.g., Am-
brosi et al., 1986; Hernández-Quiroz et al., 2012; Hal-
dar, 2013; Best, 2015), relative increases/decreases in detri-
tal hematite are interpreted here as indicating increases/de-
creases in weathering of silicates (also see Sect. 6.2).

5.2 Rapid weathering oscillations

Weathering again becomes more intense, although oscilla-
tory, starting just below the NRB and continuing in the ear-
liest Rhaetian, where hematite shows a rapid increase and
PC1 and CIA∗ reach, respectively, their lowest and the high-
est values (Fig. 9a–c). A transient decrease in weathering
occurs at the NRB close to a major negative excursion of
δ13Corg (Fig. 9d) and to an increase in magnetic susceptibil-
ity (χ ; Fig. 9e). Possible explanations for the susceptibility
increase at the NRB could be the production of authigenic
magnetite, in particular conditions of scarce oxygenation, as
also suggested by the presence of Fe sulfides (greigite) in this
interval (as described in Sect. 4.1.2). PC2 scores (Fig. 7b)
may also support the interpretation that continental chemical
weathering was accelerated at the NRB. The PC2 scores ex-
hibit an abrupt increase in positive scores that begins in the
latest Norian (Fig. 7b) and reaches its maximum in the ear-
liest Rhaetian, which may represent a change in the major
clay mineral composition from illite to smectite due to the
increased precipitation around the hinterland areas. In fact,
illite and chlorite are generally formed in the early stages of
chemical weathering under dry and cold conditions, whereas
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Figure 8. Compositional biplots obtained from the major element
contents of the shales in the Pignola–Abriola section. Relative di-
rections and lengths of the arrows indicate loadings for the PC axes.
Each variance (var.) is represented as a proportion in this dataset.

smectite is formed under warm and humid conditions (e.g.,
Fürsich et al., 2005; Nakada et al., 2014).

6 Possible causes of the Norian long-term
weathering trends

6.1 Premises

Silicate weathering followed by carbonate deposition is re-
garded as the main negative feedback mechanism to stabi-
lize pCO2 levels and conjoint surface temperatures (Walker
et al., 1981). Typically, global CO2 input from volcanic de-
gassing and metamorphic reactions and output from silicate
weathering (and carbon burial) are in dynamic equilibrium,
stabilizing the global climate (Walker et al., 1981). However,
there are some mechanisms that can perturb this balance on
various timescales. A large igneous province (LIP), if em-
placed rapidly (e.g., within 1 Myr or shorter), can cause a
transient extra CO2 input triggering rapid global warming
that in turn accelerates global weathering to handle the extra
CO2 input and returns the climate system to pre-stress con-
ditions on relatively rapid timescales (∼ 105 years). When

a mafic LIP and/or orogenically uplifted mafic rocks en-
ter the equatorial belt of high humidity and temperature via
plate tectonics, they are subject to enhanced weathering that
may continue even though global pCO2 and temperatures
decrease, temporarily muting the “Walker thermostat” and
paving the way for global cooling (Kent and Muttoni, 2008,
2013, and references therein). Similarly, removing uplifted
mafic rocks from the Equator may trigger climate to rebound
toward warmer states (Kent and Muttoni, 2008, 2013). Con-
ditions of enhanced weathering and global cooling may in
theory occur also at mid-latitudes, provided, however, that an
equatorial-type climate develops at least seasonally, as de-
scribed, for example, by the dynamic theory of monsoons.
These paleogeographic conditions that may perturb the CO2
input–output balance on timescales of 106 years are of course
also dependent on factors such as the extent of mafic rocks
that undergo weathering under equatorial or monsoonal cli-
mate, their composition (Ca-rich mafic rocks weather more
efficiently than other igneous rocks), the degree of exposure
due to uplifting/orogenesis/LIP topography, and the degree
of burial under regolith cover, etc. (Kent and Muttoni, 2013,
and references therein).

6.2 Interpretation

The increase in weathering (increase in hematite input) ob-
served in the Alaunian–early Sevatian at Pignola–Abriola is
in temporal agreement with the rise of 87Sr / 86Sr observed
in the Pizzo Mondello section and interpreted as being re-
lated to a phase of increasing (global) weathering in the Late
Triassic (Onoue et al., 2018) (Fig. 10). We are not aware of
any LIP that transited across the equatorial belt of Pangea in
the Carnian–Norian. The Angayucham LIP, with an age of
214± 7 Ma (Ernst and Buchan, 2001; Prokoph et al., 2013),
is a possible candidate, but if it was part of Wrangellia, then
it was located in the Southern Hemisphere in the Late Trias-
sic (Kent and Irving, 2010). An alternative candidate for en-
hanced weathering is represented by the Cimmerian orogen
that developed relatively rapidly in the Late Triassic along
the southern margin of Eurasia at mid-northern latitudes
(e.g., Muttoni et al., 2009), possibly under a monsoonal-type
climate (Onoue et al., 2018). The uplift of the Cimmerian
belt could have contributed establishing a monsoonal-type
climate in the western Tethys, enhancing seasonal runoff and
silicate weathering of mafic rocks (Onoue et al., 2018).

The Cimmerian is a multi-phase orogenetic event that oc-
curred essentially in the Late Triassic and involved the ac-
cretion of different terranes with each other and ultimately
with the Asian margin. Several slices of ultramafic rocks
mark the complex Cimmerian suture from Pamir in the east
to Türkiye in the west. For example, the Bashgumbaz Com-
plex of Pamir, comprised of mafic–ultramafic lithologies, ob-
ducted during the collision between the central and southern
Pamir terranes, resulting in the Cimmerian orogeny in this
part of Asia (Zanchetta et al., 2018). Recent petrographic
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Figure 9. Main rock magnetic and geochemical proxies for environmental interpretation. (a) Contribution of hematite (in percentage).
(b) Chemical index of alteration (CIA∗). (c) PC1 (weathering of silicates from PCA). (d) δ13Corg curve (from Zaffani et al., 2017). (e) Mag-
netic susceptibility (χ ) curve. Vertical scale is in millions of years ago (Ma), following the age model for the Pignola–Abriola section of
Maron et al. (2015). The thick black/red line is the local regression smoothing curve (LOESS).

and detrital zircon U–Pb data indicate a coeval accretion of
the central and southern Pamir terranes to northern Pamir
(southern margin of Asia) by the end of the Triassic (Vil-
lareal et al., 2020). More to the west, geologic data indi-
cate the onset of a collision of the Iran terrane (where mafic
lithologies are documented, such as the Permian basalts of
the central Alborz; Delavari et al., 2016), with Eurasia in the
Middle–Late Triassic followed by a main Cimmerian uplift
phase at around the Triassic–Jurassic boundary (Wilmsen et
al., 2009). Moreover, the development of an extensional sys-
tem in central Alborz of Iran during the Late Triassic led to
the emplacement of alkaline volcanism with the formation of
the Triassic alkaline basaltic rocks (TABRs) of the Kamarbon
area, which overlie the Carnian massive dolomites and are
beneath the Norian–Rhaetian sandstones of the Shemshak
Formation (Doroozi et al., 2018). Further to the west, high-
pressure metamorphic rocks in northwestern Türkiye are in-
terpreted as part of a larger Triassic mafic complex (Nilüfer
Unit) accreted during the latest Triassic to the active mar-
gin of Eurasia, resulting in Cimmerian orogeny in northern
Türkiye (Okay et al., 2002). In summary, even though the
geologic record is still discontinuous due to the complex ge-

ology of the Asian margin, there seems to be plenty of evi-
dence for the accretion/obduction/uplift of crustal elements
locally enriched in mafic (highly weatherable) lithologies
during multiphase Cimmerian deformation in the Late Trias-
sic that may in part justify the observed Alaunian–Sevatian
increased weathering trend.

In Sevatian levels of the Newark–Hartford Basin of North
America, Schaller et al. (2015) observed a drop in atmo-
spheric pCO2 starting at ∼ 215 Ma (incidentally at the time
of the Manicouagan impact at 215.40± 0.16 Ma; Jaret et al.,
2018), with a minimum centered at ∼ 212 Ma, followed by
a rebound to higher pCO2 values at ∼ 209 Ma, and a sec-
ond long-term pCO2 decreasing trend up to the Rhaetian
(Fig. 10). According to Schaller et al. (2015), the cause of
the ∼ 5 Myr Sevatian drop and rebound in pCO2 is unclear,
while the general decrease of pCO2 from high Carnian–
Norian levels to low Rhaetian levels was interpreted as be-
ing due to increased weathering of silicate rocks entering the
tropical–equatorial belt during the northward displacement
of Pangea in the Late Triassic (Goddéris et al., 2008; Schaller
et al., 2015). We speculate that the ∼ 5 Myr Sevatian pCO2
drop and rebound could be related at least in part to the on-
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Figure 10. Curve of hematite contribution from Pignola–Abriola compared to the 87Sr / 86Sr curve from Pizzo Mondello (Onoue et al.,
2018) and to the latest Carnian to early Rhaetian portion of the pCO2 curve from the Newark–Hartford Basin (Schaller et al., 2012, 2015).
See the text for a discussion.

set and demise of weathering of mafic lithologies exposed
(and then buried under regolith?) during one or more of the
several phases of obduction/uplift that characterized the mul-
tiphase Cimmerian orogeny, although we do not exclude the
effects of the northward motion of Pangea sensu Goddéris et
al. (2008) and Schaller et al. (2015).

The pCO2 curve of Schaller et al. (2015) shows an ensuing
decreasing trend in late Sevatian–Rhaetian levels, although
we notice that the record is discontinuous in the 207–205 Ma
interval (Fig. 10). The Pignola–Abriola record shows fluc-
tuating values of weathering in the latest Sevatian–earliest
Rhaetian (Fig. 10). The origin of these high-frequency fluctu-
ations is at present unclear, but tectonic processes involving
plate motion (Cimmeria and Pangea) are ruled out, as they
work on longer timescales. Further investigations (geochem-
ical and rock magnetic) are required to expand the record of

the weathering in the Rhaetian to unravel the meaning of this
short-term increase in hematite.

7 Conclusions

Both rock magnetic and geochemical data from the Pignola–
Abriola section, in particular the hematite contribution from
IRM unmixing and S ratio, CIA∗, and PC1, reveal trends in
weathering rates. In particular:

– We observed a long-term (∼ 6 Myr long) increase
in chemical weathering during the Alaunian–Sevatian
(from ∼ 217 to ∼ 211 Ma) broadly coeval with the Sr
trend from Pizzo Mondello. This trend is followed by a
long-term (∼ 5 Myr long) decrease in chemical weath-
ering up to the latest Sevatian (∼ 207–206 Ma). These
trends are broadly paralleled by a decrease and increase
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in pCO2 (Schaller et al., 2015). These conjointly ob-
served trends were possibly controlled by the weather-
ing of the Cimmerian orogeny at mid-latitudes, possibly
under a monsoonal-type climate (Onoue et al., 2018),
and/or by the northward drift of Pangea across the equa-
torial belt (Goddéris et al., 2008; Schaller et al., 2015).

– We observed fluctuating but generally high values of
weathering across the NRB (∼ 205.7 Ma), starting in
the latest Sevatian (∼ 206.5 Ma) and ending in the ear-
liest Rhaetian (∼ 205 Ma). The origin of these high-
frequency oscillations still has to be determined.
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Appendix A

Figure A1. Curves of all the rock magnetic and geochemical parameters used in this paper. A local regression smoothing curve (LOESS;
thick black/red line) has been calculated for each parameter using PAST software (Hammer et al., 2001).
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Figure A2. First-order reversal curve (FORC) diagrams of eight selected samples of the Pignola–Abriola section. All the samples show
a noisy signal, but a central ridge is visible nonetheless, suggesting the presence of magnetite of biogenic origin. The FORCs have been
processed using FORCinel software (Harrison and Feinberg, 2008) using the VARIFORC (Egli, 2013) smoothing factor: Sc0= 4, Sb0= 3,
Sc1= 7, and Sb1= 7.
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Figure A3. Coercivity and vertical profiles derived from three FORC diagrams around the Norian–Rhaetian boundary.
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Figure A4. Comparison of ARM / IRM1T and ARM / IRM100 mT
curves as a test for the contribution of high coercivity phases and
grain size on the ARM over IRM ratio. A local regression smooth-
ing curve (LOESS; thick black line) has been calculated for both
curves using PAST software (Hammer et al., 2001).

Data availability. Rock magnetic and geochemical
data are hosted on the Mendeley Data repository:
https://doi.org/10.17632/bmbt8t2ywj.1 (Maron et al., 2023).
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