Articles | Volume 20, issue 2
https://doi.org/10.5194/cp-20-363-2024
https://doi.org/10.5194/cp-20-363-2024
Research article
 | Highlight paper
 | 
26 Feb 2024
Research article | Highlight paper |  | 26 Feb 2024

A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction

Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer

Data sets

A global compilation of diatom silica oxygen isotope records from lake sediment Philip Meister et al. https://doi.pangaea.de/10.1594/PANGAEA.957160

Download
Co-editor-in-chief
The paper submitted by Meister and colleagues presents the first comprehensive compilation and assessment of diatom oxygen isotope records in lake sediments (δ18OBSi). The authors have supplemented these data with additional lake basin parameters (such as catchment size and residence times). The manuscript first infers the spatial and temporal coverage of δ18OBSi records and then discusses common hemispheric trends on centennial and millennial time scales, with key results such as: - Common patterns for hydrologically open lakes in extra-tropical regions of the Northern Hemisphere. - Common trends during the Common Era and throughout the Holocene corresponding to known climatic epochs such as the Holocene Thermal Maximum, Neoglacial cooling, the Medieval Climate Anomaly and the Little Ice Age. This is a well-written manuscript that should make a valuable contribution to reconstructions of past climates.
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.