Articles | Volume 20, issue 11
https://doi.org/10.5194/cp-20-2629-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-2629-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatic and tectonic controls on shallow-marine and freshwater diatomite deposition throughout the Palaeogene
Institute of Marine and Environmental Sciences, University of Szczecin, 70-383 Szczecin, Poland
Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
Or M. Bialik
Institute of Geology and Palaeontology, University of Münster, 48149 Münster, Germany
Dr. Moses Strauss Department of Marine Geosciences, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, 31905 Haifa, Israel
Andrey Y. Gladenkov
Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia
Tatyana V. Oreshkina
Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia
Johan Renaudie
FB1 Dynamik der Natur, Museum für Naturkunde, 10115 Berlin, Germany
Pavel Smirnov
Institute of Ecology, RUDN University, 117198 Moscow, Russia
Jakub Witkowski
Institute of Marine and Environmental Sciences, University of Szczecin, 70-383 Szczecin, Poland
Related authors
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Jakub Witkowski, Karolina Bryłka, Steven M. Bohaty, Elżbieta Mydłowska, Donald E. Penman, and Bridget S. Wade
Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, https://doi.org/10.5194/cp-17-1937-2021, 2021
Short summary
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 35, 26–53, https://doi.org/10.1144/jmpaleo2014-026, https://doi.org/10.1144/jmpaleo2014-026, 2016
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 32, 59–86, https://doi.org/10.1144/jmpaleo2011-025, https://doi.org/10.1144/jmpaleo2011-025, 2013
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 31, 29–52, https://doi.org/10.1144/0262-821X10-026, https://doi.org/10.1144/0262-821X10-026, 2012
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Cenozoic
Middle Eocene Climatic Optimum (MECO) and its imprint in the continental Escanilla Formation, Spain
Fluvio-deltaic record of increased sediment transport during the Middle Eocene Climatic Optimum (MECO), Southern Pyrenees, Spain
Terrestrial carbon isotope stratigraphy and mammal turnover during post-PETM hyperthermals in the Bighorn Basin, Wyoming, USA
Climate and ecology in the Rocky Mountain interior after the early Eocene Climatic Optimum
Palaeo-environmental evolution of Central Asia during the Cenozoic: new insights from the continental sedimentary archive of the Valley of Lakes (Mongolia)
Terrestrial responses of low-latitude Asia to the Eocene–Oligocene climate transition revealed by integrated chronostratigraphy
Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2
Pliocene to Pleistocene climate and environmental history of Lake El'gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data
A re-evaluation of the palaeoclimatic significance of phosphorus variability in speleothems revealed by high-resolution synchrotron micro XRF mapping
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
Sarah J. Widlansky, Ross Secord, Kathryn E. Snell, Amy E. Chew, and William C. Clyde
Clim. Past, 18, 681–712, https://doi.org/10.5194/cp-18-681-2022, https://doi.org/10.5194/cp-18-681-2022, 2022
Short summary
Short summary
New stable isotope records from pedogenic carbonates through the ETM2, H2, and possibly I1 hyperthermals from the Bighorn Basin highlight significant spatial variability in the preservation and magnitude of these global climate events in paleosol records. These data also provide important climate context for the extensive early Eocene mammal fossil record from the southern Bighorn Basin and support previous hypotheses that pulses in mammal turnover corresponded to the ETM2 and H2 hyperthermals.
Rebekah A. Stein, Nathan D. Sheldon, Sarah E. Allen, Michael E. Smith, Rebecca M. Dzombak, and Brian R. Jicha
Clim. Past, 17, 2515–2536, https://doi.org/10.5194/cp-17-2515-2021, https://doi.org/10.5194/cp-17-2515-2021, 2021
Short summary
Short summary
Modern climate change drives us to look to the past to understand how well prior life adapted to warm periods. In the early Eocene, a warm period approximately 50 million years ago, southwestern Wyoming was covered by a giant lake. This lake and surrounding environments made for excellent preservation of ancient soils, plant fossils, and more. Using geochemical tools and plant fossils, we determine the region was a warm, wet forest and that elevated temperatures were maintained by volcanoes.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Y. X. Li, W. J. Jiao, Z. H. Liu, J. H. Jin, D. H. Wang, Y. X. He, and C. Quan
Clim. Past, 12, 255–272, https://doi.org/10.5194/cp-12-255-2016, https://doi.org/10.5194/cp-12-255-2016, 2016
Short summary
Short summary
An integrated litho-, bio-, cyclo-, and magnetostratigraphy constrains the onset of a depositional environmental change from a lacustrine to a deltaic environment in the Maoming Basin, China, at 33.88 Ma. This coincides with the global cooling during the Eocene-Oligocene transition (EOT) at ~ 33.7–33.9 Ma. This change represents terrestrial responses of low-latitude Asia to the EOT. The greatly refined chronology permits detailed examination of the late Paleogene climate change in southeast Asia.
A. E. Chew
Clim. Past, 11, 1223–1237, https://doi.org/10.5194/cp-11-1223-2015, https://doi.org/10.5194/cp-11-1223-2015, 2015
Short summary
Short summary
This project describes mammal faunal response in the zone of the ETM2 and H2 hyperthermals (rapid global warming events) of the early Paleogene in the south-central Bighorn Basin, WY. The response includes changes in faunal structure and species relative body size. Comparative analysis suggests that environmental moisture and rate of change are important moderators of response.
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
S. Frisia, A. Borsato, R. N. Drysdale, B. Paul, A. Greig, and M. Cotte
Clim. Past, 8, 2039–2051, https://doi.org/10.5194/cp-8-2039-2012, https://doi.org/10.5194/cp-8-2039-2012, 2012
Cited articles
Akhmetiev, M. A., Zaporozhets, N. I., Iakovleva, A. I., Aleksandrova, G. N., Beniamovsky, V. N., Oreshkina, T. V., Gnibidenko, Z. N., and Dolya, Z. A.: Comparative analysis of marine paleogene sections and biota from West Siberia and the Arctic Region, Stratigr. Geol. Correl., 18, 635–659, https://doi.org/10.1134/S0869593810060043, 2010. a
Akhmetiev, M. A., Zaporozhets, N. I., Benyamovskiy, V. N., Aleksandrova, G. N., Iakovleva, A. I., and Oreshkina, T. V.: The Paleogene history of the Western Siberian seaway – a connection of the Peri-Tethys to the Arctic ocean, Aust. J. Earth Sci., 105, 50–67, 2012. a
Aleksandrova, G. N., Beniamovski, V. N., Zaporozhets, N. I., Zastrozhnov, A. S., Zastrozhnov, S. I., Tabachnikova, I. P., Oreshkina, T. V., and Zakrevskaya, E. Y.: Paleogene of the southwestern Volgograd region (Borehole 13, Gremyach'e Area). 1. Biostratigraphy, Stratigr. Geol. Correl., 19, 310–336, https://doi.org/10.1134/S0869593811030014, 2011. a
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 9533, 380–384, https://doi.org/10.1038/nature17423, 2016. a
Barron, E. J.: Eocene equator‐to‐pole surface ocean temperatures: A significant climate problem?, Paleoceanography, 2, 729–739, https://doi.org/10.1029/PA002i006p00729, 1987. a
Barron, J. A., Bukry, D., and Poore, R. Z.: Correlation of the Middle Eocene Kellogg Shale of Northern California, Micropaleontology, 30, 138–170, https://doi.org/10.2307/1485715, 1984. a
Barron, J. A., Stickley, C. E., and Bukry, D.: Paleoceanographic, and paleoclimatic constraints on the global Eocene diatom and silicoflagellate record, Palaeogeogr. Palaeoclim. Palaeoecol., 422, 85–100, https://doi.org/10.1016/j.palaeo.2015.01.015, 2015. a, b, c
Barusseau, J. P. and Giresse, P.: Some Mineral Resources of the West African Continental Shelves Related to Holocene Shorelines: Phosphorite (Gabon, Congo), Glauconite (Congo) and Ilmenite (Senegal, Mauritania), in: Marine Minerals, edited by: Teleki, P. G., Dobson, M. R., Moore, J. R., and Stackelberg, U., Springer Netherlands, 135–155, ISBN 978-94-010-8192-4, ISBN 978-94-009-3803-8, https://doi.org/10.1007/978-94-009-3803-8_11, 1987. a, b
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L., and Juggins, S.: Diatoms, in: Tracking Environmental Change Using Lake Sediments, series Title: Developments in Paleoenvironmental Research, vol. 3, edited by: Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S., and Alverson, K., Kluwer Academic Publishers, 155–202, ISBN 978-1-4020-0681-4, https://doi.org/10.1007/0-306-47668-1_8, 2001. a
Benson, M. E.: Freshwater diatom paleontology and paleolimnology of the late Eocene Florissant Formation, Teller County, Colorado, Geological Sciences Graduate Theses & Dissertations, University of Colorado, Boulder, 442 pp., 2011. a
Benson, M. E., Kociolek, J. P., Spaulding, S. A., and Smith, D. M.: Pre-Neogene non-marine diatom biochronology with new data from the late Eocene Florissant Formation of Colorado, USA, Stratigraphy, 9, 131–152, https://doi.org/10.29041/strat.09.2.02, 2012. a
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983. a, b
Bryłka, K., Alverson, A. J., Pickering, R. A., Richoz, S., and Conley, D. J.: Uncertainties surrounding the oldest fossil record of diatoms, Sci. Rep., 13, 8047, https://doi.org/10.1038/s41598-023-35078-8, 2023. a
Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables, J. Phycol., 21, 347–357, https://doi.org/10.1111/j.0022-3646.1985.00347.x, 1985. a
Charisi, S. D. and Schmitz, B.: Paleocene to Early Eocene paleoceanography of the Middle East: The δ13C and δ18O isotopes from foraminiferal calcite, Paleoceanography, 13, 106–118, https://doi.org/10.1029/97PA02585, 2010. a
Chow, G. C.: Tests of Equality Between Sets of Coefficients in Two Linear Regressions, Econometrica, 28, 591–605, https://doi.org/10.2307/1910133, 1960. a
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse, F., Van Der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.: Synchronous tropical and polar temperature evolution in the Eocene, Nature, 559, 382–386, https://doi.org/10.1038/s41586-018-0272-2, 2018. a
Davis, S., Mohandas, S., Nzoumba, G., and Yancey, T.: Diatomite in Upper Eocene Jackson Group, Fayette County, Texas, GCAGS Transactions, 66, 739–746, 2016. a
DeVries, T. J., Barron, J. A., Urbina-Schmitt, M., Ochoa, D., Esperante, R., and Snee, L. W.: The Miocene stratigraphy of the Laberinto area (Río Ica Valley) and its bearing on the geological history of the East Pisco Basin (south-central Peru), J. S. Am. Earth Sci., 111, 103458, https://doi.org/10.1016/j.jsames.2021.103458, 2021. a
Di Celma, C., Pierantoni, P., Volatili, T., Molli, G., Mazzoli, S., Sarti, G., Ciattoni, S., Bosio, G., Malinverno, E., Collareta, A., Gariboldi, K., Gioncada, A., Jablonska, D., Landini, W., Urbina, M., and Bianucci, G.: Towards deciphering the Cenozoic evolution of the East Pisco Basin (southern Peru), J. Maps, 18, 397–412, https://doi.org/10.1080/17445647.2022.2072780, 2022. a
Diekmann, B., Kuhn, G., Gersonde, R., and Mackensen, A.: Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: evidence from biogenic and terrigenous depositional patterns at ODP Site 1090, Global Planet. Change, 40, 295–313, https://doi.org/10.1016/j.gloplacha.2003.09.001, 2004. a
Diester-Haass, L. and Zahn, R.: Paleoproductivity increase at the Eocene–Oligocene climatic transition: ODP/DSDP sites 763 and 592, Palaeogeogr. Palaeocl. Palaeoecol., 172, 153–170, https://doi.org/10.1016/S0031-0182(01)00280-2, 2001. a
Dunbar, R. B., Marty, R. C., and Baker, P. A.: Cenozoic marine sedimentation in the Sechura and Pisco basins, Peru, Palaeogeogr. Palaeocl. Palaeoecol., 77, 235–261, https://doi.org/10.1016/0031-0182(90)90179-B, 1990. a, b
Dupont-Nivet, G., Lippert, P. C., Van Hinsbergen, D. J., Meijers, M. J., and Kapp, P.: Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints: Palaeolatitude and age of the Indo-Asia collision, Geophys. J. Int., 182, 1189–1198, https://doi.org/10.1111/j.1365-246X.2010.04697.x, 2010. a
Efron, B.: Bootstrap Methods: Another Look at the Jackknife, in: Breakthroughs in Statistics, Springer Series in Statistics, edited by: Kotz, S. and Johnson, N. L., Springer New York, 569–593, ISBN 978-0-387-94039-7, ISBN 978-1-4612-4380-9, https://doi.org/10.1007/978-1-4612-4380-9_41, 1992. a
Figus, C., Bialik, O. M., Gladenkov, A. Y., Oreshkina, T. V., Renaudie, J., Smirnov, P., and Witkowski, J.: Compilation of Palaeogene shallow marine and freshwater diatomites (version 2) [dataset], Zenodo [data set], https://doi.org/10.5281/zenodo.12623792, 2024. a
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially without precedent in the last 420 million years, 8, 14845, https://doi.org/10.1038/ncomms14845, 2017. a, b
Froelich, F. and Misra: Was the Late Paleocene-Early Eocene Hot Because Earth Was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth's Cenozoic Climate, Oceanography, 27, 36–49, https://doi.org/10.5670/oceanog.2014.06, 2014. a
Galloway, W., Ganey-Curry, P., Li, X., and Buffler, R.: Cenozoic depositional history of the Gulf of Mexico basin, AAPG Bull., 84, 1743–1774, https://doi.org/10.1306/8626C37F-173B-11D7-8645000102C1865D, 2000. a
Gladenkov, A. Y.: The North Pacific advanced Oligocene to lower Miocene diatom stratigraphy, Bull. Geol. Surv. Jpn., 59, 309–318, https://doi.org/10.9795/bullgsj.59.309, 2008. a, b
Gladenkov, A. Y.: New Data on Diatoms from the Marine Cenozoic Section of West Kamchatka at the Kvachina Bay, Paleontol. J., 53, 799–802, https://doi.org/10.1134/S0031030119080069, 2019. a
Gradstein, F. M., Ogg, J. G., Smith, A. G., Agterberg, F. P., Bleeker, W., Cooper, R. A., Davydov, V., Gibbard, P., Hinnov, L., House, M. R., Lourens, L., Luterbacher, H. P., McArthur, J., Melchin, M. J., Robb, L. J., Shergold, J., Villeneuve, M., Wardlaw, B. R., Ali, J., Brinkhuis, H., Hilgen, F. J., Hooker, J., Howarth, R. J., Knoll, A. H., Laskar, J., Monechi, S., Plumb, K. A., Powell, J., Raffi, I., Röhl, U., Sanfilippo, A., Schmitz, B., Shackleton, N. J., Shields, G. A., Strauss, H., Van Dam, J., Van Kolfschoten, T., Veizer, J., and Wilson, D.: A Geologic Time Scale 2004, Cambridge Univ. Press, https://doi.org/10.4095/215638, 2004. a
Griffith, E. M., Thomas, E., Lewis, A. R., Penman, D. E., Westerhold, T., and Winguth, A. M. E.: Bentho‐Pelagic Decoupling: The Marine Biological Carbon Pump During Eocene Hyperthermals, Paleoceanogr. Paleoclimatol., 36, e2020PA004053, https://doi.org/10.1029/2020PA004053, 2021. a
Guidry, M. W., Arvidson, R. S., and Mackenzie, F. T.: Biological and Geochemical Forcings to Phanerozoic Change in Seawater, Atmosphere, and Carbonate Precipitate Composition, in: Evolution of Primary Producers in the Sea, Elsevier, 377–403, ISBN 978-0-12-370518-1, https://doi.org/10.1016/B978-012370518-1/50018-7, 2007. a, b
Haq, B. U.: Paleogene Paleoceanography: Early Cenozoic Oceans Revisited, Oceanology, 71–81, 1981. a
Huber, M. and Sloan, L. C.: Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate, Geophys. Res. Lett., 28, 3481–3484, https://doi.org/10.1029/2001GL012943, 2001. a
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., De Boer, A. M., Baatsen, M., Von Der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2001. a
Johnson, A. K., Rat, P., and Lang, J.: Le bassin sédimentaire à phosphates du Togo (Maastrichtien-Eocène): stratigraphie, environnements et évolution, J. Afr. Earth Sci., 30, 183–200, https://doi.org/10.1016/S0899-5362(00)00015-4, 2000. a, b
Jousé, A. P.: Diatom Biostratigraphy on the Generic Level, Micropaleontology, 24, 316–326, https://doi.org/10.2307/1485389, 1978. a
Katz, T., Bookman, R., Herut, B., Goodman-Tchernov, B., and Sisma-Ventura, G.: Far-field effects of the Nile damming on the silica cycle in the Southeastern Mediterranean Sea, Sci. Total Environ., 921, 171274, https://doi.org/10.1016/j.scitotenv.2024.171274, 2024. a
Keller, G.: Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas, Palaeogeogr. Palaeocl. Palaeoecol., 43, 73–94, https://doi.org/10.1016/0031-0182(83)90049-4, 1983. a
Knoll, A. H., Summons, R. E., Waldbauer, J. R., and Zumberge, J. E.: The Geological Succession of Primary Producers in the Oceans, in: Evolution of Primary Producers in the Sea, Elsevier, 133–163, ISBN 978-0-12-370518-1, https://doi.org/10.1016/B978-012370518-1/50009-6, 2007. a
Kocsis, L., Gheerbrant, E., Mouflih, M., Cappetta, H., Yans, J., and Amaghzaz, M.: Comprehensive stable isotope investigation of marine biogenic apatite from the late Cretaceous–early Eocene phosphate series of Morocco, Palaeogeogr. Palaeocl. Palaeoecol., 394, 74–88, https://doi.org/10.1016/j.palaeo.2013.11.002, 2014a. a, b
Kocsis, L., Ounis, A., Baumgartner, C., Pirkenseer, C., Harding, I. C., Adatte, T., Chaabani, F., and Neili, S. M.: Paleocene–Eocene palaeoenvironmental conditions of the main phosphorite deposits (Chouabine Formation) in the Gafsa Basin, Tunisia, J. Afr. Earth Sci., 100, 586–597, https://doi.org/10.1016/j.jafrearsci.2014.07.024, 2014b. a
Kooistra, W. H., Gersonde, R., Medlin, L. K., and Mann, D. G.: The Origin and Evolution of the Diatoms: Their Adaptation to a Planktonic Existence, in: Evolution of Primary Producers in the Sea, Elsevier, 207–249, ISBN 978-0-12-370518-1, https://doi.org/10.1016/B978-012370518-1/50012-6, 2007. a, b
Kvaček, Z.: Late Eocene landscape, ecosystems and climate in northern Bohemia with particular reference to the locality of Kučlín near Bílina, Bull. Czech Geol. Surv., 77, 217–236, 2002. a
Leblanc, K., Arístegui, J., Armand, L., Assmy, P., Beker, B., Bode, A., Breton, E., Cornet, V., Gibson, J., Gosselin, M.-P., Kopczynska, E., Marshall, H., Peloquin, J., Piontkovski, S., Poulton, A. J., Quéguiner, B., Schiebel, R., Shipe, R., Stefels, J., Van Leeuwe, M. A., Varela, M., Widdicombe, C., and Yallop, M.: A global diatom database – abundance, biovolume and biomass in the world ocean, Earth Syst. Sci. Data, 4, 149–165, https://doi.org/10.5194/essd-4-149-2012, 2012. a
Lelikov, E. P. and Emelyanova, T. A.: Geology and volcanism of the underwater Vityaz Ridge (Pacific slope of the Kuril Island Arc), Oceanology, 51, 315–328, https://doi.org/10.1134/S0001437011020081, 2011. a
Lu, G., Keller, G., Adatte, T., and Benjamini, C.: Abrupt change in the upwelling system along the southern margin of the Tethys during the Paleocene-Eocene transition event, Isr. J. Earth Sci., 44, 185–195, 1995. a
Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., Von Der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J.-B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C., and Zeebe, R. E.: The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0), Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, 2017. a
Malinverno, E., Bosio, G., Di Celma, C., Gariboldi, K., Gioncada, A., Pierantoni, P. P., Collareta, A., Molli, G., Bagnoli, G., Sarti, G., Urbina, M., and Bianucci, G.: (Bio)stratigraphic overview and paleoclimatic-paleoceanographic implications of the middle-upper Eocene deposits from the Ica River Valley (East Pisco Basin, Peru), Palaeogeogr. Palaeocl. Palaeoecol., 578, 110567, https://doi.org/10.1016/j.palaeo.2021.110567, 2021. a, b
Marty, R., Dunbar, R., Martin, J. B., and Baker, P.: Late Eocene diatomite from the Peruvian coastal desert, coastal upwelling in the eastern Pacific, and Pacific circulation before the terminal Eocene event, Geology, 16, 818–822, https://doi.org/10.1130/0091-7613(1988)016<0818:LEDFTP>2.3.CO;2, 1988. a
McLean, H. and Barron, J. A.: A Late Middle Eocene Diatomite in Northwestern Baja California Sur, Mexico: Implications for Tectonic Translation, in: Paleogene Stratigraphy, West Coast of North America, Pacific Section, SEPM, West Coast Paleogene Symposium, vol. 58, edited by: Filewicz, M. V. and Squires, R. L., SEPM, 1–8, 1988. a, b
Meilijson, A., Bialik, O. M., Boudinot, F. G., Bown, P. R., Benjamini, C., Waldmann, N. D., and Sepúlveda, J.: Long-term carbon sequestration in the Eocene of the Levant Basin through transport of organic carbon from nearshore to deep marine environments, Chem. Geol., 642, 121800, https://doi.org/10.1016/j.chemgeo.2023.121800, 2023. a
Milam, R. and Ingle, J.: Paleo-Oceanographic Significance of Eocene Diatomites in Kreyenhagen Formation of California: ABSTRACT, AAPG Bull., 66, 1695–1695, https://doi.org/10.1306/03B5AA9D-16D1-11D7-8645000102C1865D, 1982. a
Milanovskii, E.: Pulsations of the Earth, Geoteknika, 3–24, 1995. a
Miller, K. G.: Middle Eocene to Oligocene Stable Isotopes, Climate, and Deep-Water History: The Terminal Eocene Event?, in: Eocene-Oligocene Climatic and Biotic Evolution, edited by: Prothero, D. R. and Berggren, W. A., Princeton University Press, 160–177, ISBN 978-1-4008-6292-4, https://doi.org/10.1515/9781400862924.160, 1992. a
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020. a, b
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.: GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophy. Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018. a
Mustoe, G.: Geologic History of Eocene Stonerose Fossil Beds, Republic, Washington, USA, Geosciences, 5, 243–263, https://doi.org/10.3390/geosciences5030243, 2015. a
Mustoe, G. E.: Diatomaceous origin of siliceous shale in Eocene lake beds of central British Columbia, Can. J. Earth Sci., 42, 231–241, https://doi.org/10.1139/e04-099, 2005. a, b
Mustoe, G. E.: Cyclic sedimentation in the Eocene Allenby Formation of south-central British Columbia and the origin of the Princeton Chert fossil beds, Can. J. Earth Sci., 48, 25–43, https://doi.org/10.1139/E10-085, 2011. a
Nikonova, R.: Rifting Zones of the Eurasian Margin as Zones of Destructive Endo-and Exogeomorphogenesis, in: Geodinamika morfostruktur (Geodynamics of Morphostructures), Fil. Sib. Otd. Akad. Nauk SSSR, 20–31, 1987. a
Nikonova, R. and Khudyakov, G.: Structural and Tectonic Constraints of the Formation of Peneplain, in: Morfostruktury Dal'nego Vostoka (Morphostructures of the Russian Far East), Fil. Sib. Otd. Akad. Nauk SSSR, 13–23, 1982. a
NOAA NCEI: ETOPO 2022 15 Arc-Second Global Relief Model, NOAA National Centers for Environmental Information [code], https://doi.org/10.25921/fd45-gt74, 2022. a
Olshtynska, O.: Eocene and Early Oligocene Silicoflagellates and Ebridians from the Ukraine, Zb. nauk. prac' Inst. geol. nauk NAN Ukr., 6, 131–135, https://doi.org/10.30836/igs.2522-9753.2013.147170, 2013. a
Olshtynska, O. and Tsoy, I. B.: Silicoflagellates of the Late Eocene to Early Oligocene of Eastern Paratethys (Azov Sea area of Ukraine), Nova Hedwigia, Beihefte, 147, 141–150, https://doi.org/10.1127/nova-suppl/2018/013, 2018. a
Oreshkina, T. V. and Aleksandrova, G. N.: Paleocene–Lower Eocene paleontological record of the Ulyanovsk-Syzran facial district, Volga-Peri-Caspian region, Stratigr. Geol. Correl., 25, 307–332, https://doi.org/10.1134/S0869593817030066, 2017. a
Oreshkina, T. V., Iakovleva, A. I., and Aleksandrova, G. N.: Silicofossils and Dinocysts of the Lower Paleogene Siliceous–Terrigenous Deposits, South Russian Plate: Their Significance for Dating of Sedimentary Sequences, Stratigr. Geol. Correl., 29, 322–347, https://doi.org/10.1134/S0869593821030047, 2021. a
Penman, D. E.: Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum, Geology, 44, 731–734, https://doi.org/10.1130/G37704.1, 2016. a, b, c, d
Penman, D. E., Keller, A., D'haenens, S., Kirtland Turner, S., and Hull, P. M.: Atlantic Deep‐Sea Cherts Associated With Eocene Hyperthermal Events, Paleoceanogr. Paleoclimatol., 34, 287–299, https://doi.org/10.1029/2018PA003503, 2019. a, b
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., and Winnick, M. J.: Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle, Earth-Sci. Rev., 209, 103298, https://doi.org/10.1016/j.earscirev.2020.103298, 2020. a
Prian, J.-P.: Phosphate Deposits of the Senegal-mauritania-guinea Basin (West Africa): A review, Procedia Eng., 83, 27–36, https://doi.org/10.1016/j.proeng.2014.09.008, 2014. a, b
Prokop, J.: Remarks on palaeoenviromental changes based on reviewed Tertiary insect associations from the Krušné hory piedmont basins and the Èeské støedohoøí Mts in northwestern Bohemia (Czech Republic), Acta Zool. Cracov., 46, 329–344, 2003. a
Radionova, E. P., Beniamovski, V. N., Iakovleva, A. I., Muzylöv, N. G., Oreshkina, T. V., Shcherbinina, E. A., and Kozlova, G. E.: Early Paleogene transgressions: Stratigraphical and sedimentological evidence from the northern Peri-Tethys, Geol. Soc. Am. Spec. Pap., 369, 239–261, https://doi.org/10.1130/0-8137-2369-8.239, 2003. a, b, c
Renaudie, J.: Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles, Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, 2016. a
Scherer, R. P., Gladenkov, A. Y., and Barron, J. A.: Methods and Applications of Cenozoic Marine Diatom Biostratigraphy, Paleontol. Soc. pap., 13, 61–83, https://doi.org/10.1017/S1089332600001467, 2007. a
Schrader, H.-J.: Cenozoic planktonic diatom biostratigraphy of the southern Pacific Ocean, in: Initial Reports of the Deep Sea Drilling Project, edited by: Hollister, C. D., Craddock, C., Bogdanov, Y. A., Edgar, N. T., Gieskes, J. M., Haq, B. U., Lawrence, J. R., Rögl, F., Schrader, H.-J., Tucholke, B. E., Vennum, W. R., Weaver F. M., and Zhivago, V. N., US Government Printing Office, Washington, 35, 605–671, 1976.
Siver, P. A. and Lott, A. M.: History of the Giraffe Pipe locality inferred from microfossil remains: a thriving freshwater ecosystem near the Arctic Circle during the warm Eocene, J. Paleontol., 97, 271–291, https://doi.org/10.1017/jpa.2022.101, 2023. a
Smirnov, P., Deryagina, O., Afanasieva, N., Rudmin, M., and Gursky, H.-J.: Clay Minerals and Detrital Material in Paleocene–Eocene Biogenic Siliceous Rocks (Sw Western Siberia): Implications for Volcanic and Depositional Environment Record, Geosciences, 10, 162, https://doi.org/10.3390/geosciences10050162, 2020. a
Smirnov, P. V. and Konstantinov, A. O.: Biogenic siliceous accumulation in Early Paleogene marine basins of Western Siberia: Factors and stages, Litosfera, 17, 26–47, https://doi.org/10.24930/1681-9004-2017-4-026-047, 2017. a, b, c
Soudry, D., Glenn, C., Nathan, Y., Segal, I., and VonderHaar, D.: Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation, Earth-Sci. Rev., 78, 27–57, https://doi.org/10.1016/j.earscirev.2006.03.005, 2006. a
Storey, M., Duncan, R. A., and Tegner, C.: Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot, Chem. Geol., 241, 264–281, https://doi.org/10.1016/j.chemgeo.2007.01.016, 2007. a
Straume, E. O., Steinberger, B., Becker, T. W., and Faccenna, C.: Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway, Earth Planet. Sc. Lett., 630, 118615, https://doi.org/10.1016/j.epsl.2024.118615, 2024. a, b, c, d
Torfstein, A., Winckler, G., and Tripati, A.: Productivity feedback did not terminate the Paleocene-Eocene Thermal Maximum (PETM), Clim. Past, 6, 265–272, https://doi.org/10.5194/cp-6-265-2010, 2010. a
Torsvik, T. H., Steinberger, B., Shephard, G. E., Doubrovine, P. V., Gaina, C., Domeier, M., Conrad, C. P., and Sager, W. W.: Pacific‐Panthalassic Reconstructions: Overview, Errata and the Way Forward, Geochem. Geophy. Geosy., 20, 3659–3689, https://doi.org/10.1029/2019GC008402, 2019. a
Tréguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J., Leynaert, A., and Quéguiner, B.: The Silica Balance in the World Ocean: A Reestimate, Science, 268, 375–379, https://doi.org/10.1126/science.268.5209.375, 1995. a
Tsoy, I. B.: Oligocene diatom assemblages from the island slope deposits of the Kuril-Kamchatka Trench, Oceanology, 42, 252–265, 2002. a
Tsoy, I. B.: Eocene Diatoms and Silicoflagellates from the Kronotskii Bay Deposits (East Kamchatka), Stratigr. Geol. Correl., 11, 376–390, 2003. a
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert, T., and Pälike, H.: Ocean and climate response to North Atlantic seaway changes at the onset of long-term Eocene cooling, Earth Planet. Sc. Lett., 498, 185–195, https://doi.org/10.1016/j.epsl.2018.06.031, 2018. a
Van Cappellen, P., Dixit, S., and Van Beusekom, J.: Biogenic silica dissolution in the oceans: Reconciling experimental and field‐based dissolution rates, Global Biogeochem. Cy., 16, 1075, https://doi.org/10.1029/2001GB001431, 2002. a
Van Couvering, J., Aubry, M.-P., Berggren, W., Bujak, J., Naeser, C., and Wieser, T.: The terminal eocene event and the polish connection, Palaeogeogr. Palaeocll. Palaeoecol., 36, 321–362, https://doi.org/10.1016/0031-0182(81)90111-5, 1981. a
Wade, B. S., O'Neill, J. F., Phujareanchaiwon, C., Ali, I., Lyle, M., and Witkowski, J.: Evolution of deep-sea sediments across the Paleocene-Eocene and Eocene-Oligocene boundaries, Earth-Sci. Rev., 211, 103403, https://doi.org/10.1016/j.earscirev.2020.103403, 2020. a
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature, J. Geophys. Res, 86, 9776–9782, https://doi.org/10.1029/JC086iC10p09776, 1981. a, b
Wallmann, K.: Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate, Geochim. Cosmochim. Ac., 65, 3005–3025, https://doi.org/10.1016/S0016-7037(01)00638-X, 2001. a
Weaver, F. M. and Wise, S. W.: Opaline Sediments of the Southeastern Coastal Plain and Horizon A: Biogenic Origin, Science, 184, 899–901, https://doi.org/10.1126/science.184.4139.899, 1974. a
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020. a, b
Witkowski, J.: From museum drawers to ocean drilling: Fenneria gen. nov. (Bacillariophyta) offers new insights into Eocene marine diatom biostratigraphy and palaeobiogeography, Acta Geol. Pol., 68, 53–88, 2018. a
Witkowski, J., Penman, D. E., Bryłka, K., Wade, B. S., Matting, S., Harwood, D. M., and Bohaty, S. M.: Early Paleogene biosiliceous sedimentation in the Atlantic Ocean: Testing the inorganic origin hypothesis for Paleocene and Eocene chert and porcellanite, Palaeogeogr. Palaeocl. Palaeoecol., 556, 109896, https://doi.org/10.1016/j.palaeo.2020.109896, 2020. a
Witkowski, J., Bryłka, K., Bohaty, S. M., Mydłowska, E., Penman, D. E., and Wade, B. S.: North Atlantic marine biogenic silica accumulation through the early to middle Paleogene: implications for ocean circulation and silicate weathering feedback, Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, 2021. a, b
Wooldridge, J. M.: Introductory econometrics: a modern approach, The South-Western College publishing series in economics, South-Western College Publ., ISBN 978-0-538-85013-1, 1999. a
Yool, A. and Tyrrell, T.: Role of diatoms in regulating the ocean's silicon cycle, Global Biogeochem. Cy., 17, 2002GB002018, https://doi.org/10.1029/2002GB002018, 2003. a
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001. a
Zahajská, P., Opfergelt, S., Fritz, S. C., Stadmark, J., and Conley, D. J.: What is diatomite?, Quatern. Res., 96, 48–52, https://doi.org/10.1017/qua.2020.14, 2020. a, b
Zhang, Y., Huck, T., Lique, C., Donnadieu, Y., Ladant, J.-B., Rabineau, M., and Aslanian, D.: Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean, Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, 2020. a
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and...