Articles | Volume 20, issue 11
https://doi.org/10.5194/cp-20-2629-2024
https://doi.org/10.5194/cp-20-2629-2024
Research article
 | 
28 Nov 2024
Research article |  | 28 Nov 2024

Climatic and tectonic controls on shallow-marine and freshwater diatomite deposition throughout the Palaeogene

Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski

Related authors

Controls on Palaeogene deep-sea diatom-bearing sediment deposition and comparison with shallow marine environments
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768,https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary

Related subject area

Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Cenozoic
Middle Eocene Climatic Optimum (MECO) and its imprint in the continental Escanilla Formation, Spain
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024,https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Fluvio-deltaic record of increased sediment transport during the Middle Eocene Climatic Optimum (MECO), Southern Pyrenees, Spain
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023,https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Terrestrial carbon isotope stratigraphy and mammal turnover during post-PETM hyperthermals in the Bighorn Basin, Wyoming, USA
Sarah J. Widlansky, Ross Secord, Kathryn E. Snell, Amy E. Chew, and William C. Clyde
Clim. Past, 18, 681–712, https://doi.org/10.5194/cp-18-681-2022,https://doi.org/10.5194/cp-18-681-2022, 2022
Short summary
Climate and ecology in the Rocky Mountain interior after the early Eocene Climatic Optimum
Rebekah A. Stein, Nathan D. Sheldon, Sarah E. Allen, Michael E. Smith, Rebecca M. Dzombak, and Brian R. Jicha
Clim. Past, 17, 2515–2536, https://doi.org/10.5194/cp-17-2515-2021,https://doi.org/10.5194/cp-17-2515-2021, 2021
Short summary
Palaeo-environmental evolution of Central Asia during the Cenozoic: new insights from the continental sedimentary archive of the Valley of Lakes (Mongolia)
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021,https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary

Cited articles

Akhmetiev, M. A., Zaporozhets, N. I., Iakovleva, A. I., Aleksandrova, G. N., Beniamovsky, V. N., Oreshkina, T. V., Gnibidenko, Z. N., and Dolya, Z. A.: Comparative analysis of marine paleogene sections and biota from West Siberia and the Arctic Region, Stratigr. Geol. Correl., 18, 635–659, https://doi.org/10.1134/S0869593810060043, 2010. a
Akhmetiev, M. A., Zaporozhets, N. I., Benyamovskiy, V. N., Aleksandrova, G. N., Iakovleva, A. I., and Oreshkina, T. V.: The Paleogene history of the Western Siberian seaway – a connection of the Peri-Tethys to the Arctic ocean, Aust. J. Earth Sci., 105, 50–67, 2012. a
Aleksandrova, G. N., Beniamovski, V. N., Zaporozhets, N. I., Zastrozhnov, A. S., Zastrozhnov, S. I., Tabachnikova, I. P., Oreshkina, T. V., and Zakrevskaya, E. Y.: Paleogene of the southwestern Volgograd region (Borehole 13, Gremyach'e Area). 1. Biostratigraphy, Stratigr. Geol. Correl., 19, 310–336, https://doi.org/10.1134/S0869593811030014, 2011. a
Amon, E. O.: Factors and conditions of accumulation of Paleogene biogenic silicates in Western Siberia, Bull. Soc. Nat. Moscou, 93, 51–67, 2018. a, b
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 9533, 380–384, https://doi.org/10.1038/nature17423, 2016. a
Download
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.