Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
Volume 11, issue 9
Clim. Past, 11, 1223–1237, 2015
https://doi.org/10.5194/cp-11-1223-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Climatic and biotic events of the Paleogene

Clim. Past, 11, 1223–1237, 2015
https://doi.org/10.5194/cp-11-1223-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Sep 2015

Research article | 24 Sep 2015

Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2

A. E. Chew A. E. Chew
  • Department of Anatomy, Western University of Health Sciences, 309 E Second St., Pomona, CA 91767, USA

Abstract. "Hyperthermals" are past intervals of geologically rapid global warming that provide the opportunity to study the effects of climate change on existing faunas over thousands of years. A series of hyperthermals is known from the early Eocene (~ 56–54 million years ago), including the Paleocene–Eocene Thermal Maximum (PETM) and two subsequent hyperthermals (Eocene Thermal Maximum 2 – ETM2 – and H2). The later hyperthermals occurred during warming that resulted in the Early Eocene Climatic Optimum (EECO), the hottest sustained period of the Cenozoic. The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 and H2 are relatively unknown. Two carbon isotope excursions (CIEs) have been described in the northern part of the Bighorn Basin, WY, USA, and related to ETM2 and H2. An ~ 80 m thick zone of stratigraphic section in the extraordinarily dense, well-studied terrestrial mammal fossil record along the Fifteenmile Creek (FC) in the south–central part of the basin spans the levels at which the CIEs occur in the northern Bighorn Basin. High-resolution, multiparameter paleoecological analysis of this part of the FC section reveals two episodes of significant faunal change – faunal events B-1 and B-2 – characterized by significant peaks in species diversity and turnover and changes in abundance and relative body size. Faunal events B-1 and B-2 are hypothesized to be related to the CIEs in the northern part of the basin and hence to the climatic and environmental change of ETM2 and H2. In contrast with the PETM, change at faunal events B-1 and B-2 is less extreme, is not driven by immigration and involves a proliferation of body sizes, although abundance shifts tend to favor smaller congeners. The response at faunal events B-1 and B-2 is distinctive in its high proportion of species losses, potentially related to heightened species vulnerability in response to changes already underway in the lead-up to the EECO. Faunal response at faunal events B-1 and B-2 is also distinctive in that it shows high proportions of beta richness, suggestive of increased geographic dispersal related to transient increases in habitat (floral) complexity and/or precipitation or seasonality of precipitation.

Publications Copernicus
Download
Short summary
This project describes mammal faunal response in the zone of the ETM2 and H2 hyperthermals (rapid global warming events) of the early Paleogene in the south-central Bighorn Basin, WY. The response includes changes in faunal structure and species relative body size. Comparative analysis suggests that environmental moisture and rate of change are important moderators of response.
This project describes mammal faunal response in the zone of the ETM2 and H2 hyperthermals...
Citation