Articles | Volume 20, issue 11
https://doi.org/10.5194/cp-20-2473-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-2473-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Indo–Pacific Pollen Database – a Neotoma constituent database
Annika V. Herbert
CORRESPONDING AUTHOR
Department of Archaeology and Natural History, Australian National University, Canberra, ACT 2601, Australia
Australian Research Council Centre of Excellence in Australian Biodiversity and Heritage, Australian National University, Canberra, ACT 2601, Australia
Australian Research Council Centre of Excellence for Indigenous and Environmental Histories and Futures, Australian National University, Canberra, ACT 2601, Australia
Simon G. Haberle
Department of Archaeology and Natural History, Australian National University, Canberra, ACT 2601, Australia
Australian Research Council Centre of Excellence in Australian Biodiversity and Heritage, Australian National University, Canberra, ACT 2601, Australia
Australian Research Council Centre of Excellence for Indigenous and Environmental Histories and Futures, Australian National University, Canberra, ACT 2601, Australia
Suzette G. A. Flantua
Department of Biological Sciences, University of Bergen, Bjerknes Centre for Climate Research, 5020 Bergen, Norway
Ondrej Mottl
Department of Biological Sciences, University of Bergen, Bjerknes Centre for Climate Research, 5020 Bergen, Norway
Center for Theoretical Study, Charles University, Jilská 1, 11000 Prague 1, Czechia
Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801 Prague, Czechia
Jessica L. Blois
Department of Life and Environmental Sciences, University of California-Merced, Merced, CA 95343, USA
John W. Williams
Department of Geography and Center for Climatic Research, University of Wisconsin, Madison, WI 53706, USA
Adrian George
Department of Geography and Center for Climatic Research, University of Wisconsin, Madison, WI 53706, USA
Geoff S. Hope
Department of Archaeology and Natural History, Australian National University, Canberra, ACT 2601, Australia
deceased
Related authors
No articles found.
Andria Dawson, John W. Williams, Marie-José Gaillard, Simon J. Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Daniel G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock
Clim. Past, 21, 2031–2060, https://doi.org/10.5194/cp-21-2031-2025, https://doi.org/10.5194/cp-21-2031-2025, 2025
Short summary
Short summary
Holocene vegetation–atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum: a mismatch between data- and model-inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth system models.
Cited articles
Adeleye, M. A., Mariani, M., Connor, S., Haberle, S. G., Herbert, A., Hopf, F., and Stevenson, J.: Long-term drivers of vegetation turnover in Southern Hemisphere temperate ecosystems, Global Ecol. Biogeogr., 30, 557–571, https://doi.org/10.1111/geb.13232, 2021.
Adeleye, M. A., Haberle, S. G., Gallagher, R., Andrew, S. C., and Herbert, A.: Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities, Nat. Ecol. Evol., 7, 224–235, https://doi.org/10.1038/s41559-022-01943-4, 2023.
Australian Plant Name Index: IBIS database, Centre for Australian National Biodiversity Research, Australian Government, Canberra, https://biodiversity.org.au/nsl/services/search/names, last access: 29 June 2024.
Birks, H. J. B., Bhatta, K. P., Felde, V. A., Flantua, S. G. A., Mottl, O., Haberle, S. G., Herbert, A., Hooghiemstra, H., Birks, H. H., Grytnes, J.-A., and Seddon, A. W. R.: Approaches to pollen taxonomic harmonisation in Quaternary palynology, Rev. Palaeobot. Palyno., 319, 104989, https://doi.org/10.1016/j.revpalbo.2023.104989, 2023.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Cadd, H., Petherick, L., Tyler, J., Herbert, A., Cohen, T. J., Sniderman, K., Barrows, T. T., Fulop, R. H., Knight, J., Kershaw, A. P., Colhoun, E. A., and Harris, M. R. P.: A continental perspective on the timing of environmental change during the last glacial stage in Australia, Quaternary Res., 102, 5–23, https://doi.org/10.1017/qua.2021.16, 2021.
Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate reconstruction techniques for late Quaternary studies, Earth-Sci. Rev., 210, 103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
Cook, E. J. and van der Kaars, S.: Development and testing of transfer functions for generating quantitative climatic estimates from Australian pollen data, J. Quaternary Sci., 21, 723–733, https://doi.org/10.1002/jqs.1076, 2006.
D'Costa, D. and Kershaw, A. P.: An expanded recent pollen database from south-eastern Australia and its potential for refinement of palaeoclimatic estimates, Aust. J. Bot., 45, 583–605, https://doi.org/10.1071/BT96046, 1997.
Delcourt, P. A. and Delcourt, H. R.: Pollen preservation and Quaternary environmental history in the southeastern United States, Palynology, 4, 215–231, https://doi.org/10.1080/01916122.1980.9989209, 1980.
Flantua, S. G. A. and Hooghiemstra, H.: Anthropogenic pollen indicators: Global food plants and Latin American human indicators in the pollen record, Scientific Data, 10, 721, https://doi.org/10.1038/s41597-023-02613-1, 2023.
Flantua, S. G. A., Hooghiemstra, H., Grimm, E. C., Behling, H., Bush, M. B., González-Arango, C., Gosling, W. D., Ledru, M.-P., Lozano-García, Maldonado, A., Prieto, A. R., Rull, V., and Van Boxel, J. H.: Updated site compilation of the Latin American Pollen Database, Rev. Palaeobot. Palyno., 223, 104–115, https://doi.org/10.1016/j.revpalbo.2015.09.008, 2015.
Flantua, S. G. A., Hooghiemstra, H., Vuille, M., Behling, H., Carson, J. F., Gosling, W. D., Hoyos, I., Ledru, M. P., Montoya, E., Mayle, F., Maldonado, A., Rull, V., Tonello, M. S., Whitney, B. S., and González-Arango, C.: Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records, Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, 2016.
Flantua, S. G. A., Mottl, O., Felde, V. A., Bhatta, K. P., Birks, H. H., Grytnes, J.-A., Seddon, A. W. R., and Birks, H. J. B.: A guide to the processing and standardization of global palaeoecological data for large-scale syntheses using fossil pollen, Global Ecol. Biogeogr., 32, 1377–1394, https://doi.org/10.1111/geb.13693, 2023.
Fyfe, R. M., de Beaulieu, J.-L., Binney, H., Bradshaw, R. H. W., Brewer, S., Le Flao, A., Finsinger, W., Gaillard, M.-J., Giesecke, T., Gil-Romera, G., Grimm, E. C., Huntley, B., Kunes, P., Kühl, N., Leydet, M., Lotter, A. F., Tarasov, P. E., and Tonkov, S.: The European Pollen Database: past efforts and current activities, Veg. Hist. Archaeobot., 18, 417–424, https://doi.org/10.1007/s00334-009-0215-9, 2009.
Gaillard, M.-J., Sugita, S., Mazier, F., Trondman, A.-K., Broström, A., Hickler, T., Kaplan, J. O., Kjellström, E., Kokfelt, U., Kuneš, P., Lemmen, C., Miller, P., Olofsson, J., Poska, A., Rundgren, M., Smith, B., Strandberg, G., Fyfe, R., Nielsen, A. B., Alenius, T., Balakauskas, L., Barnekow, L., Birks, H. J. B., Bjune, A., Björkman, L., Giesecke, T., Hjelle, K., Kalnina, L., Kangur, M., van der Knaap, W. O., Koff, T., Lagerås, P., Latałowa, M., Leydet, M., Lechterbeck, J., Lindbladh, M., Odgaard, B., Peglar, S., Segerström, U., von Stedingk, H., and Seppä, H.: Holocene land-cover reconstructions for studies on land cover-climate feedbacks, Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, 2010.
Gajewski, K.: The Global Pollen Database in biogeographical and palaeoclimatic studies, Prog. Phys. Geog., 32, 379–402, https://doi.org/10.1177/0309133308096029, 2008.
Goring, S., Williams, J. W., Blois, J. L., Jackson, S. T., Paciorek, C. J., Booth, R. K., Marlon, J. R., Blaauw, M., and Christen, J. A.: Deposition times in the northeastern United States during the Holocene: establishing valid priors for Bayesian age models, Quaternary Sci. Rev., 48, 54–60, https://doi.org/10.1016/j.quascirev.2012.05.019, 2012.
Harris, I., Osborn, T. J., Jones, P., and Lister, D. H.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Herbert, A. V. and Fitchett, J. M.: Quantifying late Quaternary Australian rainfall seasonality changes using the Poaceae: Asteraceae pollen ratio, Quaternary Res., 102, 24–38, https://doi.org/10.1017/qua.2020.18, 2021.
Herbert, A. V. and Harrison, S. P.: Evaluation of a modern-analogue methodology for reconstructing Australian palaeoclimate from pollen. Rev. Palaeobot. Palyno., 226, 65–77, https://doi.org/10.1016/j.revpalbo.2015.12.006, 2016.
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H.: SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP, Radiocarbon, 55, 1889–1903, https://doi.org/10.2458/azu_js_rc.55.16783, 2013.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S. M., Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP, Radiocarbon, 62, 759–778, https://doi.org/10.1017/RDC.2020.59, 2020.
Hope, G. S., O'Dea, D., and Southern, W.: Holocene vegetation histories in the Western Pacific – alternative records of human impact, in: Le Pacifique de 5000 à 2000 avant le present: suppléments à l'histoire d'une colonisation, edited by: Lilley, I. and Galipaud, J.-C., IRD, Paris, France, 387–404, ISBN 270991431X, 1999.
Ivory, S. J., Lézine, A.-M., Grimm, E., and Williams, J.: Relaunshing the African Pollen Database: Abrupt change in climate and ecosystems, Past Global Changes Magazine, Past Plant Diversity and Conservation, 28, 26–28, https://doi.org/10.22498/pages.28.1.26, 2020.
Kershaw, A. P., Bulman, D., and Busby, J. R.: An examination of modern and pre-European settlement pollen samples from southeastern Australia – assessment of their application to quantitative reconstruction of past vegetation and climate, Rev. Palaeobot. Palyno., 82, 83–96, https://doi.org/10.1016/0034-6667(94)90021-3, 1994.
Lacourse, T. and Adeleye, M. A.: Climate and species traits drive changes in Holocene forest composition along an elevation gradient in Pacific Canada, Front. Ecol. Evol., 10, 838545, https://doi.org/10.3389/fevo.2022.838545, 2022.
Lézine, A.-M., Ivory, S. J., Gosling, W. D., and Scott, L.: The African Pollen Database (APD) and tracing environmental change: State of the Art, in: Quaternary Vegetation Dynamics, edited by: Runge, J., Gosling, W., Lézine, A.-M., and Scott, L., CRC Press, London, UK, https://doi.org/10.1201/9781003162766, 5–12, 2021.
López-Sáez, J. A., Abel-Schaad, D., Pérez-Díaz, S., Blanco-González, A., Alba-Sánchez, F., Dorado, M., Ruiz-Zapata, B., Gil-García, M. J., Gómez-González, C., and Franco-Múgica, F.: Vegetation history, climate and human impact in the Spanish Central System over the last 9000 years, Quatern. Int., 353, 98–122, https://doi.org/10.1016/j.quaint.2013.06.034, 2014.
Lowe, J. J.: Three Flandrian pollen profiles from the Teith Valley, Perthshire, Scotland. II. Analysis of deteriorated pollen, New Phytol., 90, 371–385, https://doi.org/10.1111/j.1469-8137.1982.tb03268.x, 1982.
Lyver, P. O., Wilmshurst, J. M., Wood, J. R., Jones, C. J., Fromont, M., Bellingham, P. J., Stone, C., Sheehan, M., and Moller, H.: Looking back for the future: local knowledge and palaeoecology inform biocultural restoration of coastal ecosystems in New Zealand, Hum. Ecol., 43, 681–695, https://doi.org/10.1007/s10745-015-9784-7, 2015.
Mariani, M., Connor, S. E., Theuerkauf, M., Kuneš, P., and Fletcher, M.-S.: Testing quantitative pollen dispersal models in animal-pollinated vegetation mosaics: An example from temperate Tasmania, Australia, Quaternary Sci. Rev., 154, 214–225, https://doi.org/10.1016/j.quascirev.2016.10.020, 2016.
Mariani, M., Connor, S. E., Fletcher, M.-S., Theuerkauf, M., Kuneš, P., Jacobsen, G., Saunders, K. M., and Zawadzki, A.: How old is the Tasmanian cultural landscape? A test of landscape openness using quantitative land-cover reconstructions, J. Biogeogr., 44, 2410–2420, https://doi.org/10.1111/jbi.13040, 2017.
Mariani, M., Connor, S. E., Theuerkauf, M., Herbert, A., Kunes, P., Bowman, D., Fletcher, M.-S., Head, L., Kershaw, A. P., Haberle, S. G., Stevenson, J., Adeleye, M., Cadd, H., Hopf, F., and Briles, C.: Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires, Front. Ecol. Environ., 20, 292–300, https://doi.org/10.1002/fee.2395, 2022.
Mottl, O.: Code for: “The Indo-Pacific Pollen Database – a Neotoma constituent database”, Zenodo [data set], https://doi.org/10.5281/zenodo.14003190, 2024.
Mottl, O. and Flantua, S. G. A.: FOSSILPOL: The workflow to process global palaeoecological pollen data (v1.0.1-20241107), Zenodo [code], https://doi.org/10.5281/zenodo.14049214, 2024.
Mottl, O., Flantua, S. G. A., Bhatta, K. P., Felde, V. A., Giesecke, T., Goring, S., Grimm, E. C., Haberle, S., Hooghiemstra, H., Ivory, S., Kunes, P., Wolters, S., Seddon, A. W. R., and Williams, J. W.: Global acceleration in rates of vegetation change over the past 18,000 years, Science, 372, 860–864, https://doi.org/10.1126/science.abg1685, 2021.
neotomadb.org: Neotoma Paleoecology Database, https://www.neotomadb.org/, last access: 23 October 2024.
Newell, N. D.: Periodicity in invertebrate evolution, J. Paleontol., 26, 371–385, 1952.
Nogué, S., Santos, A. M. C., Birks, H. J. B., Björck, S., Castilla-Beltrán, A., Connor, S., de Boer, E. J., de Nascimento, L., Felde, V. A., Fernández-Palacios, J. M., Froyd, C. A., Haberle, S. G., Hooghiemstra, H., Ljung, K., Norder, S. J., Peñuelas, J., Prebble, M., Stevenson, J., Whittaker, R. J., Willis, K. J., Wilmshurst, J. M., and Steinbauer, M. J.: The human dimension of biodiversity changes on islands, Science, 372, 488–491, https://doi.org/10.1126/science.abd6706, 2021.
Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Kershaw, A. P., Prentice, I. C., Backhouse, J., Colhoun, E. A., D'Costa, D., Flenley, J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail, M., Martin, H., Martin, A. H., McKenzie, M., Newsome, J. C., Penny, D., Powell, J., Raine, J. I., Southern, W., Stevenson, J., Sutra, J.-P., Thomas, I., van der Kaars, S., and Ward, J.: Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP, J. Biogeogr., 31, 1381–1444, https://doi.org/10.1111/j.1365-2699.2004.01001.x, 2004.
Prentice, I. C. and Webb, T.: BIOME 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records, J. Biogeogr., 25, 997–1005, https://doi.org/10.1046/j.1365-2699.1998.00235.x, 1998.
Prentice, I. C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R.: Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka, Clim. Dynam., 12, 185–194, https://doi.org/10.1007/BF00211617, 1996.
R Core Team: R: A language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria, https://www.r-project.org/ (last access: 21 October 2024), 2022.
Record, S., Jarzyna, M. A., Hardiman, B., and Richardson, A. D.: Open data facilitate resilience in science during the COVID-19 pandemic, Front. Ecol. Environ., 20, 76, https://doi.org/10.1002/fee.2468, 2022.
Strandberg, N. A., Steinbauer, M. J., Walentowitz, A., Gosling, W. D., Fall, P. L., Prebble, M., Stevenson, J., Wilmshurst, J. M., Sear, D. A., Langdon, P. G., Edwards, M. E., and Nogué, S.: Floristic homogenization of South Pacific islands commenced with human arrival, Nat. Ecol. Evol., 8, 511–518, https://doi.org/10.1038/s41559-023-02306-3, 2024.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition, Holocene, 17, 229–241, https://doi.org/10.1177/0959683607075837, 2007a.
Sugita, S.: Theory of quantitative reconstruction of vegetation II: all you need is LOVE, Holocene, 17, 243–257, https://doi.org/10.1177/0959683607075838, 2007b.
Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin, Quaternary Res., 74, 289–300, https://doi.org/10.1016/j.yqres.2010.07.008, 2010.
Van der Sande, M. T., Gosling, W., Correa-Metrio, A., Prado-Junior, J., Poorter, L., Oliveira, R. S., Mazzei, L., and Bush, M. B.: A 7000-year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate, Ecol. Lett., 22, 925–935. https://doi.org/10.1111/ele.13251, 2019.
Veeken, A., Santos, M. J., McGowan, S., Davies, A. L., and Schrodt, F.: Pollen-based reconstruction reveals the impact of the onset of agriculture on plant functional trait composition, Ecol. Lett., 25, 1937–1951, https://doi.org/10.1111/ele.14063, 2022.
Vidaña, S. D. and Goring, S. J.: neotoma2: An R package to access data from the Neotoma Paleoecology Database, Journal of Open Source Software, 8, 5561, https://doi.org/10.21105/joss.05561, 2023.
Ward, I. and Larcombe, P.: A process-orientated approach to archaeological site formation: application to semi-arid Northern Australia, J. Archaeol. Sci., 30, 1223–1236, https://doi.org/10.1016/S0305-4403(02)00253-4, 2003.
Webb, R. S. and Webb, T.: Rates of sediment accumulation in pollen cores from small lakes and mires of eastern North America, Quaternary Res., 30, 284–297, https://doi.org/10.1016/0033-5894(88)90004-X, 1988.
Whitmore, J., Gajewski, K., Sawada, M., Williams, J. W., Shuman, B., Bartlein, P. J., Minckley, T., Viau, A. E., Webb III, T., Shafer, S., Anderson, P., and Brubaker, L.: Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications, Quaternary Sci. Rev., 24, 1828–1848, https://doi.org/10.1016/j.quascirev.2005.03.005, 2005.
Williams, J. W., Grimm, E. C., Blois, J. L., Charles, D. F., Davis, E. B., Goring, S. J., Graham, R. W., Smith, A. J., Anderson, M., Arroyo-Cabrales, J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K., Buckland, P. I., Curry, B. B., Giesecke, T., Jackson, S. T., Latorre, C., Nichols, J., Purdum, T., Roth, R. E., Stryker, M., and Takahara, H.: The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource, Quaternary Res., 89, 156–177, https://doi.org/10.1017/qua.2017.105, 2018.
Wolkovich, E. M., Regetz, J., and O'Connor, M. I.: Advances in global change research require open science by individual researchers, Glob. Change Biol., 18, 2102–2110, https://doi.org/10.1111/j.1365-2486.2012.02693.x, 2012.
Short summary
The Indo-Pacific Pollen Database is a large collection of pollen samples from across the Indo-Pacific region, with most samples coming from Australia. This is a valuable collection that can be used to analyse vegetation dynamics going back thousands of years. It is now being fully shared via Neotoma for the first time, opening up many exciting new avenues of research. This paper presents key aspects of this database, including geographical distribution, age control and deposition times.
The Indo-Pacific Pollen Database is a large collection of pollen samples from across the...