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Abstract. The Indo–Pacific Pollen Database (IPPD) is the
brainchild of the late professor Geoffrey Hope, who gathered
pollen records from across the region to ensure their preser-
vation for future generations of palaeoecologists. This noble
aim is now being fulfilled by integrating the IPPD into the
online Neotoma Paleoecology Database, making this compi-
lation available for public use. Here we explore the database
in depth and suggest directions for future research. The IPPD
comprises 226 fossil pollen records, most postdating 20 ka
but with some extending as far back as 50 ka or further. Over
80 % of the records are Australian, with a fairly even distri-
bution between the different Australian geographical regions,
with the notable exception being Western Australia, which is
only represented by three records. The records are also well
distributed in the modern climate space, with the largest gap
being in drier regions due to preservation issues. However,
many of the records contain few samples or have fewer than
five chronology control points, such as radiocarbon, lumines-
cence or Pb-210, for the younger sequences. Average depo-
sition time for the whole database, counted as years per cen-
timetre, is 64.8 yrcm−1, with 61 % of the records having a
deposition time shorter than 50 yrcm−1. The slowest depo-

sition time by geographical region occurs on Australia’s east
coast, while the fastest times are from the western Pacific.
Overall, Australia has a slower deposition time than the rest
of the Indo–Pacific region. The IPPD offers many exciting
research opportunities to investigate past regional vegetation
changes and associated drivers, including contrasting the im-
pact of the first human arrival and European colonisation on
vegetation. Examining spatiotemporal patterns of diversity
and compositional turnover/rate of change, land cover recon-
structions, and plant functional or trait diversity are other av-
enues of potential research, amongst many others. Merging
the IPPD into Neotoma also facilitates inclusion of data from
the Indo–Pacific region into global syntheses.

1 Introduction

The digital revolution and the advent of the internet trans-
formed the landscape of fossil sample databases, enabling
them to be shared with a global audience and heralding an
era of scientific transparency and cooperation. The Neotoma
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Paleoecology Database represents a significant stride in this
direction, offering a diverse range of records, including fossil
pollen, charcoal, vertebrates, diatoms, ostracods, insects and
geochronological data (Williams et al., 2018). This great re-
source has been used in hundreds of scientific publications to
date, thus enabling the science of palaeoecology to take sig-
nificant steps forward. In the era of open science, the impor-
tance of making scientific data publicly available cannot be
overstated. Open access to data not only fosters transparency
in research but also enables collaboration and innovation
across disciplines and geographical boundaries (Wolkovich
et al., 2012; Record et al., 2022). This approach is crucial
in the field of palaeoecology, where comprehensive and ac-
cessible databases are key to understanding ecological histo-
ries and predicting future environmental changes (e.g. Lyver
et al., 2015).

The journey of large databases in capturing fossil data
spans several decades, beginning with pioneering efforts like
Newell’s palaeontological database in 1952 (Newell, 1952).
The advent of spatial analyses of fossil data gave rise to sig-
nificant developments, such as the European, North Amer-
ican and Latin American pollen databases, which were in-
tegral to the concept of a Global Pollen database, all of
which are now constituent databases in Neotoma (Gajew-
ski, 2008; Whitmore et al., 2005; Fyfe et al., 2009; Flan-
tua et al., 2015). A notable extension of this endeavour
was the Indo–Pacific Pollen Database (IPPD), originally
compiled as part of the BIOME 6000 project. The aim of
this project was to create biome maps for various periods
(Prentice and Webb, 1998; Prentice et al., 1996; Pickett
et al., 2004), namely the present day; the mid-Holocene,
defined as 6000 ± 500 calyrBP; and the Last Glacial Max-
imum (LGM), defined as 21 000 ± 1000 calyrBP (Pickett
et al., 2004). Subsequent enhancements involved the inclu-
sion of full records, as opposed to time slices, with a fo-
cus on Australian records (Herbert and Harrison, 2016), the
full incorporation of an Indo–Pacific compilation done by
the late professor Geoffrey Hope (Hope et al., 1999) and
modern samples (< 100 yrBP). The latter served as a train-
ing dataset for palaeoclimate reconstructions for compari-
son with palaeoclimate models (Herbert and Harrison, 2016).
This version of the database has been used in multiple wide-
ranging studies to date, including global overviews of rates of
change processes (Mottl et al., 2021) and pollen taxonomic
harmonisation processes (Birks et al., 2023). In addition, it
has been used in regional studies, examining the climate dy-
namics of the last glacial period (Cadd et al., 2021; Herbert
and Fitchett, 2021), the importance of Indigenous landscape
and fire management (Mariani et al., 2022), biodiversity dy-
namics (Adeleye et al., 2021) and plant functional dynam-
ics (Adeleye et al., 2023). This has added to the wealth of
palaeoecological studies from this diverse region, such as Pe-
ter Kershaw’s work on a southeast Australian pollen database
(Kershaw et al., 1994; D’Costa and Kershaw, 1997). This is
separate from the IPPD, but related, and contains many of

the same sites, though with a focus on pre-European sam-
ples. Examples of other important work in this region that
used their own pollen sample compilations include a floris-
tic diversity study of South Pacific islands (Strandberg et al.,
2024) and a study of human impact on the biodiversity of
islands (Nogué et al., 2021).

Combined with the recent addition to Neotoma of other
sites in the Southern Hemisphere through both the Latin
American Pollen Database (including South American sites;
Flantua et al., 2015) and the African Pollen Database (Ivory
et al., 2020; Lézine et al., 2021) (both constituent databases
in Neotoma), the addition of the IPPD to Neotoma suggests
the enticing prospect of truly global palaeoecological stud-
ies. Here we explore this new constituent database in depth
and suggest directions for future research.

2 Methods

Due to the recognised importance of openly accessible
palaeoecological databases, fully integrating the IPPD into
Neotoma (https://www.neotomadb.org/, last access: 23 Octo-
ber 2024) has been a long-term goal. Since 2021, a concerted
effort has been made to fulfil this goal, which has involved
getting hundreds of records in the right format and double-
checking all the data and metadata against available pub-
lications, as well as removing duplicated entries and other
data entry errors. Due to the original data no longer being
available, some records had to be digitised from publica-
tions or theses. When this was done, the digitisation pro-
cess and quality of results were carefully checked. Upon
completing the digitisation, the stated pollen sum had to
be 100 ± 10 % for the record to be accepted. Being such
an underrepresented region, the integration also involved
adding over 400 pollen taxa to Neotoma’s taxonomic struc-
ture. This is a complicated procedure, as every single taxon
needs to be validated against up-to-date and trusted sources.
For most of these taxa, we used the Australian Plant Name
Index (2024) (https://biodiversity.org.au/nsl/services/search/
names, last access: 29 June 2024) and references therein.

Age models for all records have been reconstructed us-
ing Bacon (Blaauw and Christen, 2011) in R (R Core Team,
2022), with the versions depending on when the age model
was constructed, as the database has been updated in stages.
Radiocarbon dates were calibrated using either SHCal20
(Hogg et al., 2020) or SHCal13 (Hogg et al., 2013), again
depending on when the age model was constructed.

For ease of presentation, we will here only present fossil
records with more than two chronological control points and
at least three stratigraphic levels, thus excluding many sur-
face sample collections. The minimum number of chrono-
logical control points was chosen to be able to construct
robust age–depth models. Chronological control points in-
clude dates obtained through radiocarbon dating, lumines-
cence dating (either thermally or optically stimulated), and
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Figure 1. (a) Site locations by geographical region. (b) Geographical distribution of records by count type, where “Other” refers to concen-
tration data and “Percentage unknown” may or may not have been digitised. For detailed histograms, see Figs. A1 and A2 in the Appendix.

U/Th or Pb-210 for younger sequences. Plots were produced
in R (R Core Team, 2022) to show different aspects of the
IPPD (see the Supplement).

Modern observational climate data were taken from the
CRU TS v4.07 gridded dataset at 0.5° grid cell resolution
(Harris et al., 2020). The location of each record in the IPPD
was then plotted against the full modern dataset, with the
chosen climate variables being the mean annual precipitation
(MAP), mean annual temperature (MAT), mean temperature
of the coldest month (MTCO) and mean temperature of the
warmest month (MTWA).

3 Results and discussion

The IPPD holds records from a total of 530 sites, many of
which contain only surface samples. A total of 226 strati-
graphic records covering the Indo–Pacific region are pre-
sented here, which excludes surface samples and poorly
dated records. These 226 records contain 9765 samples, with
an average of 43 samples per record (SD: 51.3). There are
2461 unique taxa in the database, with an average of 56 taxa
per record (SD: 31.9).

3.1 Spatial distribution

Over 83 % of the records are from Australia, with high rep-
resentation from each Australian region, apart from Western
Australia (Fig. 1a). Most pollen samples available through
the IPPD consist of raw counts (58.4 %; Fig. 1b), and the
rest are percentages, as well as a very small number of con-

centration counts. Just over a quarter of the records (27 %)
have had to be digitised from publications or theses, due
to the raw data no longer being available. Every region in
the IPPD is represented mostly by sequences containing raw
counts, which can therefore be used to verify the quality
of the sequences from digitised sources from the same re-
gion (Figs. 1b and A2). There is also a good representa-
tion in the modern climate space, with the IPPD sites cov-
ering most of the available observed climate space, with the
largest gap being in the driest regions due to preservation
issues (Fig. 2). While there is a high number of sites from
the southeastern coast of Australia (Appendix A; Fig. A1),
the sites in the IPPD cover much of the available modern
climate space despite this spatial bias (Fig. 2). This is in-
valuable when performing palaeoclimate reconstructions, as
most methods use some form of space-for-time calibration
that relies on networks of surface samples cross-referenced
with current climate conditions (Herbert and Harrison, 2016;
Chevalier et al., 2020).

3.2 Depositional environment

There are a total of 33 different depositional environments
represented in the database, with lakes and wetlands being
the main source of records (73 % of sites; Fig. 3). A total
of 31 % of the records come from lakes, natural or human-
made, with a further 42 % coming from wetlands, such as
swamps or fens.
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Figure 2. Modern climate space covered by sites in the IPPD.
Available observed climate space for the Indo–Pacific region in grey
(from CRU TS v4.07; Harris et al., 2020); IPPD sites coloured ac-
cording to geographical region, as presented in Fig. 1a. The line di-
agrams show the distribution of each climate variable, where MAP
is mean annual precipitation, MAT is mean annual temperature,
MTCO is mean temperature of the coldest month, and MTWA is
mean temperature of the warmest month.

3.3 Temporal distribution and chronological control

There are a total of 1637 chronological control points in the
database, with an average of 7 points per record (SD: 7.8). A
total of 52.6 % of the records contain fewer than five chrono-
logical points each, meaning that they may be poorly dated
(Fig. 4a), depending on the number of levels associated with
the site (Fig. 4b).

Some records (17 out of 226; e.g. 7.5 %) in the IPPD date
back more than 50 ka, but most are younger than 20 ka (180
out of 226; e.g. 79.6 %). In addition, many sequences are not
continuous and are composed of a few levels at the older end
(Fig. 5). No clear geographical pattern in the distribution of
short sequences or sequences with fewer than five chrono-
logical control points can be discerned from Fig. 4, meaning
that the length of the sequences is not necessarily climate de-
pendent. However, most of the older sequences are located
close to the coast, where they are more likely to receive high
rainfall, keeping the sediments wet and preserving the pollen
grains (Fig. 5). Keeping the sediments waterlogged also de-
creases the risk of erosion, thereby benefiting the develop-
ment of long sequences of well-preserved pollen (Delcourt
and Delcourt, 1980; Lowe, 1982).

Figure 3. (a) Geographical distribution of records by depositional
environment; (b) number of records by depositional environment,
binned into broader groupings. For detailed histograms, see Fig. A3
in the Appendix. For a full list of depositional environments, see
Table S1 in the Supplement.

3.4 Sedimentation rate and deposition time

For 61 % of the records, it takes less than 50 years to accu-
mulate 1 cm of sediment. For 1.3 % of the records, it takes
300 years or more (Fig. 6 and Appendix A; Fig. A6). The av-
erage deposition time for the IPPD is 64.8 yrcm−1, but there
is a very wide range, with the slowest regional sedimenta-
tion rate (largest deposition time; measured as the number
of yrcm−1) on average being from the east coast of Australia.
The region with the largest range of values is arid Australia,
encompassing the highest and lowest rates overall. All re-
gions in Australia except for one (south coast) have a slower
average rate than any non-Australian region and also a much
larger range (Fig. 6b). This could be due to lower average
rainfall in Australia, which may inhibit biological activity in
the lakes and wetlands that represent the majority of sites
in the IPPD and slow down sediment accumulation. This
is known to be an issue in arid and semi-arid areas (Ward
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Figure 4. (a) Geographical distribution of sites by number of chronological control points; (b) geographical distribution of sites by number
of levels. For a detailed histogram, see Figs. A4 and A5 in the Appendix.

Figure 5. (a–c) Geographical distribution of records by age; (d) age
distribution of the records.

and Larcombe, 2003), and with the rest of the regions rep-
resented in the IPPD being generally high-rainfall regions,
this seems a likely explanation for the differences in rates.
The average annual rainfall across all Australian IPPD sites
is 1010 mmyr−1 and across all non-Australian IPPD sites
2505 mmyr−1. The reason Australian regions have larger
ranges is probably due to the number of sites represented,
with most sites in the database being Australian. The least
represented Australian region, the southwest, also has the
smallest range of any Australian region.

Figure 6. (a) Geographical distribution of records by deposition
time; (b) deposition time by geographical region, with the mean
marked by a line. For a detailed histogram of the number of records
by deposition time, see Fig. A6 in the Appendix.

A large study of sedimentation rates in eastern North
America found that on average mid-latitude (40–50° N) sites
accumulated sediments faster (low number of yrcm−1) than
low- or high-latitude sites (Webb and Webb, 1988). The au-
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thors attributed the rate in low-latitude sites to the fact that
most of these sites were shallow and affected by dry sea-
sons, making them prone to periods of erosion. This could
certainly also be the case for many of the Australian sites, as
it is common for lakes here to fluctuate in size or to period-
ically dry out completely. A more recent study focusing on
the northeastern United States found that deposition times
are more significantly related to depositional environment,
sediment age and depth than to latitude, longitude or alti-
tude (Goring et al., 2012). Here we have not examined the
regional deposition times in that much detail, and it is there-
fore possible that the results differ between the regions due to
the different depositional environments represented (Fig. 3).

4 Conclusions and future work

The Indo–Pacific region has been poorly represented in
global repositories in the past (Gajewski, 2008). Having this
resource available through Neotoma for the first time will go
some way to creating a truly global pollen database, and full
integration of the IPPD into Neotoma complements other ef-
forts focusing on getting more datasets into Neotoma from
Africa (Lézine et al., 2021) and South America (Flantua
et al., 2015). Neotoma operates with a constituent database
structure (Williams et al., 2018), and sites within the IPPD
can be viewed through Neotoma’s informatics ecosystem
(e.g. through the Explorer app at https://apps.neotomadb.
org/explorer/, last access: 23 October 2024, or using the
neotoma R package; Dominguez Vidaña and Goring, 2023).
Going forward, Annika Herbert will serve as lead steward
for the IPPD within Neotoma. Possible future analyses of
our database include the examination of human impact on re-
gional vegetation, contrasting first human arrival and coloni-
sation (e.g. López-Sáez et al., 2014; Flantua et al., 2016);
examining human cultures and food production based on
anthropogenic indicators (e.g. Flantua and Hooghiemstra,
2023); or the assessment of rates of vegetation change dur-
ing the Holocene (e.g. Mottl et al., 2021). With such a large
database now publicly accessible and open-access workflows
to process and standardise large compilations (Flantua et al.,
2023; Vidaña and Goring, 2023), countless opportunities for
further study are available, including global and hemispheric
syntheses.

Considerable work has already been done using the IPPD
or similar compilations. This work includes a rate of change
analysis and rainfall seasonality reconstructions on the Aus-
tralian part of the IPPD going back to the last glacial period
(Cadd et al., 2021; Herbert and Fitchett, 2021) and Holocene
plant trait analysis for the southeastern Australian part of
the database (Adeleye et al., 2023). The latter is similar to
a study conducted on European pollen samples by Veeken
et al. (2022), as well as several other similar studies (e.g. van
der Sande et al., 2019; Lacourse and Adeleye, 2022). This
highlights the importance of regional coverage, as it can be
used to perform comparative studies and examine differences
or similarities with the rest of the world. Another example of
this is the work by Mariani and colleagues (Mariani et al.,
2016, 2017, 2022), using the pollen-to-vegetation conversion
model REVEALS (Sugita, 2007a, b), which has been widely
used in Europe and North America for the past decade or so
(Gaillard et al., 2010; Sugita et al., 2010). Mariani’s work
represents the first use of this valuable model in Australia,
and it has been instrumental in shedding light on Indige-
nous fire management practices and their importance (Mari-
ani et al., 2022).

Future work using the IPPD could likewise take inspi-
ration from methodologies employed in Europe and North
America to conduct similar research in the Indo–Pacific re-
gion or use it to complete a global synthesis of a commonly
used technique. Examples of the latter include large-scale
quantitative climate reconstructions using various statistical
techniques. Such studies are not commonly performed in the
Indo–Pacific region (see Cook and van der Kaars, 2006), but
the potential has been proven previously (Herbert and Har-
rison, 2016). Another possibility is to perform an in-depth
study of deposition times, examining the influence of factors
such as latitude, altitude, depositional environment, sediment
age and depth, similar to studies in the United States (Webb
and Webb, 1988; Goring et al., 2012). Fully accessible global
palaeoecological databases make these types of studies pos-
sible, and with more sites being added every day, the possi-
bilities for innovative research will likewise expand.
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Appendix A

Figure A1. (a) Number of records by geographical region; (b) number of records by latitude, with colours representing the regions from
panel (a); and (c) number of records by longitude, with colours representing the regions from panel (a).

Figure A2. (a) Number of records by count type; (b) number of records by latitude, with colours representing count type from panel (a);
and (c) number of records by longitude, with colours representing count type from panel (a).
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Figure A3. (a) Number of records by sedimentary environment; (b) number of records by latitude, with colours representing sedimentary
environment from panel (a); and (c) number of records by longitude, with colours representing sedimentary environment from panel (a).

Figure A4. Number of records by number of chronological control points.
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Figure A5. Number of records by number of levels.

Figure A6. Number of records by deposition time.

https://doi.org/10.5194/cp-20-2473-2024 Clim. Past, 20, 2473–2485, 2024



2482 A. V. Herbert et al.: The Indo–Pacific Pollen Database – a Neotoma constituent database

Code and data availability. The code for all fig-
ures is available at our public GitHub repository at
https://github.com/HOPE-UIB-BIO/IPPD_overview (last ac-
cess: 26 October 2024) (https://doi.org/10.5281/zenodo.14003190,
Mottl, 2024). All data were processed in R, using FOSSILPOL
(https://github.com/HOPE-UIB-BIO/R-Fossilpol-package, last ac-
cess: 7 November 2024, https://doi.org/10.5281/zenodo.14049214,
Mottl and Flantua, 2024). Over half the sites are freely available
through Neotoma (https://apps.neotomadb.org/explorer/?search=
%7B%22metadata%22:%7B%22databaseId%22:4%7D%7D, last
access: 23 October 2024), and the rest are in the process of being
uploaded (to be completed by April 2025).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-20-2473-2024-supplement.
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