Articles | Volume 20, issue 11
https://doi.org/10.5194/cp-20-2415-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-2415-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simultaneous seasonal dry/wet signals in eastern and central Asia since the Last Glacial Maximum
Simin Peng
Key Laboratory of Poyang Lake Wetland and Watershed Research (Ministry of Education), School of Geography and Environmental Science, Jiangxi Normal University, Nanchang 330022, China
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Yu Li
CORRESPONDING AUTHOR
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Zhansen Zhang
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Mingjun Gao
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Xiaowen Chen
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Junjie Duan
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Yaxin Xue
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Related authors
Xinzhong Zhang, Yu Li, Wangting Ye, Simin Peng, Yuxin Zhang, Hebin Liu, Yichan Li, Qin Han, and Lingmei Xu
Clim. Past, 16, 1987–1998, https://doi.org/10.5194/cp-16-1987-2020, https://doi.org/10.5194/cp-16-1987-2020, 2020
Short summary
Short summary
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were much wetter in a similar warm world 6000 years ago. Why do they respond differently and will it be wetter or drier? We assess the wet–dry status and mechanism at different timescales and suggest that moisture change in the past and future warm periods are controlled by summer and winter precipitation, respectively. Diversified responses in different closed basins need a more resilient strategy.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Yu Li and Yuxin Zhang
Clim. Past, 16, 2239–2254, https://doi.org/10.5194/cp-16-2239-2020, https://doi.org/10.5194/cp-16-2239-2020, 2020
Short summary
Short summary
Monsoons and westerly winds interact with each other in the middle to low latitudes. We track millennial-scale evolution characteristics of monsoons and westerly winds over the past 21 000 years. In the monsoon-dominated regions of Asia, a humid climate prevails in the past 6000–10 000 years, while in the westerly-wind-dominated regions of Asia, the climate is relatively humid around 21 000 years and 6000 years ago.
Xinzhong Zhang, Yu Li, Wangting Ye, Simin Peng, Yuxin Zhang, Hebin Liu, Yichan Li, Qin Han, and Lingmei Xu
Clim. Past, 16, 1987–1998, https://doi.org/10.5194/cp-16-1987-2020, https://doi.org/10.5194/cp-16-1987-2020, 2020
Short summary
Short summary
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were much wetter in a similar warm world 6000 years ago. Why do they respond differently and will it be wetter or drier? We assess the wet–dry status and mechanism at different timescales and suggest that moisture change in the past and future warm periods are controlled by summer and winter precipitation, respectively. Diversified responses in different closed basins need a more resilient strategy.
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Pleistocene
Seasonal aridity in the Indo-Pacific Warm Pool during the Late Glacial driven by El Niño-like conditions
crestr: an R package to perform probabilistic climate reconstructions from palaeoecological datasets
A new perspective on permafrost boundaries in France during the Last Glacial Maximum
The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations
Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) between 160 and 70 ka
Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere–ocean general circulation model
Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle
Petter L. Hällberg, Frederik Schenk, Kweku A. Yamoah, Xueyuen Kuang, and Rienk H. Smittenberg
Clim. Past, 18, 1655–1674, https://doi.org/10.5194/cp-18-1655-2022, https://doi.org/10.5194/cp-18-1655-2022, 2022
Short summary
Short summary
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal under Late Glacial conditions. During Northern Hemisphere winters, it was highly arid in this region that is today humid year-round. The seasonal aridity was driven by orbital forcing and stronger East Asian winter monsoon. A breakdown of deep convection caused a reorganized Walker Circulation and a mean state resembling El Niño conditions.
Manuel Chevalier
Clim. Past, 18, 821–844, https://doi.org/10.5194/cp-18-821-2022, https://doi.org/10.5194/cp-18-821-2022, 2022
Short summary
Short summary
This paper introduces a new R package to perform quantitative climate reconstructions from palaeoecological datasets. The package includes calibration data for several commonly used terrestrial (e.g. pollen) and marine (e.g. foraminifers) climate proxies to enable its use in various environments globally. In addition, the built-in graphical diagnostic tools simplify the evaluation and interpretations of the results. No coding skills are required to use crestr.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019, https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary
Short summary
Climate changes occur today as they occurred in the past. This study deals with climate changes reconstructed at Lake Ohrid (Albania and FYROM) between 160 000 and 70 000 years ago. Climate reconstruction, based on a high-resolution pollen study, provides quantitative estimates of past temperature and precipitation. Our data show an alternation of cold/dry and warm/wet periods. The last interglacial appears to be characterized by temperatures higher than nowadays.
Madlene Pfeiffer and Gerrit Lohmann
Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, https://doi.org/10.5194/cp-12-1313-2016, 2016
Short summary
Short summary
The Last Interglacial was warmer, with a reduced Greenland Ice Sheet (GIS), compared to the late Holocene. We analyse – through climate model simulations – the impact of a reduced GIS on the global surface air temperature and find a relatively strong warming especially in the Northern Hemisphere. These results are then compared to temperature reconstructions, indicating good agreement with respect to the pattern. However, the simulated temperatures underestimate the proxy-based temperatures.
M. Willeit and A. Ganopolski
Clim. Past, 11, 1165–1180, https://doi.org/10.5194/cp-11-1165-2015, https://doi.org/10.5194/cp-11-1165-2015, 2015
Short summary
Short summary
In this paper we explore the permafrost–ice-sheet interaction using the fully coupled climate–ice-sheet model CLIMBER-2 with the addition of a newly developed permafrost module. We find that permafrost has a moderate but significant effect on ice sheet dynamics during the last glacial cycle. In particular at the Last Glacial Maximum the inclusion of permafrost leads to a 15m sea level equivalent increase in Northern Hemisphere ice volume when permafrost is included.
Cited articles
An, C., Feng, Z., and Barton, L.: Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China, Quaternary Sci. Rev., 25, 351–361, https://doi.org/10.1016/j.quascirev.2005.03.013, 2006.
Barry, R. G. and Richard, J. C.: Atmosphere, weather and climate, Routledge, https://doi.org/10.4324/9780203871027, 2009.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Berger, A. L.: Long-term variations of caloric insolation resulting from the Earth’s orbital elements, Quatern. Res., 9, 139–167, https://doi.org/10.1016/0033-5894(78)90064-9, 1978
Briegleb, B. P., Bitz, C. M., Hunke, E. C., Lioscomb, W. H., Holland, M. M., Schramm, J. L., and Moritz, A. R.: Scientific description of the sea ice component in the community climate system model, Version 3, University Corporation for Atmospheric Research, 70, https://doi.org/10.5065/D6HH6H1P, 2004.
Chen, C., Zhang, X., Lu, H., Jin, L., Du, Y., and Chen, F.: Increasing summer precipitation in arid central Asia linked to the weakening of the East Asian summer monsoon in the recent decades, Int. J. Climatol., 41, 1024–1038, https://doi.org/10.1002/joc.6727, 2021.
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., David, B. M., Huang, X., Zhao, Y., Sato, T., Birks, H. J. B., Boomer, I., Chen, J., An, C., and Wünnemann, B.: Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history, Quaternary Sci. Rev., 27, 351–364, https://doi.org/10.1016/j.quascirev.2007.10.017, 2008.
Chen, F., Chen, J., and Huang, W.: A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period, Earth Sci. Front., 16, 23–32, 2009 (in Chinese with English abstract).
Chen, F., Xu, Q., Chen, J., Birks, H. J. B., Liu, J., Zhang, S., Jin, L., An, C., Telford, R. J., Cao, X., Wang, Z., Zahng, X., Selvaraj, K., Lü, H., Li, Y., Zheng, Z., Wang, H., Zhou, A., Dong, G., Zhang, J., Huang, X., Bloemendal, J., and Rao, Z.: East Asian summer monsoon precipitation variability since the last deglaciation, Sci. Rep., 5, 11186, https://doi.org/10.1038/srep11186, 2015.
Chen, F., Jia, J., Chen, J., Li, G., Zhang, X., Xie, H., Xia, D., Huang, W., and An, C.: A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China, Quaternary Sci. Rev., 146, 134–146, https://doi.org/10.1016/j.quascirev.2016.06.002, 2016.
Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J., Zhang, X., An, C., Zhang, J., and Zhao, Y.: Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to suborbital timescales, Earth Sci. Rev., 192, 337–354, https://doi.org/10.1016/j.earscirev.2019.03.005, 2019.
Chen, F., Chen, J., and Huang, W.: Weakened East Asian summer monsoon triggers increased precipitation in Northwest China, Sci. China Earth Sci., 64, 835–837, https://doi.org/10.1007/s11430-020-9731-7, 2021.
Chen, G. and Huang, R.: Excitation mechanisms of the tele-connection patterns affecting the July precipitation in North-west China, J. Climate, 25, 7834–7851, 2012.
Chen, S., Liu, J., Wang, X., Zhao, S., Chen, J., Qiang, M., Liu, B., Xu, Q., Xia, D., and Chen, F.: Holocene dust storm variations over northern China: transition from a natural forcing to an anthropogenic forcing, Sci. Bull., 66, 2516–2527, https://doi.org/10.1016/j.scib.2021.08.008, 2021.
Chen, S., Chen, J., Lv, F., Liu, X., Huang, W., Wang, T., Liu, J., Hou, J., and Chen, F.: Holocene moisture variations in arid central Asia: Reassessment and reconciliation, Quaternary Sci. Rev., 297, 107821, https://doi.org/10.1016/j.quascirev.2022.107821, 2022.
Cheng, H., Zhang, P., Spötl, C., Edwards, R. L., Cai, Y., Zhang, D., Sang, W., Tan, M., and An, Z.: The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years, Geophys. Res. Lett., 39, L01705, https://doi.org/10.1029/2011gl050202, 2012.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J.: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth Planet. Sc. Lett., 233, 71–86, https://doi.org/10.1016/j.epsl.2005.01.036, 2005.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., and Vertenstein, M.: The community climate system model version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011jcli4083.1, 2011.
Guan, X., Yang, L., Zhang, Y., and Li, J.: Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China, Global Planet. Change, 172, 159–178, https://doi.org/10.1016/j.gloplacha.2018.06.007, 2019.
Han, S. and Qu, Z.: Inland Holocene climatic features recorded in Balikun lake, northern Xinjiang, Science in China Ser. B, 11, 1201–1209, 1992 (in Chinese with English abstract).
Han, S., Wu, N., and Li, Z.: Inland climate changes in Dzungaria during the late Pleistocene Epoch, Geog. Res., 12, 47–54, 1993 (in Chinese with English abstract).
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, J. R., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Herzschuh, U.: Palaeo-moisture evolution in monsoonal central Asia during the last 50,000 years, Quaternary Sci. Rev., 25, 163–178, https://doi.org/10.1016/j.quascirev.2005.02.006, 2006.
Hu, Q. and Han, Z.: Northward Expansion of Desert Climate in Central Asia in Recent Decades, Geophys. Res. Lett., 49, e2022GL098895, https://doi.org/10.1029/2022gl098895, 2022.
Huang, W., Chen, J., Zhang, X., Feng, S., and Chen, F.: Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period, Sci. China Earth Sci., 58, 676–684, https://doi.org/10.1007/s11430-015-5057-y, 2015a.
Huang, W., Feng, S., Chen, J., and Chen, F.: Physical mechanisms of summer precipitation variations in the Tarim basin in northwestern China, J. Climate, 28, 3579–3591, https://doi.org/10.1175/jcli-d-14-00395.1, 2015b.
Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation, Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of the North Atlantic Oscillation, J. Marine Syst., 78, 28–41, https://doi.org/10.1016/j.jmarsys.2008.11.026, 2009.
Jhun, J. G. and Lee, E. J.: A new East Asian winter monsoon index and associated characteristics of the winter monsoon, J. Climate, 17, 711–726, https://doi.org/10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2, 2004.
Joussaume, S., Taylor, K. E., Braconnot, P. J. F. B., Mitchell, J. F. B., Kutzbach, J. E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., and Bonfils, C.: Monsoon changes for 6000 years ago: results of 18 simulations from the paleoclimate modeling intercomparison project (PMIP), Geophys. Res. Lett., 26, 859–862, https://doi.org/10.1029/1999gl900126, 1999.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Wollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc, 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Lawrence Livermore National Laboratory: PMIP3-CMIP5 dataset, ESGF [data set], https://esgf-node.llnl.gov/projects/esgf-llnl/, last access: 27 October 2024a.
Lee, M. K., Lee, Y. I., Lim, H. S., Lee, J. I., and Yoon, H. I.: Late Pleistocene-H olocene records from Lake Ulaan, southern Mongolia: implications for east Asian palaeomonsoonal climate changes, J. Quaternary Sci., 28, 370–378, https://doi.org/10.1002/jqs.2626, 2013.
Leroy, S. A. G., López-Merino, L., Tudryn, A., Chalié, F., and Gasse, F.: Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian basin as reconstructed from a deep-sea core, Quaternary Sci. Rev., 101, 91–110, https://doi.org/10.1016/j.quascirev.2014.07.011, 2014.
Li, J.: The patterns of environmental changes since last Pleistoc ene in northwestern China, Quat. Sci., 3, 197–204, 1990 (in Chinese with English abstract).
Li, W., Wang, K., Fu, S., and Jiang, H.: The interrelationship between regional westerly index and the water vapor budget in northwest China, Journal of Glaciology and Geocryology, 30, 28–34, 2008.
Lioubimtseva, E.: Impact of Climate Change on the Aral Sea and its Basin. The Devastation and Partial Rehabilitation of a Great Lake, The Aral Sea, 405–427, https://doi.org/10.1007/978-3-642-02356-9_17, 2014.
Liu, X., Shen, J., Wang, S., Wang, Y., and Liu, W.: Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai lake since the late glacial, Chinese Sci. Bull., 4, 109–114, https://doi.org/10.1007/s11434-007-0086-3, 2007.
Liu, Z., Wen, X., Brady, E. C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., Wang, Y., Zheng, W., Ding, Y., Edwards, R. L., Cheng, J., Liu, W., and Yang, H.: Chinese cave records and the East Asia Summer Monsoon, Quaternary Sci. Rev., 83, 115–128, https://doi.org/10.1016/j.quascirev.2013.10.021, 2014.
Lorenz, E. N.: Empirical orthogonal function and statistical weather prediction. Scientific Report No. 1 Statist Forecasting Project, Department of Meteorology, Massachusetts Institute of Technology, https://babel.hathitrust.org/cgi/pt?id=uc1.31822012030698&seq=1 (last access: 27 October 2024), 1956.
Manoj, M. C., Srivastava, J., Uddandam, P. R., and Thakur, B.: A 2000 year multiproxy evidence of natural/anthropogenic influence on climate from the southwest coast of India, J. Earth Sci., 31, 1029–1044, https://doi.org/10.1007/s12583-020-1336-4, 2020.
Mantua, N. J. and Hare, S. R.: The Pacific Decadal Oscillation, J. Oceanogr., 58, 35–44, https://doi.org/10.1023/A:1015820616384, 2002.
Nagashima, K., Tada, R., Tani, A., Sun, Y., Isozaki, Y., Toyoda, S., and Hasegawa, H.: Millennial-scale oscillations of the westerly jet path during the last glacial period, J. Asian Earth Sci., 40, 1214–1220, https://doi.org/10.1016/j.jseaes.2010.08.010, 2011.
NCAR: TraCE-21ka dataset, NCAR Climate Data Gateway [data set], https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm.trace.html, last access: 27 October 2024a.
NCAR: NAO dataset, NCAR Climate Data Guide [data set], https://climatedataguide.ucar.edu/sites/default/files/2022-10/nao_station_monthly.txt, last access: 27 October 2024b.
Oster, J. L., Ibarra, D. E., Winnick, M. J., and Maher, K.: Steering of westerly storms over western North America at the Last Glacial Maximum, Nat. Geosci., 8, 201–205, https://doi.org/10.1038/ngeo2365, 2015.
Physical Sciences Laboratory: PDO dataset, NOAA [data set], https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat, last access: 28 October 2024a.
Physical Sciences Laboratory: Niño 3.4 dataset, NOAA [data set], https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/, last access: 27 October 2024b.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Peng, D. and Zhou, T.: Why was the arid and semiarid North-west China getting wetter in the recent decades, J. Geophys. Res.-Atmos., 122, 9060–9075, https://doi.org/10.1002/2016JD026424, 2017.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., and Taylor, K. E.: Climate models and their evaluation, in: Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR), 589–662, Cambridge University Press, https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter8-1.pdf (last access: 27 October 2024), 2007.
Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., and Kent, E. C.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002jd002670, 2003.
Ren, Y., Yu, H., Liu, C., He, Y., Huang, J., Zhang, L., Hu, H., Zhang, Q., Chen, S., Liu, X., Zhang, M., Wei, Y., Yang, Y., Fan, W., and Zhou, J.: Attribution of Dry and Wet Climatic Changes over Central Asia, J. Climate, 35, 1399–1421, https://doi.org/10.1175/jcli-d-21-0329.1, 2021.
Ricketts, R. D., Johnson, T. C., Brown, E. T., Rasmussen, K. A., and Romanovsky, V. V.: The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes, Palaeogeogr. Palaeocl., 176, 207–227, https://doi.org/10.1016/s0031-0182(01)00339-x, 2001.
Rotstayn, L., Collier, M., Dix, M., Feng, Y., Gordon, H., O'Farrell, S., Smith, I., and Syktus, J.: Improved simulation of Australian climate and ENSO-related climate variability in a GCM with an interactive aerosol treatment, Int. J. Climatol., 30, 1067–1088, https://doi.org/10.1002/joc.1952, 2010.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y., Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Romanou, A., Sato, M., Shindell, D., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M., and Zhang, J.: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, J. Adv. Model. Earth Sy., 6, 141–184, https://doi.org/10.1002/2013MS000265, 2014.
Sime, L. C., Hodgson, D., Bracegirdle, T. J., Allen, C., Perren, B., Roberts, S., and de Boer, A. M.: Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models, Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, 2016.
Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M.: Climate change impacts on glaciers and runoff in Tien Shan (Central Asia), Nat. Clim. Change, 2, 725–731, https://doi.org/10.1038/nclimate1592, 2012.
Sun, A., Feng, Z., Ran, M., and Zhang, C.: Pollen-recorded bioclimatic variations of the last ∼ 22,600 years retrieved from Achit Nuur core in the western Mongolian Plateau, Quatern. Int., 311, 36–43, https://doi.org/10.1016/j.quaint.2013.07.002, 2013.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N., Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L., Goddéris, Y., Huber, B. T., Ivany, L. C., Kirtland, Turner, S., Lunt, D. J., McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., and Zhang, Y.: Past climates inform our future, Science, 370, eaay3701, https://doi.org/10.1126/science.aay3701, 2020.
van der Schrier, G., Barichivich, J., Briffa, K. R., and Jones, P. D.: A scPDSI‐based global data set of dry and wet spells for 1901–2009, J. Geophys. Res.-Atmos., 118, 4025–4048, https://doi.org/10.1002/jgrd.50355, 2013
Voldoire, A., Sanchez-Gomez, E., Mélia, D. S. Y, Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M. P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-CM5.1 global climate model: description and basic evaluation, Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2013.
Wang, L., Jia, J., Xia, D, Liu, H., Gao, F., Duan, Y., Wang, Q., Xie, H., and Chen, F.: Climate change in arid central Asia since MIS 2 revealed from a loess sequence in Yili Basin, Xinjiang, China, Quatern. Int., 502, 258–266, https://doi.org/10.1016/j.quaint.2018.02.032, 2018.
Wang, P., Wang, B., Cheng, H., Fasullo, J., Guo, Z., Kiefer, T., and Liu, Z.: The global monsoon across time scales: Mechanisms and outstanding issues, Earth Sci. Rev., 174, 84–121, https://doi.org/10.1016/j.earscirev.2017.07.006, 2017.
Wang, Y., Cheng, H., Edwards, R. L., An, Z., Wu, J., Shen, C., and Dorale, J. A.: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave, China, Science, 294, 2345–2348, https://doi.org/10.1126/science.1064618, 2001.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Wei, W., Zhang, R., Wen, M., Yang, S.: Relationshipbetween the Asian westerly jet stream and summer rainfall over Central Asia and North China: roles of the Indian mon-soon and the south Asian high, J. Climate, 30, 537–552, https://doi.org/10.1175/JCLI-D-15-0814.1, 2017.
Wu, P., Ding, Y., Liu, Y., and Li, X.: The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China, Int. J. Climatol., 39, 5241–5255, https://doi.org/10.1002/joc.6136, 2019.
Xie, C., Li, M., and Zhang, X.: Characteristics of summer atmospheric water resources and its causes over the Tibetan plateau in recent 30 years, J. Nat. Resour., 29, 979–989, 2014 (in Chinese with English abstract).
Yu, G., Xue, B., Wang, S., and Liu, J.: Chinese lakes records and the climate significance during Last Glacial Maximum, Chinese Sci. Bull., 45, 250–255, https://doi.org/10.3321/j.issn:0023-074X.2000.03.003, 2000 (in Chinese with English abstract).
Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., and Dorale, J. A.: Timing, duration, and transitions of the last interglacial Asian monsoon, Science, 304, 575–578, https://doi.org/10.1126/science.1091220, 2004.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T. Y., Shindo, E., Tsujino, H., and Deushi, M. A new global climate model of the Meteorological Research Institute: MRI-CGCM3: Model description and basic performance, J. Meteorol. Soc. Jpn., 90, 23–64, https://doi.org/10.2151/jmsj.2012-a02, 2012.
Zhang, J. and Lin, Z.: Climate of China, Wiley, New York, https://www.osti.gov/biblio/6193922 (last access: 27 October 2024), 1992.
Zhang, D. and Feng, Z.: Holocene climate variations in the Altai Mountains and the surrounding areas: a synthesis of pollen records, Earth Sci. Rev., 185, 847–869, https://doi.org/10.1016/j.earscirev.2018.08.007, 2018.
Zhang, Q., Lin, J., Liu, W., and Han, L.: Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during the flood season, Sci. China Earth Sci., 62, 2083–2098, https://doi.org/10.1007/s11430-018-9357-y, 2019.
Zhao, Y., An, C., Mao, L., Zhao, J., Tang, L., Zhou, A., Li, H., Dong, W., Duan, F., and Chen, F.: Vegetation and climate history in arid western China during MIS2: New insights from pollen and grain-size data of the Balikun Lake, eastern Tien Shan, Quaternary Sci. Rev., 126, 112–125, https://doi.org/10.1016/j.quascirev.2015.08.027, 2015.
Short summary
The simultaneity of rain and heat is an important hypothesis containing the summer and winter precipitation regimes. In this paper, eastern and part of central Asia (EA and CA) with a summer precipitation regime are selected to study the dry/wet status on multiple timescales since the Last Glacial Maximum. We found that although climate difference in EA and CA universally exists, climate linkages in EA and part of CA with a summer precipitation regime can be uncovered.
The simultaneity of rain and heat is an important hypothesis containing the summer and winter...