Articles | Volume 19, issue 5
https://doi.org/10.5194/cp-19-979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental changes during the onset of the Late Pliensbachian Event (Early Jurassic) in the Cardigan Bay Basin, Wales
Teuntje P. Hollaar
CORRESPONDING AUTHOR
WildFIRE Lab, Global Systems Institute, University of Exeter, Exeter, EX4 4PS, UK
Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
Stephen P. Hesselbo
Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
Jean-François Deconinck
Biogéosciences, UMR 6282 CNRS, Université de
Bourgogne/Franche-Comté, 21000 Dijon, France
Magret Damaschke
Core Scanning Facility, British Geological Survey, Keyworth, NG12 5GG, UK
Clemens V. Ullmann
Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
Mengjie Jiang
Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
Claire M. Belcher
WildFIRE Lab, Global Systems Institute, University of Exeter, Exeter, EX4 4PS, UK
Related authors
No articles found.
Teuntje P. Hollaar, Claire M. Belcher, Micha Ruhl, Jean-François Deconinck, and Stephen P. Hesselbo
Biogeosciences, 21, 2795–2809, https://doi.org/10.5194/bg-21-2795-2024, https://doi.org/10.5194/bg-21-2795-2024, 2024
Short summary
Short summary
Fires are limited in year-round wet climates (tropical rainforests; too wet), and in year-round dry climates (deserts; no fuel). This concept, the intermediate-productivity gradient, explains the global pattern of fire activity. Here we test this concept for climate states of the Jurassic (~190 Myr ago). We find that the intermediate-productivity gradient also applies in the Jurassic despite the very different ecosystem assemblages, with fires most frequent at times of high seasonality.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Thomas Munier, Jean-François Deconinck, Pierre Pellenard, Stephen P. Hesselbo, James B. Riding, Clemens V. Ullmann, Cédric Bougeault, Mathilde Mercuzot, Anne-Lise Santoni, Émilia Huret, and Philippe Landrein
Clim. Past, 17, 1547–1566, https://doi.org/10.5194/cp-17-1547-2021, https://doi.org/10.5194/cp-17-1547-2021, 2021
Short summary
Short summary
Clay minerals are witnesses of alteration conditions in continental environments. Lacking high-resolution data on clay minerals, this work highlights wet and semi-arid cycles at mid-latitude in the upper Sinemurian. The higher proportion of kaolinite in the upper part of the obtusum zone and in the oxynotum zone indicates an increase in hydrolysis conditions in a warmer period confirmed by carbon isotopes.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
Clemens Vinzenz Ullmann and Philip A. E. Pogge von Strandmann
Biogeosciences, 14, 89–97, https://doi.org/10.5194/bg-14-89-2017, https://doi.org/10.5194/bg-14-89-2017, 2017
Short summary
Short summary
This study documents how much control growth rate has on the chemical composition of fossil shell material. Using a series of chemical analyses of the fossil hard part of a belemnite, an extinct marine predator, a clear connection between the rate of calcite formation and its magnesium and strontium contents was found. These findings provide further insight into biomineralization processes and help better understand chemical signatures of fossils as proxies for palaeoenvironmental conditions.
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Milankovitch
Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis
Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma)
Low-latitude climate variability in the Heinrich frequency band of the Late Cretaceous greenhouse world
On the Milankovitch sensitivity of the Quaternary deep-sea record
Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
N. J. de Winter, C. Zeeden, and F. J. Hilgen
Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, https://doi.org/10.5194/cp-10-1001-2014, 2014
W. H. Berger
Clim. Past, 9, 2003–2011, https://doi.org/10.5194/cp-9-2003-2013, https://doi.org/10.5194/cp-9-2003-2013, 2013
A. Govin, P. Braconnot, E. Capron, E. Cortijo, J.-C. Duplessy, E. Jansen, L. Labeyrie, A. Landais, O. Marti, E. Michel, E. Mosquet, B. Risebrobakken, D. Swingedouw, and C. Waelbroeck
Clim. Past, 8, 483–507, https://doi.org/10.5194/cp-8-483-2012, https://doi.org/10.5194/cp-8-483-2012, 2012
Cited articles
Aberhan, M.: Bivalve palaeobiogeography and the Hispanic Corridor: time of
opening and effectiveness of a proto-Atlantic seaway, Palaeogeogr. Palaeocl., 165, 375–394, https://doi.org/10.1016/S0031-0182(00)00172-3, 2001.
Alberti, M., Fürsich, F. T., and Andersen, N.: First steps in
reconstructing Early Jurassic sea water temperatures in the Andean Basin of
northern Chile based on stable isotope analyses of oyster and brachiopod
shells, J. Palaeogeogr., 8, 1–17, https://doi.org/10.1186/s42501-019-0048-0, 2019.
Alberti, M., Parent, H., Garrido, A. C., Andersen, N., Garbe-Schönberg,
D., and Danise, S.: Stable isotopes (δ13C, δ18O)
and element ratios ( , ) of Jurassic belemnites, bivalves and brachiopods from the Neuquén Basin (Argentina): challenges and opportunities for palaeoenvironmental reconstructions, J. Geol. Soc., 178, jgs2020-163, https://doi.org/10.1144/jgs2020-163, 2021.
Archer, S. G., Steel, R. J., Mellere, D., Blackwood, S., and Cullen, B.:
Response of Middle Jurassic shallow-marine environments to syn-depositional
block tilting: Isles of Skye and Raasay, NW Scotland, Scot. J. Geol., 55,
35–68, https://doi.org/10.1144/sjg2018-014, 2019.
Bailey, T. R., Rosenthal, Y., McArthur, J. M., Van de Schootbrugge, B., and
Thirlwall, M. F.: Paleoceanographic changes of the Late Pliensbachian–Early
Toarcian interval: a possible link to the genesis of an Oceanic Anoxic
Event, Earth Planet. Sc. Lett., 212, 307–320, https://doi.org/10.1016/S0012-821X(03)00278-4, 2003.
Belcher, C. M., Collinson, M. E., and Scott, A. C.: Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis, J. Geol. Soc., 162, 591–602, https://doi.org/10.1144/0016-764904-104, 2005.
Bjerrum, C. J., Surlyk, F., Callomon, J. H., and Slingerland, R. L.: Numerical paleoceanographic study of the Early Jurassic transcontinental Laurasian Seaway, Paleoceanography, 16, 390–404, https://doi.org/10.1029/2000PA000512, 2001.
Bodin, S., Mau, M., Sadki, D., Danisch, J., Nutz, A., Krencker, F. N., and
Kabiri, L.: Transient and secular changes in global carbon cycling during the early Bajocian event: Evidence for Jurassic cool climate episodes, Global Planet. Change, 194, 103287, https://doi.org/10.1016/j.gloplacha.2020.103287, 2020.
Bodin, S., Fantasia, A., Krencker, F. N., Nebsbjerg, B., Christiansen, L.,
and Andrieu, S.: More gaps than record! A new look at the Pliensbachian/Toarcian boundary event guided by coupled chemo-sequence
stratigraphy, Palaeogeogr. Palaeocl., 610, 111344, https://doi.org/10.1016/j.palaeo.2022.111344, 2023.
Bougeault, C., Pellenard, P., Deconinck, J. F., Hesselbo, S. P., Dommergues,
J. L., Bruneau, L., Cocquerez, T., Laffont, R., Huret, E., and Thibault, N.:
Climatic and palaeoceanographic changes during the Pliensbachian (Early
Jurassic) inferred from clay mineralogy and stable isotope (CO) geochemistry
(NW Europe), Global Planet. Change, 149, 139–152, https://doi.org/10.1016/j.gloplacha.2017.01.005, 2017.
Bourillot, R., Neige, P., Pierre, A., and Durlet, C.: Early–middle Jurassic
Lytoceratid ammonites with constrictions from Morocco: palaeobiogeographical
and evolutionary implications, Palaeontology, 51, 597–609, https://doi.org/10.1111/j.1475-4983.2008.00766.x, 2008.
Brandt, K.: Glacioeustatic cycles in the Early Jurassic?, Neues Jahrbuch
für Geologie und Paläontologie-Monatshefte, Schweizerbart Science Publishers, 257–274, https://doi.org/10.1127/njgpm/1986/1986/257, 1986.
Calvert, S. E. and Pedersen, T. F.: Chapter fourteen elemental proxies for
palaeoclimatic and palaeoceanographic variability in marine sediments:
interpretation and application, Dev. Mar. Geol., 1, 567–644, https://doi.org/10.1016/S1572-5480(07)01019-6, 2007.
Chamley, H.: Clay Sedimentology, Springer Verlag, Berlin, 623 pp., ISBN 978-3-642-85918-8, 1989.
Chen, J., An, Z., and Head, J.: Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and
their implications for monsoon paleoclimatology, Quatern. Res., 51, 215–219, https://doi.org/10.1006/qres.1999.2038, 1999.
Chen, J., Chen, Y., Liu, L., Ji, J., Balsam, W., Sun, Y., and Lu, H.: ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength, Geochim. Cosmochim. Ac., 70, 1471–1482, https://doi.org/10.1016/j.gca.2005.11.029, 2006.
Cifer, T., Goričan, Š., Auer, M., Demény, A., Fraguas, Á.,
Gawlick, H. J., and Riechelmann, S.: Integrated stratigraphy (radiolarians,
calcareous nannofossils, carbon and strontium isotopes) of the
Sinemurian–Pliensbachian transition at Mt. Rettenstein, Northern Calcareous
Alps, Austria, Global Planet. Change, 212, 103811, https://doi.org/10.1016/j.gloplacha.2022.103811, 2022.
Clift, P. D., Wan, S., and Blusztajn, J.: Reconstructing chemical weathering,
physical erosion and monsoon intensity since 25 Ma in the northern South
China Sea: a review of competing proxies, Earth Sci. Rev., 130, 86–102,
https://doi.org/10.1016/j.earscirev.2014.01.002, 2014.
Clift, P. D., Kulhanek, D. K., Zhou, P., Bowen, M. G., Vincent, S. M., Lyle, M., and Hahn, A.: Chemical weathering and erosion responses to changing monsoon climate in the Late Miocene of Southwest Asia, Geol. Mag., 157, 939–955, https://doi.org/10.1017/S0016756819000608, 2020.
Cobianchi, M. and Picotti, V.: Sedimentary and biological response to sea-level and palaeoceanographic changes of a Lower–Middle Jurassic Tethyan platform margin (Southern Alps, Italy), Palaeogeogr. Palaeocl., 169, 219–244, https://doi.org/10.1016/S0031-0182(01)00217-6, 2021.
Copestake, P. and Johnson, B.: Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole, North Wales, UK, Monogr. Palaeontogr. Soc., 167, 1–403, 2014.
Damaschke, M., Wylde, S., Jiang, M., Hollaar, T., and Ullmann, C. V.: Llanbedr (Mochras Farm) Core Scanning Dataset, NERC EDS National Geoscience Data Centre [data set], https://doi.org/10.5285/c09e9908-6a21-43a8-bc5a-944f9eb8b97e, 2021.
Damborenea, S. E., Echevarria, J., and Ros-Franch, S.: Southern Hemisphere
Palaeobiogeography of Triassic-Jurassic Marine Bivalves, Springer Briefs
Seaways and Landbridges: Southern Hemisphere Biogeographic Connections
Through Time, Springer Science and Business Media, Berlin, https://doi.org/10.1007/978-94-007-5098-2_1, 2013.
Daniau, A. L., Sánchez Goñi, M. F., Martinez, P., Urrego, D. H.,
Bout-Roumazeilles, V., Desprat, S., and Marlon, J. R.: Orbital-scale climate
forcing of grassland burning in southern Africa, P. Natl. Acad. Sci. USA, 110, 5069–5073, https://doi.org/10.1073/pnas.1214292110, 2013.
Deconinck, J. F., Hesselbo, S. P., and Pellenard, P.: Climatic and sea-level
control of Jurassic (Pliensbachian) clay mineral sedimentation in the Cardigan Bay Basin, Llanbedr (Mochras Farm) borehole, Wales, Sedimentology,
66, 2769–2783, https://doi.org/10.1111/sed.12610, 2019.
de Graciansky, P. C., Jacquin, T., and Hesselbo, S. P. (Eds.): The Ligurian
cycle: An overview of Lower Jurassic 2nd-order transgressive-regressive
facies cycles in western Europe, Mesozoic and Cenozoic Sequence Stratigraphy
of European Basins, SEPM special publication 60, SEPM, 467–479, ISBN 1-565776-043-3, 1998.
De Lena, L. F., Taylor, D., Guex, J., Bartolini, A., Adatte, T., van Acken,
D., Spangenberg, J. E., Samankassou, E., Vennemann, T., and Schaltegger, U.:
The driving mechanisms of the carbon cycle perturbations in the late
Pliensbachian (Early Jurassic), Sci. Rep.-UK, 9, 1–12, https://doi.org/10.1038/s41598-019-54593-1, 2019.
Dera, G. and Donnadieu, Y.: Modeling evidences for global warming, Arctic
seawater freshening, and sluggish oceanic circulation during the Early
Toarcian anoxic event, Paleoceanography, 27, PA2211, https://doi.org/10.1029/2012PA002283, 2012.
Dera, G., Pucéat, E., Pellenard, P., Neige, P., Delsate, D., Joachimski,
M. M., Reisberg, L., and Martinez, M.: Water mass exchange and variations in
seawater temperature in the NW Tethys during the Early Jurassic: evidence
from neodymium and oxygen isotopes of fish teeth and belemnites, Earth
Planet. Sc. Lett., 286, 198–207, https://doi.org/10.1016/j.epsl.2009.06.027, 2009.
Dera, G., Neige, P., Dommergues, J. L., and Brayard, A.: Ammonite
paleobiogeography during the Pliensbachian–Toarcian crisis (Early Jurassic)
reflecting paleoclimate, eustasy, and extinctions, Global Planet. Change, 78, 92–105, https://doi.org/10.1016/j.gloplacha.2011.05.009, 2011.
Dobson, M. R. and Whittington, R. J.: The geology of Cardigan Bay, P. Geologist. Assoc., 98, 331–353, https://doi.org/10.1016/S0016-7878(87)80074-3, 1987.
Franceschi, M., Dal Corso, J., Posenato, R., Roghi, G., Masetti, D., and
Jenkyns, H. C.: Early Pliensbachian (Early Jurassic) C-isotope perturbation
and the diffusion of the Lithiotis Fauna: insights from the western Tethys,
Palaeogeogr. Palaeocl., 410, 255–263, https://doi.org/10.1016/j.palaeo.2014.05.025, 2014.
Gómez, J. J., Comas-Rengifo, M. J., and Goy, A.: Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin
(Northern Spain), Clim. Past, 12, 1199–1214, https://doi.org/10.5194/cp-12-1199-2016, 2016.
Hallam, A.: A revised sea-level curve for the early Jurassic, J. Geol. Soc.,
138, 735–743, https://doi.org/10.1144/gsjgs.138.6.0735, 1981.
Haq, B. U.: Jurassic sea-level variations: a reappraisal, GSA Today, 28, 4–10, 2018.
Hesselbo, S. P.: Sequence stratigraphy and inferred relative sea-level change
from the onshore British Jurassic, P. Geologist. Assoc., 119, 19–34,
https://doi.org/10.1016/S0016-7878(59)80069-9, 2008.
Hesselbo, S. P. and Jenkyns, H. C. (Eds.): British Lower Jurassic sequence
stratigraphy, Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM special publication 60, SEPM, 561–581, ISBN 1-565776-043-3, 1998.
Hesselbo, S. P., Bjerrum, C. J., Hinnov, L. A., MacNiocaill, C., Miller, K. G., Riding, J. B., van de Schootbrugge, B., and the Mochras Revisited Science
Team: Mochras borehole revisited: a new global standard for Early Jurassic
earth history, Sci. Drill., 16, 81–91,, https://doi.org/10.5194/sd-16-81-2013, 2013.
Hesselbo, S. P., Ogg, J. G., Ruhl, M., Hinnov, L. A., and Huang, C. J.: The
Jurassic Period, in: Geological Time Scale 2020, edited by: Gradstein, F. M.,
Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 955–1021, https://doi.org/10.1016/B978-0-12-824360-2.00026-7, 2020a.
Hesselbo, S. P., Hudson, A. J. L., Huggett, J. M., Leng, M. J., Riding, J. B., and Ullmann, C. V.: Palynological, geochemical, and mineralogical
characteristics of the Early Jurassic Liasidium Event in the Cleveland Basin, Yorkshire, UK, Newsl. Stratigr., 53, 191–211, https://doi.org/10.1127/nos/2019/0536, 2020b.
Hinnov, L. A., Ruhl, M., and Hesselbo, S. P.: Reply to the Comment on
“Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations” [Earth Planet. Sci.
Lett. 455 (2016) 149–165], Earth Planet. Sc. Lett., 481, 415–419,
https://doi.org/10.1016/j.epsl.2016.08.038, 2018.
Hollaar, T.: Terrestrial palaeo-environmental proxy data of the Upper Pliensbachian, Mochras Borehole sediments, deposited in the Cardigan Bay Basin, Wales, NERC EDS National Geoscience Data Centre [data set] https://doi.org/10.5285/d6b7c567-49f0-44c7-a94c-e82fa17ff98e, 2021.
Hollaar, T. P.: Palynofacies, microcharcoal, clay mineralogical and carbon isotope mass spectrometry measurements from the Late Pliensbachian (934–918 mbs) of the Mochras core, Cardigan Bay Basin, NW Wales, UK, NERC EDS National Geoscience Data Centre [data set], https://doi.org/10.5285/1461dbe5-50a8-425c-8c49-ac1f04bcc271, 2022.
Hollaar, T. P., Baker, S. J., Hesselbo, S. P., Deconinck, J. F., Mander, L.,
Ruhl, M., and Belcher, C. M.: Wildfire activity enhanced during phases of
maximum orbital eccentricity and precessional forcing in the Early Jurassic,
Commun. Earth Environ., 2, 1–12, https://doi.org/10.1038/s43247-021-00307-3, 2021.
Huang, C. and Hesselbo, S. P.: Pacing of the Toarcian Oceanic Anoxic Event
(Early Jurassic) from astronomical correlation of marine sections, Gondwana
Res., 25, 1348–1356, https://doi.org/10.1016/j.gr.2013.06.023, 2014.
Huang, C., Hesselbo, S. P., and Hinnov, L.: Astrochronology of the late
Jurassic Kimmeridge Clay (Dorset, England) and implications for Earth system
processes, Earth Planet. Sc. Lett., 289, 242–255, https://doi.org/10.1016/j.epsl.2009.11.013, 2010.
Ilyina, V. I.: Jurassic palynology of Siberia, Transactions of the Institute of Geology and Geophysics, Academy of Sciences of the USSR, Siberian Branch, 638, Nauka Publishing House, Moscow, p. 237, https://www.geokniga.org/books/11830 (last access: 5 May 2023), 1985.
Ivimey-Cook, H.C.: Stratigraphical palaeontology of the Lower Jurassic of the Llanbedr (Mochras Farm) Borehole, in: The Llandbedr (Mochras Farm) Borehole, edited by: Woodland, A. W., Rep. No. 71/18, Institute of Geological Sciences, 87–92, 1971.
Jenkyns, H. C. and Clayton, C. J.: Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic, Sedimentology, 33, 87–106, https://doi.org/10.1111/j.1365-3091.1986.tb00746.x, 1986.
Kaplan, M. E.: Calcite pseudomorphoses in Jurassic and Lower Cretaceous
deposits of the northern area of eastern Siberia, Geologiya i Geofizika, 19,
62–70, 1978.
Korte, C. and Hesselbo, S. P.: Shallow-marine carbon- and oxygen-isotope and
elemental records indicate icehouse-greenhouse cycles during the Early
Jurassic, Paleoceanography, 26, PA4219, https://doi.org/10.1029/2011PA002160, 2011.
Korte, C., Hesselbo, S. P., Ullmann, C. V., Dietl, G., Ruhl, M., Schweigert,
G., and Thibault, N.: Jurassic climate mode governed by ocean gateway, Nat. Commun., 6, 1–7, https://doi.org/10.1038/ncomms10015, 2015.
Krencker, F. N., Lindström, S., and Bodin, S.: A major sea-level drop
briefly precedes the Toarcian oceanic anoxic event: implication for Early
Jurassic climate and carbon cycle, Sci. Rep.-UK, 9, 1–12, https://doi.org/10.1038/s41598-019-48956-x, 2019.
Krencker, F. N., Fantasia, A., Danisch, J., Martindale, R., Kabiri, L., El Ouali, M., and Bodin, S.: Two-phased collapse of the shallow-water carbonate factory during the late Pliensbachian–Toarcian driven by changing climate and enhanced continental weathering in the Northwestern Gondwana Margin, Earth-Sci. Rev., 208, 103254, https://doi.org/10.1016/j.earscirev.2020.103254, 2020.
Laskar, J.: Astrochronology, in: Geological Time Scale, edited by: Gradstein, F. M., Ogg, J. G., and Ogg, G. M., Elsevier, 139–158, https://doi.org/10.1016/B978-0-12-824360-2.00004-8, 2020.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital
solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89,
https://doi.org/10.1051/0004-6361/201116836, 2011.
Martinez, M. and Dera, G.: Orbital pacing of carbon fluxes by a ∼9-My
eccentricity cycle during the Mesozoic, P. Natl. Acad. Sci. USA, 112,
12604–12609, https://doi.org/10.1073/pnas.1419946112, 2015.
McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W., and Mattey, D.: Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic
event, the duration of ammonite biozones, and belemnite palaeotemperatures,
Earth Planet. Sc. Lett., 179, 269–285, https://doi.org/10.1016/S0012-821X(00)00111-4, 2000.
McElwain, J. C., Wade-Murphy, J., and Hesselbo, S. P.: Changes in carbon
dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals, Nature, 435, 479–482, https://doi.org/10.1038/nature03618, 2005.
Mercuzot, M., Pellenard, P., Durlet, C., Bougeault, C., Meister, C.,
Dommergues, J. L., Thibault, N., Baudin, F., Mathieu, O., Bruneau, L., Huret,
E., and El Hmidi, K.: Carbon-isotope events during the Pliensbachian (Lower
Jurassic) on the African and European margins of the NW Tethyan Realm,
Newsl. Stratigr., 53, 41–69, https://doi.org/10.1127/nos/2019/0502, 2020.
Merriman, R. J.: Clay mineral assemblages in British Lower Palaeozoic mudrocks, Clay Miner., 41, 473–512, https://doi.org/10.1180/0009855064110204, 2006.
Moiroud, M., Martinez, M., Deconinck, J.F., Monna, F., Pellenard, P.,
Riquier, L., and Company, M.: High-resolution clay mineralogy as a proxy for
orbital tuning: example of the Hauterivian–Barremian transition in the
Betic Cordillera (SE Spain), Sediment. Geol., 282, 336–346, https://doi.org/10.1016/j.sedgeo.2012.10.004, 2012.
Molnar, P.: Climate change, flooding in arid environments, and erosion
rates, Geology, 29, 1071–1074, https://doi.org/10.1130/0091-7613(2001)029<1071:CCFIAE>2.0.CO;2, 2001.
Molnar, P.: Late Cenozoic increase in accumulation rates of terrestrial
sediment: How might climate change have affected erosion rates?, Annu. Rev.
Earth Planet. Sci., 32, 67–89, https://doi.org/10.1146/annurev.earth.32.091003.143456, 2004.
Moore, D. M. and Reynolds, R. C.: X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, 378 pp., ISBN 0195087135, 1997.
Morettini, E., Santantonio, M., Bartolini, A., Cecca, F., Baumgartner, P. O.,
and Hunziker, J. C.: Carbon isotope stratigraphy and carbonate production
during the Early–Middle Jurassic: examples from the Umbria–Marche–Sabina
Apennines (central Italy), Palaeogeogr. Palaeocl., 184, 251–273,
https://doi.org/10.1016/S0031-0182(02)00258-4, 2002.
Munier, T., Deconinck, J. F., Pellenard, P., Hesselbo, S. P., Riding, J. B.,
Ullmann, C. V., Bougeault, C., Mercuzot, M., Santoni, A. L., Huret, É., and Landrein, P.: Million-year-scale alternation of warm–humid and semi-arid
periods as a mid-latitude climate mode in the Early Jurassic (late Sinemurian, Laurasian Seaway), Clim. Past, 17, 1547–1566, https://doi.org/10.5194/cp-17-1547-2021, 2021.
Nikitenko, B. L.: The Early Jurassic to Aalenian paleobiogeography of the
Arctic Realm: implication of microbenthos (Foraminifers and Ostracodes),
Stratigr. Geol. Correl., 16, 59–80, https://doi.org/10.1007/s11506-008-1005-z, 2008.
Nordt, L., Breecker, D., and White, J.: Jurassic greenhouse ice-sheet
fluctuations sensitive to atmospheric CO2 dynamics, Nat. Geosci., 15, 54–59, https://doi.org/10.1038/s41561-021-00858-2, 2022.
Oboh-Ikuenobe, F. E., Obi, C. G., and Jaramillo, C. A.: Lithofacies,
palynofacies, and sequence stratigraphy of Palaeogene strata in Southeastern
Nigeria, J. Afr. Earth Sci., 41, 79–101, https://doi.org/10.1016/j.jafrearsci.2005.02.002, 2005.
Petschick, R.: MacDiff 4.2.2, http://servermac.geologie.unfrankfurt.de/Rainer.html (last access: 9 February 2020), 2000.
Pieńkowski, G., Uchman, A., Ninard, K., and Hesselbo, S. P.: Ichnology,
sedimentology, and orbital cycles in the hemipelagic Early Jurassic Laurasian Seaway (Pliensbachian, Cardigan Bay Basin, UK), Global Planet. Change, 207, 103648, https://doi.org/10.1016/j.gloplacha.2021.103648, 2021.
Porter, S. J., Selby, D., Suzuki, K., and Gröcke, D.: Opening of a
trans-Pangaean marine corridor during the Early Jurassic: Insights from
osmium isotopes across the Sinemurian–Pliensbachian GSSP, Robin Hood's Bay,
UK, Palaeogeogr. Palaeocl., 375, 50–58, https://doi.org/10.1016/j.palaeo.2013.02.012, 2013.
Price, G. D.: The evidence and implications of polar ice during the Mesozoic,
Earth-Sci. Rev., 48, 183–210, https://doi.org/10.1016/S0012-8252(99)00048-3, 1999.
Price, G. D., Baker, S. J., Van De Velde, J., and Clémence, M. E.:
High-resolution carbon cycle and seawater temperature evolution during the
Early Jurassic (Sinemurian-Early Pliensbachian), Geochem. Geophy. Geosy., 17, 3917–3928, https://doi.org/10.1002/2016GC006541, 2016.
Quesada, S., Robles, S., and Rosales, I.: Depositional architecture and
transgressive–regressive cycles within Liassic backstepping carbonate ramps
in the Basque–Cantabrian Basin, northern Spain, J. Geol. Soc., 162, 531–548, https://doi.org/10.1144/0016-764903-041, 2005.
Raucsik, B. and Varga, A.: Climato-environmental controls on clay mineralogy of the Hettangian–Bajocian successions of the Mecsek Mountains, Hungary: an evidence for extreme continental weathering during the early Toarcian oceanic anoxic event, Palaeogeogr. Palaeocl., 265, 1–13, https://doi.org/10.1016/j.palaeo.2008.02.004, 2008.
Riding, J. B., Leng, M. J., Kender, S., Hesselbo, S. P., and Feist-Burkhardt,
S.: Isotopic and palynological evidence for a new Early Jurassic environmental perturbation, Palaeogeogr. Palaeocl., 374, 16–27,
https://doi.org/10.1016/j.palaeo.2012.10.019, 2013.
Robinson, S. A., Ruhl, M., Astley, D. L., Naafs, B. D. A., Farnsworth, A. J.,
Bown, P. R., Hugh, J. C., Lunt, D. J., O'Brien, C., Pancost, R .D., and Markwick, P. J.: Early Jurassic North Atlantic sea-surface temperatures from TEX 86 palaeothermometry, Sedimentology, 64, 215–230, https://doi.org/10.1111/sed.12321, 2016.
Rogov, M. A. and Zakharov, V. A.: Jurassic and Lower Cretaceous glendonite
occurrences and their implication for Arctic paleoclimate reconstructions and stratigraphy, Earth Sci. Front., 17, 345–347, 2010.
Rosales, I., Quesada, S., and Robles, S.: Paleotemperature variations of
Early Jurassic seawater recorded in geochemical trends of belemnites from
the Basque–Cantabrian basin, northern Spain, Palaeogeogr. Palaeocl., 203, 253–275, https://doi.org/10.1016/S0031-0182(03)00686-2, 2004.
Rosales, I., Quesada, S., and Robles, S.: Geochemical arguments for
identifying second-order sea-level changes in hemipelagic carbonate ramp
deposits, Terra Nova, 18, 233–240, https://doi.org/10.1111/j.1365-3121.2006.00684.x, 2006.
Ruebsam, W. and Al-Husseini, M.: Orbitally synchronized late
Pliensbachian–early Toarcian glacio-eustatic and carbon-isotope cycles,
Palaeogeogr. Palaeocl., 577, 110562, https://doi.org/10.1016/j.palaeo.2021.110562, 2021.
Ruebsam, W. and Schwark, L.: Impact of a northern-hemispherical cryosphere on late Pliensbachian–early Toarcian climate and environment evolution, Geol. Soc. Spec. Publ. Lond., 514, 359–385, https://doi.org/10.1144/SP514-2021-11, 2021.
Ruebsam, W., Mayer, B., and Schwark, L.: Cryosphere carbon dynamics control
early Toarcian global warming and sea level evolution, Global Planet. Change, 172, 440–453, https://doi.org/10.1016/j.gloplacha.2018.11.003, 2019.
Ruebsam, W., Reolid, M., Sabatino, N., Masetti, D., and Schwark, L.: Molecular paleothermometry of the early Toarcian climate perturbation, Global Planet. Change, 195, 103351, https://doi.org/10.1016/j.gloplacha.2020.103351, 2020a.
Ruebsam, W., Thibault, N., and Al-Husseini, M.: Early Toarcian glacio-eustatic unconformities and chemostratigraphic black holes, in:
Stratigraphy and Timescales, edited by: Montenari, M., Academic Press, 629–676, https://doi.org/10.1016/bs.sats.2020.08.006, 2020b.
Ruffell, A., McKinley, J. M., and Worden, R. H.: Comparison of clay mineral
stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe, Philos. T. Roy. Soc. A, 360, 675–693, https://doi.org/10.1098/rsta.2001.0961, 2002.
Ruhl, M., Hesselbo, S. P., Hinnov, L., Jenkyns, H. C., Xu, W., Riding, J. B.,
Storm, M., Minisini, D., Ullmann, C. V., and Leng, M. J.: Astronomical
constraints on the duration of the Early Jurassic Pliensbachian Stage and
global climatic fluctuations, Earth Planet. Sc. Lett., 455, 149–165,
https://doi.org/10.1016/j.epsl.2016.08.038, 2016.
Ruvalcaba Baroni, I., Pohl, A., van Helmond, N. A., Papadomanolaki, N. M.,
Coe, A. L., Cohen, A. S., van de Schootbrugge, B., Donnadieu, Y., and Slomp,
C. P.: Ocean circulation in the Toarcian (Early Jurassic): a key control on
deoxygenation and carbon burial on the European Shelf, Paleoceanogr. Paleocl., 33, 994–1012, https://doi.org/10.1029/2018PA003394, 2018.
Schweigert, G.: The occurrence of the Tethyan ammonite genus Meneghiniceras
(Phylloceratina: Juraphyllitidae) in the Upper Pliensbachian of SW Germany,
Stuttgarter Beiträge zur Naturkunde Serie B Geologie und Paläontologie, 356, 1–15, 2005.
Scott, A. C.: Charcoal recognition, taphonomy and uses in palaeoenvironmental
analysis, Palaeogeogr. Palaeocl., 291, 11–39, https://doi.org/10.1016/j.palaeo.2009.12.012, 2010.
Sellwood, B. W. and Jenkyns, H. G.: Basins and swells and the evolution of an
epeiric sea:(Pliensbachian–Bajocian of Great Britain), J. Geol. Soc., 131, 373–388, https://doi.org/10.1144/gsjgs.131.4.0373, 1975.
Sha, J.: Opening time of the Hispanic Corridor and migration patterns of
pan-tropical cosmopolitan Jurassic pectinid and ostreid bivalves, Palaeogeogr. Palaeocl., 515, 34–46, https://doi.org/10.1016/j.palaeo.2018.09.018, 2019.
Silva, R. L., Duarte, L. V., Comas-Rengifo, M. J., Mendonça Filho, J. G.,
and Azerêdo, A. C.: Update of the carbon and oxygen isotopic records of
the Early–Late Pliensbachian (Early Jurassic, ∼187 Ma): Insights from the organic-rich hemipelagic series of the Lusitanian Basin (Portugal), Chem. Geol., 283, 177–184, https://doi.org/10.1016/j.chemgeo.2011.01.010, 2011.
Silva, R. L., Duarte, L. V., Wach, G. D., Ruhl, M., Sadki, D., Gómez, J. J., Hesselbo, S. P., Xu, W., O'Connor, D., Rodrigues, B., and Mendonça Filho, J. G.: An Early Jurassic (Sinemurian–Toarcian) stratigraphic framework for the occurrence of Organic Matter Preservation Intervals (OMPIs), Earth Sci. Rev., 221, 103780, https://doi.org/10.1016/j.earscirev.2021.103780, 2021.
Slater, S. M., Bown, P., Twitchett, R. J., Danise, S., and Vajda, V.: Global
record of “ghost” nannofossils reveals plankton resilience to high CO2 and warming, Science, 376, 853–856, https://doi.org/10.1126/science.abm7330, 2022.
Smith, P. L.: The Pliensbachian ammonite Dayiceras dayiceroides and early
Jurassic paleogeography, Can. J. Earth Sci., 20, 86–91, https://doi.org/10.1139/e83-008, 1983.
Steinthorsdottir, M. and Vajda, V.: Early Jurassic (late Pliensbachian)
CO2 concentrations based on stomatal analysis of fossil conifer leaves
from eastern Australia, Gondwana Res., 27, 932–939, https://doi.org/10.1016/j.gr.2013.08.021, 2015.
Storm, M. S., Hesselbo, S. P., Jenkyns, H. C., Ruhl, M., Ullmann, C. V., Xu, W., Leng, M. J., Riding, J. B., and Gorbanenko, O.: Orbital pacing and secular evolution of the Early Jurassic carbon cycle, P. Natl. Acad. Sci. USA, 117, 3974–3982, https://doi.org/10.1073/pnas.1912094117, 2020.
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B.,
Duarte, L. V., Philippe, M., Reggiani, L., and Martineau, F.: Secular
environmental precursors to Early Toarcian (Jurassic) extreme climatem changes, Earth Planet. Sc. Lett., 290, 448–458, https://doi.org/10.1016/j.epsl.2009.12.047, 2010.
Suan, G., Nikitenko, B. L., Rogov, M. A., Baudin, F., Spangenberg, J. E.,
Knyazev, V. G., Glinskikh, L. A., Goryacheva, A. A., Adatte, T., Riding, J. B., Föllmi, K. B., Pittet, B., Mattioli, E., and Lécuyer, C.: Polar
record of Early Jurassic massive carbon injection, Earth Planet. Sc. Lett., 312, 102–113, https://doi.org/10.1016/j.epsl.2011.09.050, 2011.
Tappin, D. R., Chadwick, R. A., Jackson, A. A., Wingfield, R. T. R., and Smith, N. J. P.: Geology of Cardigan Bay and the Bristol Channel, United Kingdom offshore regional report, British Geological Survey, HMSO, 107 pp., ISBN 0118845063, 1994.
Thibault, N., Ruhl, M., Ullmann, C. V., Korte, C., Kemp, D. B., Gröcke, D. R., and Hesselbo, S. P.: The wider context of the Lower Jurassic Toarcian
oceanic anoxic event in Yorkshire coastal outcrops, UK, Proc. Geologist. Assoc., 129, 372–391, https://doi.org/10.1016/j.pgeola.2017.10.007, 2018.
Thiry, M.: Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin, Earth-Sci. Rev., 49, 201–221, https://doi.org/10.1016/S0012-8252(99)00054-9, 2000.
Torsvik, T. H. and Cocks, L. R. M. (Eds.): Jurassic, in: Earth History and
Palaeogeography, Cambridge University Press, 208–218, ISBN 1107105323, 2017.
Ullmann, C.V., Szűcs, D., Jiang, M., Hudson, A. J., and Hesselbo, S. P.:
Geochemistry of macrofossil, bulk rock, and secondary calcite in the Early
Jurassic strata of the Llanbedr (Mochras Farm) drill core, Cardigan Bay
Basin, Wales, UK, J. Geol. Soc., 179, jgs2021-018, https://doi.org/10.1144/jgs2021-018, 2022.
Underhill, J. R. and Partington, M. A.: Jurassic thermal doming and deflation
in the North Sea: implications of the sequence stratigraphic evidence,
Petroleum Geology Conference series 4, Geological Society, London, 337–345, https://doi.org/10.1144/0040337, 1993.
van de Schootbrugge, B., Bailey, T. R., Rosenthal, Y., Katz, M. E., Wright, J D., Miller, K. G., Feist-Burkhardt, S., and Falkowski, P. G.: Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean, Paleobiology, 31, 73–97, https://doi.org/10.1666/0094-8373(2005)031<0073:EJCCAT>2.0.CO;2, 2005.
van de Schootbrugge, B., Houben, A. J. P., Ercan, F. E. Z., Verreussel, R.,
Kerstholt, S., Janssen, N. M. M., Nikitenko, B., and Suan, G.: Enhanced
arctic-tethys connectivity ended the toarcian oceanic anoxic event in NW Europe, Geol. Mag., 157, 1593–1611, https://doi.org/10.1017/S0016756819001262, 2019.
Waterhouse, H. K.: Orbital forcing of palynofacies in the Jurassic of France
and the United Kingdom, Geology, 27, 511–514, https://doi.org/10.1130/0091-7613(1999)027<0511:OFOPIT>2.3.CO;2, 1999.
Weedon, G. P.: Hemipelagic shelf sedimentation and climatic cycles: the basal
Jurassic (Blue Lias) of South Britain, Earth Planet. Sc. Lett., 76, 321–335, https://doi.org/10.1016/0012-821X(86)90083-X, 1986.
Weedon, G. P. and Jenkyns, H. C.: Regular and irregular climatic cycles and
the Belemnite Marls (Pliensbachian, Lower Jurassic, Wessex Basin), J. Geol.
Soc., 147, 915–918, https://doi.org/10.1144/gsjgs.147.6.0915, 1990.
Weedon, G. P., Page, K. N., and Jenkyns, H. C.: Cyclostratigraphy, stratigraphic gaps and the duration of the Hettangian Stage (Jurassic):
insights from the Blue Lias Formation of southern Britain, Geol. Mag., 156, 1469–1509, https://doi.org/10.1017/S0016756818000808, 2019.
Woodland, A. W. (Ed.): The Llanbedr (Mochras Farm) Borehole, Report No. 71/18, Institute of Geological Sciences, London, 115 pp., 1971.
Zakharov, V. A., Shurygin, B. N., Il'ina, V. I., and Nikitenko, B. L.:
Pliensbachian-Toarcian biotic turnover in north Siberia and the Arctic region, Stratigr. Geol. Correl., 14, 399–417, https://doi.org/10.1134/S0869593806040046, 2006.
Ziegler, P. A.: Geological Atlas of Western and Central Europe, 239, Shell
Internationale Petroleum Maatschappij, the Hague, 1990.
Short summary
Palaeoclimatological reconstructions aid our understanding of current and future climate change. In the Pliensbachian (Early Jurassic) a climatic cooling event occurred globally. We show that this cooling event has a significant impact on the depositional environment of the Cardigan Bay basin but that the 405 kyr eccentricity cycle remained the dominant control on terrestrial and marine depositional processes.
Palaeoclimatological reconstructions aid our understanding of current and future climate change....