Articles | Volume 19, issue 3
https://doi.org/10.5194/cp-19-665-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-665-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Asymmetric changes in temperature in the Arctic during the Holocene based on a transient run with the Community Earth System Model (CESM)
Hongyue Zhang
Key Laboratory for Virtual Geographic Environment, Ministry of
Education, State Key Laboratory Cultivation Base of Geographical Environment
Evolution of Jiangsu Province, Jiangsu Center for Collaborative Innovation
in Geographical Information Resource Development and Application, School of
Geography Science, Nanjing Normal University, Nanjing 210023, China
Department of Geology – Quaternary Science, Lund University, Lund,
223 62, Sweden
Department of Geology – Quaternary Science, Lund University, Lund,
223 62, Sweden
Zhengyao Lu
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, 223 62, Sweden
Key Laboratory for Virtual Geographic Environment, Ministry of
Education, State Key Laboratory Cultivation Base of Geographical Environment
Evolution of Jiangsu Province, Jiangsu Center for Collaborative Innovation
in Geographical Information Resource Development and Application, School of
Geography Science, Nanjing Normal University, Nanjing 210023, China
Jiangsu Provincial Key Laboratory for Numerical Simulation of
Large-Scale Complex Systems, School of Mathematical Science, Nanjing Normal
University, Nanjing 210023, China
Open Studio for the Simulation of Ocean-Climate-Isotope, Qingdao
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Weiyi Sun
Key Laboratory for Virtual Geographic Environment, Ministry of
Education, State Key Laboratory Cultivation Base of Geographical Environment
Evolution of Jiangsu Province, Jiangsu Center for Collaborative Innovation
in Geographical Information Resource Development and Application, School of
Geography Science, Nanjing Normal University, Nanjing 210023, China
Lingfeng Wan
Institute of Advanced Ocean Study, Ocean University of China,
Qingdao, China
Related authors
No articles found.
Qin Tao, Cheng Shen, Raimund Muscheler, and Jesper Sjolte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3471, https://doi.org/10.5194/egusphere-2025-3471, 2025
Short summary
Short summary
Using model simulations and reconstructions over the last millennium, we identify distinct North Atlantic Oscillation-related winter climate responses following tropical versus extratropical eruptions, with improved model-data agreement in simulations that use the latest volcanic forcing. Our paleoclimate data-model comparison provides new evidence of volcanic climate impacts, which are strongly dependent on the choice of forcing dataset, model configuration, and eruption event selection.
Jesper Sjolte and Qin Tao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2911, https://doi.org/10.5194/egusphere-2025-2911, 2025
Short summary
Short summary
We have reconstructed past changes in North Atlantic climate by combining climate model output with tree-ring and ice core data. Our new data includes sea level pressure, temperature and precipitation on annual, seasonal and monthly time scales. The reconstruction captures changes in observed temperature over several hundred years across Greenland and Europe. This data can be used to study variations in climate and impacts of greenhouse gases, volcanic eruptions and variations in solar activity.
Lingwei Li, Zhengyu Liu, Jinbo Du, Lingfeng Wan, and Jiuyou Lu
Clim. Past, 20, 1161–1175, https://doi.org/10.5194/cp-20-1161-2024, https://doi.org/10.5194/cp-20-1161-2024, 2024
Short summary
Short summary
Radiocarbon proxies suggest that the deep waters are poorly ventilated during the Last Glacial Maximum (LGM). Here we use two transient simulations with tracers of radiocarbon and ideal age to show that the deep-ocean ventilation age is not much older at the LGM compared to the present day because of the strong glacial Antarctic Bottom Water transport. In contrast, the ventilation age is older during deglaciation mainly due to weakening of Antarctic Bottom Water transport.
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023, https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Short summary
A Green Sahara with enhanced rainfall and larger vegetation cover existed in northern Africa about 6000 years ago. Biosphere–atmosphere interactions are found to be critical to explaining this wet period. Based on modeled vegetation reconstruction data, we simulated dust emissions and aerosol formation, which are key factors in biosphere–atmosphere interactions. Our results also provide a benchmark of aerosol climatology for future paleo-climate simulation experiments.
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Danyang Ma, Tijian Wang, Hao Wu, Yawei Qu, Jian Liu, Jane Liu, Shu Li, Bingliang Zhuang, Mengmeng Li, and Min Xie
Atmos. Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, https://doi.org/10.5194/acp-23-6525-2023, 2023
Short summary
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Nathalie Van der Putten, Florian Adolphi, Anette Mellström, Jesper Sjolte, Cyriel Verbruggen, Jan-Berend Stuut, Tobias Erhardt, Yves Frenot, and Raimund Muscheler
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-69, https://doi.org/10.5194/cp-2021-69, 2021
Manuscript not accepted for further review
Short summary
Short summary
In recent decades, Southern Hemisphere westerlies (SHW) moved equator-ward during periods of low solar activity leading to increased winds/precipitation at 46° S, Indian Ocean. We present a terrestrial SHW proxy-record and find stronger SHW influence at Crozet, shortly after 2.8 ka BP, synchronous with a climate shift in the Northern Hemisphere, attributed to a major decline in solar activity. The bipolar response to solar forcing is supported by a climate model forced by solar irradiance only.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Cited articles
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in
the Arctic circulation, J. Geophys. Res.-Oceans, 94,
14485–14498, https://doi.org/10.1029/JC094iC10p14485, 1989.
Alekseev, G. V., Johannessen, O. M., Korablev, A. A., Ivanov, V. V., and
Kovalevsky, D. V.: Interannual variability in water masses in the Greenland
Sea and adjacent areas, Polar Res., 20, 201–208,
https://doi.org/10.1111/j.1751-8369.2001.tb00057.x, 2001.
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T.,
Schmidt, H., Toohey, M., Wu, C.-J., and Claussen, M.: Global temperature
modes shed light on the Holocene temperature conundrum, Nat. Commun., 11,
4726, https://doi.org/10.1038/s41467-020-18478-6, 2020.
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the
midlatitude jet-stream: Can it? Has it? Will it?, WIRES Clim. Change, 6,
277–286, https://doi.org/10.1002/wcc.337, 2015.
Berger, A.: Long-Term Variations of Daily Insolation and Quaternary Climatic
Changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Blackport, R. and Kushner, P. J.: The Role of Extratropical Ocean Warming in
the Coupled Climate Response to Arctic Sea Ice Loss, J. Climate, 31,
9193–9206, https://doi.org/10.1175/JCLI-D-18-0192.1, 2018.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget, Clim. Past, 3, 279–296, https://doi.org/10.5194/cp-3-279-2007, 2007.
Braconnot, P., Zhu, D., Marti, O., and Servonnat, J.: Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation, Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, 2019.
Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de
Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K.,
Jennings, A., Kaufman, D. S., Miller, G., Rouston, C., and Wagner, B.:
Holocene climate change in Arctic Canada and Greenland,
Quaternary Sci. Rev., 147, 340–364, https://doi.org/10.1016/j.quascirev.2016.02.010,
2016.
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., Huang, X.,
Zhao, Y., Sato, T., John B. Birks, H., Boomer, I., Chen, J., An, C., and
Wünnemann, B.: Holocene moisture evolution in arid central Asia and its
out-of-phase relationship with Asian monsoon history, Quaternary Sci. Rev., 27, 351–364, https://doi.org/10.1016/j.quascirev.2007.10.017,
2008.
Chen, G., Lu, J., Burrows, D. A., and Leung, L. R.: Local finite-amplitude
wave activity as an objective diagnostic of midlatitude extreme weather,
Geophys. Res. Lett., 42, 10 952–10 960,
https://doi.org/10.1002/2015GL066959, 2015.
Choi, N., Kim, K.-M., Lim, Y.-K., and Lee, M.-I.: Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer, The Cryosphere, 13, 3007–3021, https://doi.org/10.5194/tc-13-3007-2019, 2019.
Cohen, J.: An observational analysis: Tropical relative to Arctic influence
on midlatitude weather in the era of Arctic amplification, Geophys. Res. Lett., 43, 5287–5294, https://doi.org/10.1002/2016GL069102,
2016.
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D.,
Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and
Jones, J.: Recent Arctic amplification and extreme mid-latitude weather,
Nat. Geosci., 7, 627–637, https://doi.org/10.1038/ngeo2234, 2014.
Cohen, J., Pfeiffer, K., and Francis, J. A.: Warm Arctic episodes linked
with increased frequency of extreme winter weather in the United States, Nat.
Commun., 9, 869, https://doi.org/10.1038/s41467-018-02992-9, 2018.
Delworth, T. L. and Knutson, T. R.: Simulation of Early 20th Century Global
Warming, Science, 287, 2246–2250,
https://doi.org/10.1126/science.287.5461.2246, 2000.
Deser, C., Tomas, R. A., and Sun, L.: The Role of Ocean–Atmosphere Coupling
in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss, J. Climate, 28, 2168–2186, https://doi.org/10.1175/JCLI-D-14-00325.1, 2015.
Deser, C., Sun, L., Tomas, R. A., and Screen, J.: Does ocean coupling matter
for the northern extratropical response to projected Arctic sea ice loss?,
Geophys. Res. Lett., 43, 2149–2157,
https://doi.org/10.1002/2016GL067792, 2016.
de Vernal, A., Hillaire-Marcel, C., and Darby, D. A.: Variability of sea ice
cover in the Chukchi Sea (western Arctic Ocean) during the Holocene:
Holocene Sea Ice in the Chukchi Sea, Paleoceanography, 20, PA4018,
https://doi.org/10.1029/2005PA001157, 2005.
Francis, J. and Skific, N.: Evidence linking rapid Arctic warming to
mid-latitude weather patterns, Philos. T. R. Soc. A, 373, 20140170,
https://doi.org/10.1098/rsta.2014.0170, 2015.
Francis, J. A. and Hunter, E.: Drivers of declining sea ice in the Arctic
winter: A tale of two seas, Geophys. Res. Lett., 34, L17503,
https://doi.org/10.1029/2007GL030995, 2007.
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to
extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801,
https://doi.org/10.1029/2012GL051000, 2012.
Francis, J. A. and Vavrus, S. J.: Evidence for a wavier jet stream in
response to rapid Arctic warming, Environ. Res. Lett., 10, 014005,
https://doi.org/10.1088/1748-9326/10/1/014005, 2015.
Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K. H., Korsgaard, N.
J., Larsen, N. K., Linderson, H., Lyså, A., Möller, P., Olsen, J.,
and Willerslev, E.: A 10,000-Year Record of Arctic Ocean Sea-Ice
Variability – View from the Beach, Science, 333, 747–750,
https://doi.org/10.1126/science.1202760, 2011.
Gajewski, K.: Quantitative reconstruction of Holocene temperatures across
the Canadian Arctic and Greenland, Global Planet. Change, 128, 14–23,
https://doi.org/10.1016/j.gloplacha.2015.02.003, 2015.
Goosse, H. and Fichefet, T.: Importance of ice-ocean interactions for the
global ocean circulation: A model study, J. Geophys. Res.-Oceans, 104, 23337–23355, https://doi.org/10.1029/1999JC900215, 1999.
Grieser, J. and Schonwiese, C.-D.: Parameterization of Spatio-temporal
Patterns of Volcanic Aerosol Induced Stratospheric Optical Depth and its
Climate Radiative Forcing, Atmósfera, 12, 111–133, 1999.
Hanslik, D., Jakobsson, M., Backman, J., Björck, S., Sellén, E.,
O'Regan, M., Fornaciari, E., and Skog, G.: Quaternary Arctic Ocean sea ice
variations and radiocarbon reservoir age corrections, Quaternary Sci. Rev., 29, 3430–3441, https://doi.org/10.1016/j.quascirev.2010.06.011,
2010.
Hoerling, M. P., Hurrell, J. W., and Xu, T.: Tropical Origins for Recent
North Atlantic Climate Change, Science, 292, 90–92,
https://doi.org/10.1126/science.1058582, 2001.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232,
https://doi.org/10.1007/s00382-003-0332-6, 2003.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys.,
33, 403–439, https://doi.org/10.1029/95RG02097, 1995.
Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional
Temperatures and Precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Jenkins, M. and Dai, A.: The Impact of Sea-Ice Loss on Arctic Climate
Feedbacks and Their Role for Arctic Amplification, Geophys. Res. Lett., 48, e2021GL094599, https://doi.org/10.1029/2021GL094599, 2021.
Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J.
T.: A mid-Holocene shift in Arctic sea-ice variability on the East Greenland
Shelf, The Holocene, 12, 49–58, https://doi.org/10.1191/0959683602hl519rp,
2002.
Jing, Y., Liu, J., and Wan, L.: Comparison of climate responses to orbital
forcing at different latitudes during the Holocene,
Quatern. Int., 622, 65–76, https://doi.org/10.1016/j.quaint.2022.02.004,
2022.
Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V.
A., Alekseev, G. V., Nagurnyi, A. P., Zakharov, V. F., Bobylev, L. P.,
Pettersson, L. H., Hasselmann, K., and Cattle, H. P.: Arctic climate change:
observed and modelled temperature and sea-ice variability, Tellus A, 56, 328–341,
https://doi.org/10.3402/tellusa.v56i4.14418, 2004.
Jones, P. D. and Moberg, A.: Hemispheric and Large-Scale Surface Air
Temperature Variations: An Extensive Revision and an Update to 2001, J. Climate, 16, 206–223,
https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2, 2003.
Jonkers, L., Cartapanis, O., Langner, M., McKay, N., Mulitza, S., Strack, A., and Kucera, M.: Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis, Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, 2020.
Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic
radiative forcing over the past 20,000 years, P. Natl. Acad. Sci. USA, 105, 1425–1430,
https://doi.org/10.1073/pnas.0707386105, 2008.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J.
T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall,
M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K.,
Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M.
W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W.
W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P.,
Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western
Arctic (0–180∘ W), Quaternary Sci. Rev., 23, 529–560,
https://doi.org/10.1016/j.quascirev.2003.09.007, 2004.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R.
S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T.,
Vinther, B. M., Arctic Lakes 2k Project Members, Abbott, M., Axford, Y.,
Bird, B., Birks, H. J. B., Bjune, A. E., Briner, J., Cook, T., Chipman, M.,
Francus, P., Gajewski, K., Geirsdóttir, Á., Hu, F. S., Kutchko, B.,
Lamoureux, S., Loso, M., MacDonald, G., Peros, M., Porinchu, D., Schiff, C.,
Seppä, H., and Thomas, E.: Recent Warming Reverses Long-Term Arctic
Cooling, Science, 325, 1236–1239, https://doi.org/10.1126/science.1173983,
2009.
Kaufman, D. S., McKay, N. P., and Routson, C.: NOAA/WDS Paleoclimatology – Temperature 12k Database, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/4ry2-g808, 2020.
Kay, J. E., L'Ecuyer, T., Gettelman, A., Stephens, G., and O'Dell, C.: The
contribution of cloud and radiation anomalies to the 2007 Arctic sea ice
extent minimum, Geophys. Res. Lett., 35, L08503,
https://doi.org/10.1029/2008GL033451, 2008.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Kutzbach, J. E., Liu, X., Liu, Z., and Chen, G.: Simulation of the
evolutionary response of global summer monsoons to orbital forcing over the
past 280,000 years, Clim. Dynam., 30, 567–579,
https://doi.org/10.1007/s00382-007-0308-z, 2008.
Larsen, N. K., Kjær, K. H., Lecavalier, B., Bjørk, A. A., Colding,
S., Huybrechts, P., Jakobsen, K. E., Kjeldsen, K. K., Knudsen, K.-L.,
Odgaard, B. V., and Olsen, J.: The response of the southern Greenland ice
sheet to the Holocene thermal maximum, Geology, 43, 291–294,
https://doi.org/10.1130/G36476.1, 2015.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bølling-Allerød Warming,
Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Liu, Z., Lu, Z., Wen, X., Otto-Bliesner, B. L., Timmermann, A., and Cobb, K.
M.: Evolution and forcing mechanisms of El Niño over the past 21,000
years, Nature, 515, 550–553, https://doi.org/10.1038/nature13963, 2014.
Lorenz, S. J. and Lohmann, G.: Acceleration technique for Milankovitch type
forcing in a coupled atmosphere-ocean circulation model: method and
application for the holocene, Clim. Dynam., 23, 727–743, 2004.
Lu, Z. and Liu, Z.: Orbital modulation of ENSO seasonal phase locking, Clim.
Dynam., 52, 4329–4350, https://doi.org/10.1007/s00382-018-4382-1, 2019.
Malevich, S. B., Vetter, L., and Tierney, J. E.: Global Core Top Calibration
of δ18O in Planktic Foraminifera to Sea Surface Temperature,
Paleoceanography and Paleoclimatology, 34, 1292–1315,
https://doi.org/10.1029/2019PA003576, 2019.
Mandel, I. and Lipovetsky, S.: Climate Change Report IPCC 2021 – A Chimera
of Science and Politics, Social Science Research Network, Rochester, NY,
https://doi.org/10.2139/ssrn.3913788, 2021.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A
reconstruction of regional and global temperature for the past 11,300 years,
Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trends and millennial variations in Holocene
temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464,
2018.
Meyer, H., Opel, T., Laepple, T., Dereviagin, A. Y., Hoffmann, K., and
Werner, M.: Long-term winter warming trend in the Siberian Arctic during the
mid- to late Holocene, Nat. Geosci., 8, 122–125,
https://doi.org/10.1038/ngeo2349, 2015.
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., and Jansen, E.:
Holocene cooling culminates in sea ice oscillations in Fram Strait,
Quaternary Sci. Rev., 47, 1–14,
https://doi.org/10.1016/j.quascirev.2012.04.024, 2012.
Niebauer, H. J., Bond, N., Yakunin, L. P., and Plotnikov, V.: An update on the climatology and sea ice of the Bering Sea, Dynamics of the Bering Sea, edited by: Loughlin, T. and Ohtani, K., University of Alaska Sea Grant, Fairbanks, AK, 29–59, 1999.
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: Sampling Errors
in the Estimation of Empirical Orthogonal Functions, Mon. Weather Rev.,
110, 699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2, 1982.
Overland, J. E. and Wang, M.: Increased Variability in the Early Winter
Subarctic North American Atmospheric Circulation, J. Climate, 28,
7297–7305, https://doi.org/10.1175/JCLI-D-15-0395.1, 2015.
Park, H.-S., Kim, S.-J., Seo, K.-H., Stewart, A. L., Kim, S.-Y., and Son,
S.-W.: The impact of Arctic sea ice loss on mid-Holocene climate, Nat.
Commun., 9, 4571, https://doi.org/10.1038/s41467-018-07068-2, 2018.
Polyakov, I. V. and Johnson, M. A.: Arctic decadal and interdecadal
variability, Geophys. Res. Lett., 27, 4097–4100,
https://doi.org/10.1029/2000GL011909, 2000.
Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V., Bhatt, U., Colony, R. L.,
Johnson, M. A., Karklin, V. P., Makshtas, A. P., Walsh, D., and Yulin, A.
V.: Observationally based assessment of polar amplification of global
warming, Geophys. Res. Lett., 29, 25-1–25-4,
https://doi.org/10.1029/2001GL011111, 2002.
Ragner, C.: The 21st Century — Turning Point for the Northern Sea Route?:
Proceedings of the Northern Sea Route User Conference, Oslo, 18–20 November
1999, https://doi.org/10.1007/978-94-017-3228-4, 2000.
Rahmstorf, S.: Shifting seas in the greenhouse?, Nature, 399, 523–524,
https://doi.org/10.1038/21066, 1999.
Renssen, H., Goosse, H., Fichefet, T., Brovkin, V., Driesschaert, E., and Wolk, F.: Simulating the Holocene
climate evolution at northern high latitudes using a coupled atmosphere-sea
ice-ocean-vegetation model, Clim. Dynam., 24, 23–43,
https://doi.org/10.1007/s00382-004-0485-y, 2005.
Renssen, H., Seppä, H., Crosta, X., Goosse, H., and Roche, D. M.: Global
characterization of the Holocene Thermal Maximum, Quaternary Sci. Rev., 48, 7–19, https://doi.org/10.1016/j.quascirev.2012.05.022, 2012.
Rodionov, S. N., Overland, J. E., and Bond, N. A.: The Aleutian Low and
Winter Climatic Conditions in the Bering Sea. Part I: Classification,
J. Climate, 18, 160–177, https://doi.org/10.1175/JCLI3253.1, 2005.
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H.,
Shuman, B. N., Rodysill, J. R., and Ault, T.: Mid-latitude net precipitation
decreased with Arctic warming during the Holocene, Nature, 568, 83–87,
https://doi.org/10.1038/s41586-019-1060-3, 2019.
Screen, J. A.: Far-flung effects of Arctic warming, Nat. Geosci., 10,
253–254, https://doi.org/10.1038/ngeo2924, 2017.
Screen, J. A. and Simmonds, I.: Amplified mid-latitude planetary waves
favour particular regional weather extremes, Nat. Clim. Change, 4,
704–709, https://doi.org/10.1038/nclimate2271, 2014.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77,
85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G.,
Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D.,
Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F.,
Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M.,
Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.:
Timing and climate forcing of volcanic eruptions for the past 2,500 years,
Nature, 523, 543–549, https://doi.org/10.1038/nature14565, 2015.
Skeie, P.: Meridional flow variability over the Nordic Seas in the Arctic
oscillation framework, Geophys. Res. Lett., 27, 2569–2572,
https://doi.org/10.1029/2000GL011529, 2000.
Smith, D. M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J. C., García-Serrano, J., Jung, T., Kattsov, V., Matei, D., Msadek, R., Peings, Y., Sigmond, M., Ukita, J., Yoon, J.-H., and Zhang, X.: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, 2019.
Smith, R. S. and Gregory, J.: The last glacial cycle: transient simulations
with an AOGCM, Clim. Dynam., 38, 1545–1559,
https://doi.org/10.1007/s00382-011-1283-y, 2012.
Stabeno, P. J., Bond, N. A., Kachel, N. B., Salo, S. A., and Schumacher, J.
D.: On the temporal variability of the physical environment over the
south-eastern Bering Sea, Fish. Oceanogr., 10, 81–98,
https://doi.org/10.1046/j.1365-2419.2001.00157.x, 2001.
Sundqvist, H. S., Kaufman, D. S., McKay, N. P., Balascio, N. L., Briner, J. P., Cwynar, L. C., Sejrup, H. P., Seppä, H., Subetto, D. A., Andrews, J. T., Axford, Y., Bakke, J., Birks, H. J. B., Brooks, S. J., de Vernal, A., Jennings, A. E., Ljungqvist, F. C., Rühland, K. M., Saenger, C., Smol, J. P., and Viau, A. E.: Arctic Holocene proxy climate database – new approaches to assessing geochronological accuracy and encoding climate variables, Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, 2014.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying calibration
model for the TEX86 proxy, Geochim. Cosmochim. Ac., 127, 83–106,
https://doi.org/10.1016/j.gca.2013.11.026, 2014.
Tierney, J. E. and Tingley, M. P.: BAYSPLINE: A New Calibration for the
Alkenone Paleothermometer, Paleoceanography and Paleoclimatology, 33,
281–301, https://doi.org/10.1002/2017PA003201, 2018.
Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L., and Thirumalai, K.:
Bayesian Calibration of the Mg Ca Paleothermometer in Planktic Foraminifera,
Paleoceanography and Paleoclimatology, 34, 2005–2030,
https://doi.org/10.1029/2019PA003744, 2019.
Timm, O. and Timmermann, A.: Simulation of the Last 21 000 Years Using
Accelerated Transient Boundary Conditions, J. Climate, 20,
4377–4401, https://doi.org/10.1175/JCLI4237.1, 2007.
Timmermann, A., Friedrich, T., Timm, O. E., Chikamoto, M. O., Abe-Ouchi, A.,
and Ganopolski, A.: Modeling Obliquity and CO2 Effects on Southern
Hemisphere Climate during the Past 408 ka, J. Climate, 27,
1863–1875, https://doi.org/10.1175/JCLI-D-13-00311.1, 2014.
Varma, V., Prange, M., Merkel, U., Kleinen, T., Lohmann, G., Pfeiffer, M., Renssen, H., Wagner, A., Wagner, S., and Schulz, M.: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models, Clim. Past, 8, 391–402, https://doi.org/10.5194/cp-8-391-2012, 2012.
Vavrus, S. J.: The Influence of Arctic Amplification on Mid-latitude Weather
and Climate, Curr. Clim. Change Rep., 4, 238–249,
https://doi.org/10.1007/s40641-018-0105-2, 2018.
Vieira, L. E. A., Solanki, S. K., Krivova, N. A., and Usoskin, I.: Evolution
of the solar irradiance during the Holocene, A&A, 531, A6,
https://doi.org/10.1051/0004-6361/201015843, 2011.
Wan, L., Jian L., Chaochao G., Weiyi S., Liang N., and Mi Y.: Study about
influence of the Holocene volcanic eruptions on temperature variation trend
by simulation, Quaternary Sciences, 40, 1597–1610,
https://doi.org/10.11928/j.issn.1001-7410.2020.06.19, 2020.
Wang, J. and Ikeda, M.: Arctic oscillation and Arctic sea-ice oscillation,
Geophys. Res. Lett., 27, 1287–1290,
https://doi.org/10.1029/1999GL002389, 2000.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.:
Structure and origin of Holocene cold events, Quaternary Sci. Rev.,
30, 3109–3123, https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Watanabe, E., Wang, J., Sumi, A., and Hasumi, H.: Arctic dipole anomaly and
its contribution to sea ice export from the Arctic Ocean in the 20th
century, Geophys. Res. Lett., 33, L23703,
https://doi.org/10.1029/2006GL028112, 2006.
Wohlfahrt, J., Harrison, S. P., and Braconnot, P.: Synergistic feedbacks
between ocean and vegetation on mid- and high-latitude climates during the
mid-Holocene, Clim. Dynam., 22, 223–238,
https://doi.org/10.1007/s00382-003-0379-4, 2004.
Wu, B., Wang, J., and Walsh, J.: Possible Feedback of Winter Sea Ice in the
Greenland and Barents Seas on the Local Atmosphere, Mon. Weather Rev.,
132, 1868–1876, https://doi.org/10.1175/1520-0493(2004)132<1868:PFOWSI>2.0.CO;2, 2004.
Wu, B., Wang, J., and Walsh, J. E.: Dipole Anomaly in the Winter Arctic
Atmosphere and Its Association with Sea Ice Motion, J. Climate, 19,
210–225, https://doi.org/10.1175/JCLI3619.1, 2006.
Xue, D., Lu, J., Sun, L., Chen, G., and Zhang, Y.: Local increase of
anticyclonic wave activity over northern Eurasia under amplified Arctic
warming, Geophys. Res. Lett., 44, 3299–3308,
https://doi.org/10.1002/2017GL072649, 2017.
Zhong, Y., Jahn, A., Miller, G. H., and Geirsdottir, A.: Asymmetric Cooling
of the Atlantic and Pacific Arctic During the Past Two Millennia: A Dual
Observation-Modeling Study, Geophys. Res. Lett., 45, 12497–12505,
https://doi.org/10.1029/2018GL079447, 2018.
Short summary
Based on proxy data and modeling, the Arctic temperature has an asymmetric cooling trend with more cooling over the Atlantic Arctic than the Pacific Arctic during the Holocene, dominated by orbital forcing. There is a seasonal difference in the asymmetric cooling trend, which is dominated by the DJF (December, January, and February) temperature variability. The Arctic dipole mode of sea level pressure and sea ice play a major role in asymmetric temperature changes.
Based on proxy data and modeling, the Arctic temperature has an asymmetric cooling trend with...