Articles | Volume 19, issue 3
https://doi.org/10.5194/cp-19-533-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-533-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fluvio-deltaic record of increased sediment transport during the Middle Eocene Climatic Optimum (MECO), Southern Pyrenees, Spain
Département des Sciences de la Terre, Université de
Genève, Geneva, 1205, Switzerland
Departament de Geologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain
Luis Valero
Département des Sciences de la Terre, Université de
Genève, Geneva, 1205, Switzerland
Jorge E. Spangenberg
Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
Andreu Vinyoles
Departament de Dinàmica de la Terra i l'Oceà, Facultat de
Ciències de la Terra, Barcelona, 08028, Spain
Jean Verité
Département des Sciences de la Terre, Université de
Genève, Geneva, 1205, Switzerland
Départment des Geosciences, Université de Rennes, Rennes, UMR 6118, France
Thierry Adatte
Institute of Earth Sciences (ISTE), University of Lausanne,
Géopolis, Lausanne, 1015, Switzerland
Maxime Tremblin
Département des Sciences de la Terre, Université de
Genève, Geneva, 1205, Switzerland
Stephen Watkins
Département des Sciences de la Terre, Université de
Genève, Geneva, 1205, Switzerland
Nikhil Sharma
Département des Sciences de la Terre, Université de
Genève, Geneva, 1205, Switzerland
Miguel Garcés
Departament de Dinàmica de la Terra i l'Oceà, Facultat de
Ciències de la Terra, Barcelona, 08028, Spain
Cai Puigdefàbregas
Departament de Geologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain
Sébastien Castelltort
Département des Sciences de la Terre, Université de
Genève, Geneva, 1205, Switzerland
Related authors
No articles found.
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
EGUsphere, https://doi.org/10.5194/egusphere-2024-1634, https://doi.org/10.5194/egusphere-2024-1634, 2024
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency and dune size. This process is controlled by the modification of wind flow over dunes of various shape, influencing the sediment transport downstream.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Cécile Charles, Nora Khelidj, Lucia Mottet, Bao Ngan Tu, Thierry Adatte, Brahimsamba Bomou, Micaela Faria, Laetitia Monbaron, Olivier Reubi, Natasha de Vere, Stéphanie Grand, and Gianalberto Losapio
EGUsphere, https://doi.org/10.5194/egusphere-2024-991, https://doi.org/10.5194/egusphere-2024-991, 2024
Preprint archived
Short summary
Short summary
We found that novel ecosystems created by glacier retreat are first characterized by an increase in plant diversity that is driven by a shift in soil texture. Plant diversity in turn increases soil organic matter and nutrient. Soils gradually acidifies and leads to a final stage where a dominance of few plant species reduces plant diversity. Understanding plant–soil interactions is crucial to anticipate how glacier retreat shapes biodiversity and landscapes.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2024-351, https://doi.org/10.5194/egusphere-2024-351, 2024
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Cenozoic
Climatic and tectonic controls on shallow marine and freshwater diatomite deposition through the Palaeogene
Middle Eocene Climatic Optimum (MECO) and its imprint in the continental Escanilla Formation, Spain
Terrestrial carbon isotope stratigraphy and mammal turnover during post-PETM hyperthermals in the Bighorn Basin, Wyoming, USA
Climate and ecology in the Rocky Mountain interior after the early Eocene Climatic Optimum
Palaeo-environmental evolution of Central Asia during the Cenozoic: new insights from the continental sedimentary archive of the Valley of Lakes (Mongolia)
Terrestrial responses of low-latitude Asia to the Eocene–Oligocene climate transition revealed by integrated chronostratigraphy
Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2
Pliocene to Pleistocene climate and environmental history of Lake El'gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data
A re-evaluation of the palaeoclimatic significance of phosphorus variability in speleothems revealed by high-resolution synchrotron micro XRF mapping
Cécile Figus, Or M. Bialik, Andrey Yu. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2229, https://doi.org/10.5194/egusphere-2024-2229, 2024
Short summary
Short summary
Global scale compilation of Palaeogene diatomite occurrences reveals the impact of palaeogeographic and palaeoceanographic changes on diatom accumulation, particularly in the middle Eocene: diatomite deposition dropped in epicontinental seas between ~46 and ~43 Ma, while diatoms began to accumulate from ~43.5 Ma in open ocean settings. The compilation also shows the indirect correlation between Palaeogene climate fluctuations & diatomite deposition in shallow marine and freshwater environments.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Sarah J. Widlansky, Ross Secord, Kathryn E. Snell, Amy E. Chew, and William C. Clyde
Clim. Past, 18, 681–712, https://doi.org/10.5194/cp-18-681-2022, https://doi.org/10.5194/cp-18-681-2022, 2022
Short summary
Short summary
New stable isotope records from pedogenic carbonates through the ETM2, H2, and possibly I1 hyperthermals from the Bighorn Basin highlight significant spatial variability in the preservation and magnitude of these global climate events in paleosol records. These data also provide important climate context for the extensive early Eocene mammal fossil record from the southern Bighorn Basin and support previous hypotheses that pulses in mammal turnover corresponded to the ETM2 and H2 hyperthermals.
Rebekah A. Stein, Nathan D. Sheldon, Sarah E. Allen, Michael E. Smith, Rebecca M. Dzombak, and Brian R. Jicha
Clim. Past, 17, 2515–2536, https://doi.org/10.5194/cp-17-2515-2021, https://doi.org/10.5194/cp-17-2515-2021, 2021
Short summary
Short summary
Modern climate change drives us to look to the past to understand how well prior life adapted to warm periods. In the early Eocene, a warm period approximately 50 million years ago, southwestern Wyoming was covered by a giant lake. This lake and surrounding environments made for excellent preservation of ancient soils, plant fossils, and more. Using geochemical tools and plant fossils, we determine the region was a warm, wet forest and that elevated temperatures were maintained by volcanoes.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Y. X. Li, W. J. Jiao, Z. H. Liu, J. H. Jin, D. H. Wang, Y. X. He, and C. Quan
Clim. Past, 12, 255–272, https://doi.org/10.5194/cp-12-255-2016, https://doi.org/10.5194/cp-12-255-2016, 2016
Short summary
Short summary
An integrated litho-, bio-, cyclo-, and magnetostratigraphy constrains the onset of a depositional environmental change from a lacustrine to a deltaic environment in the Maoming Basin, China, at 33.88 Ma. This coincides with the global cooling during the Eocene-Oligocene transition (EOT) at ~ 33.7–33.9 Ma. This change represents terrestrial responses of low-latitude Asia to the EOT. The greatly refined chronology permits detailed examination of the late Paleogene climate change in southeast Asia.
A. E. Chew
Clim. Past, 11, 1223–1237, https://doi.org/10.5194/cp-11-1223-2015, https://doi.org/10.5194/cp-11-1223-2015, 2015
Short summary
Short summary
This project describes mammal faunal response in the zone of the ETM2 and H2 hyperthermals (rapid global warming events) of the early Paleogene in the south-central Bighorn Basin, WY. The response includes changes in faunal structure and species relative body size. Comparative analysis suggests that environmental moisture and rate of change are important moderators of response.
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
S. Frisia, A. Borsato, R. N. Drysdale, B. Paul, A. Greig, and M. Cotte
Clim. Past, 8, 2039–2051, https://doi.org/10.5194/cp-8-2039-2012, https://doi.org/10.5194/cp-8-2039-2012, 2012
Cited articles
Adatte, T., Stinnesbeck, W., and Keller, G.: Lithostratigraphic and mineralogic correlations of near K/T boundary clastic sediments in northeastern Mexico: Implications for origin and nature of deposition, Special Paper 307: The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, Geological Society of America, 211–226, https://doi.org/10.1130/0-8137-2307-8.211, 1996.
Adatte, T., Bolle, M. P., Kaenel, E. D., Gawenda, P., Winkler, W., and Von Salis, K.: Climatic evolution from Paleocene to earliest Eocene inferred
from clay-minerals: A transect from northern Spain (Zumaya) to southern
(Spain, Tunisia) and southeastern Tethys margins (Israel, Negev), inL: Vol. 122, Taylor & Francis, 7–8, https://doi.org/10.1080/11035890001221007, 2000.
Arimoto, J., Nishi, H., Kuroyanagi, A., Takashima, R., Matsui, H., and Ikehara, M.: Changes in upper ocean hydrography and productivity across the
Middle Eocene Climatic Optimum: Local insights and global implications from
the Northwest Atlantic, Global Planet. Change, 193, 103258, https://doi.org/10.1016/j.gloplacha.2020.103258, 2020.
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020.
Beamud, E., Garcés, M., Cabrera, L., Muñoz, J. A., and Almar, Y.: A
new middle to late Eocene continental chronostratigraphy from NE Spain, Earth Planet. Sc. Lett., 216, 501–514, https://doi.org/10.1016/S0012-821X(03)00539-9, 2003.
Behar, F., Beaumont, V., and Penteado, H. D. B.: Rock-Eval 6 technology:
performances and developments, Oil Gas Sci. Technol., 56, 111–134, https://doi.org/10.2516/ogst:2001013, 2001.
Benyamovskiy, V. N.: A high resolution Lutetian–Bartonian planktonic
foraminiferal zonation in the Crimean–Caucasus region of the Northeastern Peri-Tethys, Aust. J. Earth Sci., 105, 117–128, 2012.
Bijl, P. K., Houben, A. J., Schouten, S., Bohaty, S. M., Sluijs, A., Reichart, G. J., Sinninghe Damsté, J. S., and Brinkhuis, H.: Transient Middle Eocene atmospheric CO2 and temperature variations, Science, 330, 819–821, https://doi.org/10.1126/science.1193654, 2010.
Bohaty, S. M. and Zachos, J. C.: Significant Southern Ocean warming event in the late middle Eocene, Geology, 31, 1017–1020, https://doi.org/10.1130/G19800.1, 2003.
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L.: Coupled
greenhouse warming and deep-sea acidification in the middle Eocene, Paleoceanography, 24, PA2207, https://doi.org/10.1029/2008PA001676, 2009.
Bosboom, R. E., Abels, H. A., Hoorn, C., van den Berg, B. C., Guo, Z., and
Dupont-Nivet, G.: Aridification in continental Asia after the middle Eocene
climatic optimum (MECO), Earth Planet. Sc. Lett., 389, 34–42,
https://doi.org/10.1016/j.epsl.2013.12.014, 2014.
Bosch, G. V., Teixell, A., Jolivet, M., Labaume, P., Stockli, D., Domenech, M., and Monie, P.: Timing of Eocene–Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology, Comptes Rendus Geoscience, 348, 246–256, https://doi.org/10.1016/j.crte.2016.01.001, 2016.
Bouilhol, P., Jagoutz, O., and Hanchar, J. M.: Dating the India–Eurasia
collision through arc magmatic records, Earth Planet. Sc. Lett., 366, 163–175, https://doi.org/10.1016/j.epsl.2013.01.023, 2013.
Boya, S.: El Sistema deltaico de la Arenisca de Sabiñánigo y la
continentalización de la cuenca de Jaca, PhD thesis, Universitat
Autònoma de Barcelona, Barcelona, 207 pp., ISBN 9788449083006, 2018.
Brasier, M. D., Shields, G., Kuleshov, V. N., and Zhegallo, E. A.: Integrated chemo-and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia, Geolog. Mag., 133, 445–485, https://doi.org/10.1017/S0016756800007603, 1996.
Castelltort, S., Guillocheau, F., Robin, C., Rouby, D., Nalpas, T., Lafont, F., and Eschard, R.: Fold control on the stratigraphic record: a quantified sequence stratigraphic study of the Pico del Aguila anticline in the Southwestern Pyrenees (Spain), Basin Res., 15, 527–551, https://doi.org/10.1046/j.1365-2117.2003.00218.x, 2003.
Castelltort, S., Honegger, L., Adatte, T., Clark, J. D., Puigdefàbregas,
C., Spangenberg, J. E., Dykstra, M. L., and Fildani, A.: Detecting eustatic and tectonic signals with carbon isotopes in deep-marine strata, Eocene Ainsa Basin, Spanish Pyrenees, Geology, 45, 707–710, https://doi.org/10.1130/G39068.1, 2017.
Chen, C., Guerit, L., Foreman, B. Z., Hassenruck-Gudipati, H. J., Adatte,
T., Honegger, L., Perret, M., Sluijs, A., and Castelltort, S.: Estimating regional flood discharge during Palaeocene-Eocene global warming, Sci. Rep., 8, 1–8, https://doi.org/10.1038/s41598-018-31076-3, 2018.
Coll, X., Gómez-Gras, D., Roigé, M., Teixell, A., Boya, S., and Mestres, N.: Heavy-mineral provenance signatures during the infill and uplift of a foreland basin: An example from the Jaca basin (southern Pyrenees, Spain), J. Sediment. Res., 90, 1747–1769, https://doi.org/10.2110/jsr.2020.084, 2020.
Cornaggia, F., Bernardini, S., Giorgioni, M., Silva, G. L., Nagy, A. I. M.,
and Jovane, L. : Abyssal oceanic circulation and acidification during the
Middle Eocene Climatic Optimum (MECO), Sci. Rep., 10, 1–9,
https://doi.org/10.1038/s41598-020-63525-3, 2020.
Cramwinckel, M. J., Van Der Ploeg, R., Bijl, P. K., Peterse, F., Bohaty, S.
M., Röhl, U., and Sluijs, A.: Harmful algae and export production collapse in the equatorial Atlantic during the zenith of Middle Eocene Climatic Optimum warmth, Geology, 47, 247–250, https://doi.org/10.1130/G45614.1, 2019.
Edgar, K. M., Wilson, P. A., Sexton, P. F., and Suganuma, Y.: No extreme bipolar glaciation during the main Eocene calcite compensation shift, Nature, 448, 908–911, https://doi.org/10.1038/nature06053, 2007.
Edgar, K. M., Wilson, P. A., Sexton, P. F., Gibbs, S. J., Roberts, A. P., and Norris, R. D.: New biostratigraphic, magnetostratigraphic and isotopic
insights into the Middle Eocene Climatic Optimum in low latitudes, Palaeogeogr. Palaeocl. Palaeoecol., 297, 670–682, https://doi.org/10.1016/j.palaeo.2010.09.016, 2010.
Edgar, K. M., Bohaty, S. M., Coxall, H. K., Bown, P. R., Batenburg, S. J.,
Lear, C. H., and Pearson, P. N.: New composite bio-and isotope stratigraphies spanning the Middle Eocene Climatic Optimum at tropical ODP Site 865 in the Pacific Ocean, J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, 2020.
Espitalié, J.: Use of Tmax as a Maturation Index for Different Types of Organic Matter. Comparison with Vitrinite Reflectance, in: Thermal Modeling in Sedimentary Basins, 44. Editions Technip, edited by: Burrus, J., Publications de l'Institut Français du Pétrole/Institut Français du Pétrole, Paris, 475–496, https://oceanrep.geomar.de/id/eprint/40227 (last access: 1 March 2023), 1986.
Espitalié, J., Deroo, G., and Marquis, F.: Rock-Eval pyrolysis and its
applications, Revue De L'Institut Français Du Petrole, 40, 563–579,
https://doi.org/10.2516/ogst:1985045, 1985.
Fio, K., Spangenberg, J. E., Vlahović, I., Sremac, J., Velić, I., and Mrinjek, E.: Stable isotope and trace element stratigraphy across the Permian–Triassic transition: A redefinition of the boundary in the Velebit
Mountain, Croatia, Chem. Geol., 278, 38–57, https://doi.org/10.1016/j.chemgeo.2010.09.001, 2010.
Foreman, B. Z., Heller, P. L., and Clementz, M. T.: Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary, Nature, 491, 92–95, https://doi.org/10.1038/nature11513, 2012.
Foreman, B. Z. and Straub, K. M.: Autogenic geomorphic processes determine
the resolution and fidelity of terrestrial paleoclimate records, Sci. Adv., 3, e1700683, https://doi.org/10.1126/sciadv.1700683, 2017.
Galazzo, F. B., Giusberti, L., Luciani, V., and Thomas, E.: Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: The benthic foraminiferal record from the Alano section
(NE Italy), Palaeogeogr. Palaeocl. Palaeoecol., 378, 22–35,
https://doi.org/10.1016/j.palaeo.2013.03.018, 2013.
Galazzo, F. B., Thomas, E., Pagani, M., Warren, C., Luciani, V., and Giusberti, L.: The middle Eocene climatic optimum (MECO): A multiproxy
record of paleoceanographic changes in the southeast Atlantic (ODP Site 1263, Walvis Ridge), Paleoceanography, 29, 1143–1161, https://doi.org/10.1002/2014PA002670, 2014.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol, F.: Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system, Nature, 450, 407–410, https://doi.org/10.1038/nature06273, 2007.
Garcés, M., López-Blanco, M., Valero, L., Beamud, E., Pueyo-Morer,
E., and Rodríguez-Pinto, A.: Testing orbital forcing in the Eocene
deltaic sequences of the South-Pyrenean Foreland Basins, in: Vol. 16, EGU General Assembly 2014, 27 April–2 May 2014, Vienna, Austria, EGU2014-10681-1, 2014.
Giorgioni, M., Jovane, L., Rego, E.S., Rodelli, D., Frontalini, F., Coccioni, R., Catanzariti, R., and Özcan, E.: Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum, Sci. Rep., 9, 9357, https://doi.org/10.1038/s41598-019-45763-2, 2019.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The Geologic Time Scale 2012, in: Vol. 2, Elsevier, Cambridge University Press, Cambridge, ISBN 978-0-44-459431-1, 2012.
Henehan, M. J., Edgar, K. M., Foster, G. L., Penman, D. E., Hull, P. M.,
Greenop, R., and Pearson, P. N.: Revisiting the Middle Eocene Climatic
Optimum `Carbon Cycle Conundrum' with new estimates of atmospheric pCO2 from boron isotopes, Paleoceanogr. Paleocl., 35, e2019PA003713, https://doi.org/10.1029/2019PA003713, 2020.
Homewood, P., Guillocheau, F., Eschard, R., and Cross, T. A.: Corrélations haute résolution et stratigraphie génétique: une démarche intégrée, Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 16, 357–381, 1992.
Honegger, L., Adatte, T., Spangenberg, J. E., Caves Rugenstein, J. K., Poyatos, M., Puigdefàbregas, C., and Harlaux, M.: Alluvial record of an
early Eocene hyperthermal, Castissent Formation, the Pyrenees, Spain, Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, 2020.
Huyghe, D., Castelltort, S., Mouthereau, F., Serra-Kiel, J., Filleaudeau, P.
Y., Emmanuel, L., Berthier, B., and Renard, M.: Large scale facies change in the middle Eocene South-Pyrenean foreland basin: The role of tectonics and prelude to Cenozoic ice-ages, Sediment. Geol., 253, 25–46, https://doi.org/10.1016/j.sedgeo.2012.01.004, 2012.
Jovane, L., Florindo, F., Coccioni, R., Dinarès-Turell, J., Marsili, A.,
Monechi, S., and Sprovieri, M.: The middle Eocene climatic optimum event in
the Contessa Highway section, Umbrian Apennines, Italy, Geol. Soc. Am. Bull., 119, 413–427, https://doi.org/10.1130/B25917.1, 2007.
Klug, H. P. and Alexander, L. E.: X-ray diffraction procedures: for
polycrystalline and amorphous materials, John Wiley & Sons Inc., p. 992, ISBN 978-0-471-49369-3, 1974.
Kübler, B.: Dosage quantitatif des minéraux majeurs des roches
sédimentaires par diffraction X, in: série ADX, Vol. 1, Cahiers Institut Géologie, Neuchâtel, Suisse, p. 12, 1983.
Kübler, B.: Cristallinité de l'illite, méthodes normalisées
de préparations, méthodes normalisées de mesures, in: série ADX, Vol. 1, Cahiers Institut Géologie, Neuchâtel, Suisse, p. 13, 1987.
Kübler, B. and Jaboyedoff, M.: Illite crystallinity, Comptes Rendus de
l'Académie des Sciences-Series IIA – Earth and Planetary Science, 331,
75–89, https://doi.org/10.1016/S1251-8050(00)01395-1, 2000.
Labaume, P. and Teixell, A.: 3D structure of subsurface thrusts in the eastern Jaca Basin, southern Pyrenees, Geol. Acta, 16, 477–498, https://doi.org/10.1344/GeologicaActa2018.16.4.9, 2018.
Labaume, P., Meresse, F., Jolivet, M., and Teixell, A.: Exhumation sequence
of the basement thrust units in the west-central Pyrenees. Constraints from
apatite fission track analysis, Geogaceta, 60, 11–14, 2006.
Labourdette, R.: Stratigraphy and static connectivity of braided fluvial deposits of the lower Escanilla Formation, south central Pyrenees, Spain, AAPG Bull., 95, 585–617, https://doi.org/10.1306/08181009203, 2011.
Lafont, F.: Influences relatives de la subsidence et de l'eustatisme sur la
localisation et la géométrie des réservoirs d'un système
deltaïque, Exemple de l'Eocène du bassin de Jaca, Pyrénées
espagnoles, PhD thesis, Université Rennes, Rennes, https://theses.hal.science/tel-00653783 (last access: 25 February 2023), 1994.
Lagabrielle, Y., Labaume, P., and de Saint Blanquat, M.: Mantle exhumation,
crustal denudation, and gravity tectonics during Cretaceous rifting in the
Pyrenean realm (SW Europe): Insights from the geological setting of the
lherzolite bodies, Tectonics, 29, TC4012, https://doi.org/10.1029/2009TC002588, 2010.
Läuchli, C., Garcés, M., Beamud, E., Valero, L., Honegger, L., Adatte, T., and Castelltort, S.: Magnetostratigraphy and stable isotope
stratigraphy of the middle-Eocene succession of the Ainsa basin (Spain): New
age constraints and implications for sediment delivery to the deep
waters, Mar. Petrol. Geol., 132, 105182, https://doi.org/10.1016/j.marpetgeo.2021.105182, 2021.
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V.,
Métivier, F., and Mugnier, J. L.: A Rouse-based method to integrate the
chemical composition of river sediments: Application to the Ganga basin, J. Geophys. Res.-Earth, 116, F04012, https://doi.org/10.1029/2010JF001947, 2011.
Marshall, J. D.: Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation, Geolog. Mag., 129, 143–160, https://doi.org/10.1017/S0016756800008244, 1992.
Millán, H., Aurell, M., and Meléndez, A.: Synchronous detachment
folds and coeval sedimentation in the Prepyrenean External Sierras (Spain):
a case study for a tectonic origin of sequences and systems tracts, Sedimentology, 41, 1001–1024, https://doi.org/10.1111/j.1365-3091.1994.tb01437.x, 1994.
Millán, H., Morer, E. P., Cardona, M. A., Aguado, A. L., Urcia, B. O.,
and Peña, B. M.: Actividad tectónica registrada en los depósitos
terciarios del frente meridional del Pirineo central, Revista de la Sociedad
Geológica de España, 13, 279–300, 2000.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G.
S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from
deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Mochales, T., Barnolas, A., Pueyo, E. L., Serra-Kiel, J., Casas, A. M., Samsó, J. M., and Sanjuán, J.: Chronostratigraphy of the Boltaña
anticline and the Ainsa Basin (southern Pyrenees), Bulletin, 124, 1229–1250, https://doi.org/10.1130/B30418.1, 2012.
Moebius, I., Friedrich, O., and Scher, H. D.: Changes in Southern Ocean bottom water environments associated with the Middle Eocene Climatic Optimum (MECO), Palaeogeogr. Palaeocl. Palaeoecol., 405, 16–27,
https://doi.org/10.1016/j.palaeo.2014.04.004, 2014.
Moebius, I., Friedrich, O., Edgar, K. M., and Sexton, P. F.: Episodes of
intensified biological productivity in the subtropical Atlantic Ocean during
the termination of the Middle Eocene Climatic Optimum (MECO), Paleoceanography, 30, 1041–1058, https://doi.org/10.1002/2014PA002673, 2015.
Moore, D. M. and Reynolds, R. C.: X-ray diffraction and the identification and analysis of clay minerals, Oxford University Press, Oxford, New York,
p. 400, ISBN 9780195051704, 1997.
Mulch, A., Chamberlain, C. P., Cosca, M. A., Teyssier, C., Methner, K., Hren, M. T., and Graham, S. A.: Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO), Am. J. Sci., 315, 317–336, https://doi.org/10.2475/04.2015.02, 2015.
Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees
crustal balanced cross-section, in: Thrust Tectonics, edited by: McClay, K. R., Springer, Dordrecht, https://doi.org/10.1007/978-94-011-3066-0_21, 1992.
Muñoz, J. A., McClay, K., and Poblet, J.: Synchronous extension and
contraction in frontal thrust sheets of the Spanish Pyrenees, Geology, 22, 921–924, https://doi.org/10.1130/0091-7613(1994)022<0921:SEACIF>2.3.CO;2, 1994.
Muñoz, J. A., Beamud, E., Fernández, O., Arbués, P., Dinarès-Turell, J., and Poblet, J.: The Ainsa Fold and thrust oblique
zone of the central Pyrenees: Kinematics of a curved contractional system
from paleomagnetic and structural data, Tectonics, 32, 1142–1175,
https://doi.org/10.1002/tect.20070, 2013.
Muñoz, J. A., Mencos, J., Roca, E., Carrera, N., Gratacós, O.,
Ferrer, O., and Fernández, O.: The structure of the South-Central-Pyrenean fold and thrust belt as constrained by subsurface data, Geolog. Acta, 16, 439–460, https://doi.org/10.1344/GeologicaActa2018.16.4.7, 2018.
Mutti, E.: Distinctive thin-bedded turbidite facies and related depositional
environments in the Eocene Hecho Group (South-central Pyrenees, Spain), Sedimentology, 24, 107–131, https://doi.org/10.1111/j.1365-3091.1977.tb00122.x, 1977.
Ogg, J. G., Ogg, G., and Gradstein, F. M.: A concise geologic time scale:
2016, Elsevier, Cambridge University Press, Cambridge, p. 234, ISBN 978-0-444-63771-0, 2016.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,
and Baldauf, J.: A Cenozoic record of the equatorial Pacific carbonate
compensation depth, Nature, 488, 609–614, https://doi.org/10.1038/nature11360, 2012.
Patterson, P. P. and Walter, L. M.: Depletion of 13C in seawater ΣCO2 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates, Geology, 22, 885–888,
https://doi.org/10.1130/0091-7613(1994)022<0885:DOCISC>2.3.CO;2, 1994.
Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W., and Baker, E. W.: The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter, Am. J. Sci., 289, 436–454, https://doi.org/10.2475/ajs.289.4.436, 1989.
Pueyo, E. L., Millán, H., and Pocovı, A.: Rotation velocity of a
thrust: a paleomagnetic study in the External Sierras (Southern Pyrenees), Sediment. Geol., 146, 191–208, https://doi.org/10.1016/S0037-0738(01)00172-5, 2002.
Puigdefàbregas, C.: La sedimentación molásica en la cuenca de Jaca, Pirineos, CSIC, PhD Thesis, http://hdl.handle.net/10261/82989 (last access: 25 February 2023), 1975..
Puigdefàbregas, C. and Souquet, P.: Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees,
Tectonophysics, 129, 173–203, https://doi.org/10.1016/0040-1951(86)90251-9, 1986.
Pujalte, V., Baceta, J. I., and Schmitz, B.: A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime, Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, 2015.
Remacha, E. and Fernández, L. P.: High-resolution correlation patterns
in the turbidite systems of the Hecho Group (South-Central Pyrenees, Spain), Mar. Petrol. Geol., 20, 711–726, https://doi.org/10.1016/j.marpetgeo.2003.09.003, 2003.
Rivero-Cuesta, L., Westerhold, T., Agnini, C., Dallanave, E., Wilkens, R. H., and Alegret, L.: Paleoenvironmental changes at ODP Site 702 (South Atlantic): anatomy of the Middle Eocene Climatic Optimum, Paleoceanogr. Paleocl., 34, 2047–2066, https://doi.org/10.1029/2019PA003806, 2019.
Rodriguez-Pintó, A., Pueyo, E. L., Barnolas, A., Pocoví, A., Oliva-Urcia, B., and Ramón, M. J.: Overlapped paleomagnetic vectors and fold geometry: a case study in the Balzes anticline (Southern Pyrenees), Phys. Earth Planet. Inter., 215, 43–57, https://doi.org/10.1016/j.pepi.2012.10.005, 2013.
Roigé, M.: Procedència i evolució dels sistemes sedimentaris de
la conca de Jaca (conca d'avantpaís Sudpirinenca): Interacció entre
diverses àrees font en un context tectònic actiu, Tesis Doctoral, Universitat Autònoma de Barcelona, Barcelona, p. 315, ISBN 9788449079177, 2018.
Roigé, M., Gómez-Gras, D., Remacha, E., Daza, R., and Boya, S.:
Tectonic control on sediment sources in the Jaca basin (Middle and Upper Eocene of the South-Central Pyrenees), Comptes Rendus Geoscience, 348, 236–245, https://doi.org/10.1016/j.crte.2015.10.005, 2016.
Roure, F., Choukroune, P., Berastegui, X., Munoz, J. A., Villien, A., Matheron, P., and Deramond, J.: ECORS deep seismic data and balanced cross
sections: Geometric constraints on the evolution of the Pyrenees, Tectonics, 8, 41–50, https://doi.org/10.1029/TC008i001p00041, 1989.
Saltzman, M. R. and Thomas, E.: Carbon isotope stratigraphy, in: The geologic time scale:, edited by: Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G., Elsevier, Oxford, UK, 207–232, https://doi.org/10.1016/B978-0-444-59425-9.00011-1, 2012.
Schmitz, B. and Pujalte, V.: Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary, Geology, 35, 215–218,
https://doi.org/10.1130/G23261A.1, 2007.
Schrag, D. P., DePaolo, D. J., and Richter, F. M.: Reconstructing past sea
surface temperatures: Correcting for diagenesis of bulk marine carbonate, Geochim. Cosmochim. Ac., 59, 2265–2278, https://doi.org/10.1016/0016-7037(95)00105-9, 1995.
Seguret, M.: Étude tectonique des nappes et séries décollées
de la partie centrale du versant sud des Pyrénées, Pub. Ustela,
Série Géologie structurale 2, PhD thesis, Montpellier, p. 155, 1972.
Silva-Casal, R., Aurell, M., Payros, A., Pueyo, E. L., and Serra-Kiel, J.: Carbonate ramp drowning caused by flexural subsidence: the South Pyrenean middle Eocene foreland basin, Sediment. Geol., 393, 105538, https://doi.org/10.1016/j.sedgeo.2019.105538, 2019.
Sluijs, A., Zeebe, R. E., Bijl, P. K., and Bohaty, S. M.: A middle Eocene
carbon cycle conundrum, Nat. Geosci., 6, 429–434, https://doi.org/10.1038/ngeo1807, 2013.
Spangeberg, J. E.: Bulk C, H, O, and fatty acid C stable isotope analyses for
purity assessment of vegetable oils from the southern and northern hemispheres, Rapid Commun. in Mass Spectrom., 30, 2447–2461, https://doi.org/10.1002/rcm.7734, 2016.
Spangeberg, J. E. and Herlec, U.: Hydrocarbon biomarkers in the Topla-Mezica
zinc-lead deposits, northern Karavanke/Drau range, Slovenia: paleoenvironment at the site of ore formation, Econ. Geol., 101, 997–1021, https://doi.org/10.2113/gsecongeo.101.5.997, 2006.
Spofforth, D. J. A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E.,
Giusberti, L., Luciani, V., Lanci, L., and Muttoni, G.: Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys., Paleoceanography, 25, PA3210, https://doi.org/10.1029/2009PA001738, 2010.
Sternai, P., Caricchi, L., Pasquero, C., Garzanti, E., Hinsbergen, D. J. J.,
and Castelltort, S.: Magmatic Forcing of Cenozoic Climate?, J. Geophys. Res.-Solid, 125, e2018JB01646, https://doi.org/10.1029/2018jb016460, 2020.
Swart, P. K.: The geochemistry of carbonate diagenesis: The past, present
and future, Sedimentology, 62, 1233–1304, https://doi.org/10.1111/sed.12205, 1995.
Sztrákos, K. and Castelltort, S.: La sédimentologie et les
foraminifères bartoniens et priaboniens des coupes d'Arguis (Prépyrénées aragonaises, Espagne). Incidence sur la
corrélation des biozones à la limite Bartonien/Priabonien, Revue de
Micropaléontologie, 44, 233–247, https://doi.org/10.1016/S0035-1598(01)90185-0, 2001.
Teixell, A.: The Ansó transect of the southern Pyrenees: basement and cover thrust geometries, J. Geol. Soc., 153, 301–310, https://doi.org/10.1144/gsjgs.153.2.0301, 1996.
Teixell, A.: Crustal structure and orogenic material budget in the west central Pyrenees, Tectonics, 17, 395–406, https://doi.org/10.1029/98TC00561, 1998.
Teixell, A., Labaume, P., and Lagabrielle, Y.: The crustal evolution of the
west-central Pyrenees revisited: inferences from a new kinematic scenario, Comptes Rendus Geoscience, 348, 257–267, https://doi.org/10.1016/j.crte.2015.10.010, 2016.
Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., and
Lagabrielle, Y.: Crustal structure and evolution of the Pyrenean-Cantabrian
belt: A review and new interpretations from recent concepts and data, Tectonophysics, 724, 146–170, https://doi.org/10.1016/j.tecto.2018.01.009, 2018.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
van der Boon, A., Kuiper, K. F., van der Ploeg, R., Cramwinckel, M. J., Honarmand, M., Sluijs, A., and Krijgsman, W.: Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up, Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, 2021.
van der Ploeg, R., Selby, D., Cramwinckel, M. J., Li, Y., Bohaty, S. M., Middlelburg, J. J., and Sluijs, A.: Middle Eocene greenhouse warming facilitated by diminished weathering feedback, Nat. Commun., 9, 2877, https://doi.org/10.1038/s41467-018-05104-9, 2018.
van der Weijden, C. H.: Pitfalls of normalization of marine geochemical data using a common divisor, Mar. Geol., 184, 167–187, https://doi.org/10.1016/S0025-3227(01)00297-3, 2002.
van der Weijden, C. H., Reichart, G. J., and van Os, B. J.: Sedimentary trace
element records over the last 200 kyr from within and below the northern
Arabian Sea oxygen minimum zone, Mar. Geol., 231, 69–88,
https://doi.org/10.1016/j.margeo.2006.05.013, 2006.
Van Wagoner, J. C.: Sequence stratigraphy and marine to nonmarine facies
architecture of foreland basin strata, Book Cliffs, Utah, USA, Reply, AAPG
Bull., 82, 1607–1618, 1998.
Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., and Rahmanian, V. D.:
Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies, American Association of Petroleum Geologists, Tulsa, Oklahoma, p. 55, ISBN 978-0891816577, 1990.
Vergés, J., Fernàndez, M., and Martìnez, A.: The Pyrenean orogen: pre-, syn-, and post-collisional evolution, J. Virtual Exp., 8, 55 74, https://doi.org/10.3809/jvirtex.2002.00058, 2002.
Verité, J.: Enregistrement sédimentaire et climatique d'un hyperthermal en domaine continental: l'Optimum Climatique de l'Éocène Moyen dans le domaine Sud-Pyrénéen, Formation d'Escanilla, Espagne, MS Thesis, Observatoire des Sciences de l'Univers de Rennes, Rennes, France, 2019.
Vinyoles, A., López-Blanco, M., Garcés, M., Arbués, P., Valero,
L., Beamud, E., and Cabello, P.: 10 Myr evolution of sedimentation rates in
a deep marine to non-marine foreland basin system: Tectonic and sedimentary
controls (Eocene, Tremp–Jaca Basin, Southern Pyrenees, NE Spain), Basin Res., 33, 447–477, https://doi.org/10.1111/bre.12481, 2021.
Wendler, I.: A critical evaluation of carbon isotope stratigraphy and
biostratigraphic implications for Late Cretaceous global correlation, Earth-Sci. Rev., 126, 116–146, https://doi.org/10.1016/j.earscirev.2013.08.003, 2013.
Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R. A., Whitchurch, A. L., and Allen, P. A.: Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply, Geol. Soc. Am. Bull., 123, 1363–1382, https://doi.org/10.1130/B30351.1, 2011.
Westerhold, T. and Röhl, U.: Orbital pacing of Eocene climate during
the Middle Eocene Climate Optimum and the chron C19r event: Missing link
found in the tropical western Atlantic, Geochem, Geophy, Geosy,, 14, 4811–4825, https://doi.org/10.1002/ggge.20293, 2013.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago...