Articles | Volume 19, issue 11
https://doi.org/10.5194/cp-19-2203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-2203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of Neoproterozoic snowball-Earth inceptions to continental configuration, orbital geometry, and volcanism
Julius Eberhard
CORRESPONDING AUTHOR
Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
Oliver E. Bevan
Department of Earth Sciences, Durham University, Durham, United Kingdom
Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
Stefan Petri
Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
Jeroen van Hunen
Department of Earth Sciences, Durham University, Durham, United Kingdom
James U. L. Baldini
Department of Earth Sciences, Durham University, Durham, United Kingdom
Related authors
No articles found.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024, https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Short summary
The Shanxi Rift is a young, active rift in northern China that formed atop a Proterozoic orogen. The impact of these structures on active rift faults is poorly understood. Here, we quantify the landscape response to active faulting and compare it with published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of rift interaction zones, which are the most active regions in the Shanxi Rift.
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-48, https://doi.org/10.5194/cp-2024-48, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g., stalagmites) in the British Isles to help constrain the extent of past glaciations both in time and space. Speleothems require liquid water to grow, and therefore, their presence indicates the absence of ice above the cave. By dating these speleothems we can improve existing reconstructions of past ice sheets.
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Agathe Faucher, Frédéric Gueydan, and Jeroen van Hunen
EGUsphere, https://doi.org/10.5194/egusphere-2024-569, https://doi.org/10.5194/egusphere-2024-569, 2024
Preprint archived
Short summary
Short summary
The formation of major strike-slip faults remains enigmatic in the framework of plate tectonics. Using 3D finite element models, we show that the co-existence of extension and shortening (at a high angle with the extension direction) and a weak lithosphere (e.g high geotherm) can trigger normal faulting and strike-slip faulting. Our results are compared to the Aegean example where strike slip faults (e.g. North Anatolian fault) and normal faults (e.g. Corinth rift) work together.
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547, https://doi.org/10.5194/esd-14-533-2023, https://doi.org/10.5194/esd-14-533-2023, 2023
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
Sonja Totz, Stefan Petri, Jascha Lehmann, Erik Peukert, and Dim Coumou
Nonlin. Processes Geophys., 26, 1–12, https://doi.org/10.5194/npg-26-1-2019, https://doi.org/10.5194/npg-26-1-2019, 2019
James U. L. Baldini, Richard J. Brown, and Natasha Mawdsley
Clim. Past, 14, 969–990, https://doi.org/10.5194/cp-14-969-2018, https://doi.org/10.5194/cp-14-969-2018, 2018
Short summary
Short summary
The Younger Dryas occurred ~13 ka BP and is an iconic millennial-scale climate anomaly. However, the cause of the event is still ambiguous. Here, we propose that the event was triggered by a large, sulfur-rich eruption of the Laacher See volcano (Germany). The eruption's direct (sulfate aerosol-induced) cooling effects lasted less than 5 years, and we suggest these were amplified and extended by a sea-ice–ocean circulation positive feedback, leading to the event's characteristic features.
Julia Brugger, Matthias Hofmann, Stefan Petri, and Georg Feulner
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-36, https://doi.org/10.5194/cp-2018-36, 2018
Manuscript not accepted for further review
Short summary
Short summary
To get a deeper understanding of the various evolutionary changes, which took place during the Devonian (419 to 359 Ma), we here use a coupled climate model to investigate the sensitivity of the Devonian climate to changes in orbital forcing, continental configuration and vegetation cover. Our results are summarised by best-guess simulations for the Early, Middle and Late Devonian showing a decreasing temperature trend in accordance with the reconstructed decreasing atmospheric CO2.
Sonja Totz, Alexey V. Eliseev, Stefan Petri, Michael Flechsig, Levke Caesar, Vladimir Petoukhov, and Dim Coumou
Geosci. Model Dev., 11, 665–679, https://doi.org/10.5194/gmd-11-665-2018, https://doi.org/10.5194/gmd-11-665-2018, 2018
Sonja Molnos, Stefan Petri, Jascha Lehmann, Erik Peukert, and Dim Coumou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-65, https://doi.org/10.5194/esd-2017-65, 2017
Manuscript not accepted for further review
Sonja Molnos, Tarek Mamdouh, Stefan Petri, Thomas Nocke, Tino Weinkauf, and Dim Coumou
Earth Syst. Dynam., 8, 75–89, https://doi.org/10.5194/esd-8-75-2017, https://doi.org/10.5194/esd-8-75-2017, 2017
M. Willeit, A. Ganopolski, and G. Feulner
Biogeosciences, 11, 17–32, https://doi.org/10.5194/bg-11-17-2014, https://doi.org/10.5194/bg-11-17-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
A. V. Eliseev, D. Coumou, A. V. Chernokulsky, V. Petoukhov, and S. Petri
Geosci. Model Dev., 6, 1745–1765, https://doi.org/10.5194/gmd-6-1745-2013, https://doi.org/10.5194/gmd-6-1745-2013, 2013
H. Kienert, G. Feulner, and V. Petoukhov
Clim. Past, 9, 1841–1862, https://doi.org/10.5194/cp-9-1841-2013, https://doi.org/10.5194/cp-9-1841-2013, 2013
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
C. F. Schleussner and G. Feulner
Clim. Past, 9, 1321–1330, https://doi.org/10.5194/cp-9-1321-2013, https://doi.org/10.5194/cp-9-1321-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
Related subject area
Subject: Feedback and Forcing | Archive: Modelling only | Timescale: Pre-Cenozoic
Comment on "Clouds and the Faint Young Sun Paradox" by Goldblatt and Zahnle (2011)
Vegetation-climate interactions in the warm mid-Cretaceous
R. Rondanelli and R. S. Lindzen
Clim. Past, 8, 701–703, https://doi.org/10.5194/cp-8-701-2012, https://doi.org/10.5194/cp-8-701-2012, 2012
J. Zhou, C. J. Poulsen, N. Rosenbloom, C. Shields, and B. Briegleb
Clim. Past, 8, 565–576, https://doi.org/10.5194/cp-8-565-2012, https://doi.org/10.5194/cp-8-565-2012, 2012
Cited articles
Abbot, D. and Halevy, I.: Dust aerosol important for Snowball Earth deglaciation, J. Climate, 23, 4121–4132, https://doi.org/10.1175/2010JCLI3378.1, 2010. a, b
Abbot, D. and Pierrehumbert, R.: Mudball: surface dust and Snowball Earth deglaciation, J. Geophys. Res., 115, D03104, https://doi.org/10.1029/2009JD012007, 2010. a, b
Abbot, D., Voigt, A., and Koll, D.: The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res., 116, D18103, https://doi.org/10.1029/2011JD015927, 2011. a
Allen, P. and Etienne, J.: Sedimentary challenge to Snowball Earth, Nat. Geosci., 1, 817–825, https://doi.org/10.1038/ngeo355, 2008. a
Ammann, C., Meehl, G., Washington, W., and Zender, C.: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate, Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875, 2003. a, b, c
Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system, Philos. T. R. Soc. A, 370, 1166–1184, https://doi.org/10.1098/rsta.2011.0306, 2012. a, b
Bahcall, J., Pinsonneault, M., and Basu, S.: Solar models: current epoch and time dependencies, neutrinos, and helioseismological properties, Astrophys. J., 555, 990–1012, https://doi.org/10.1086/321493, 2001. a, b
Berger, A. and Loutre, M.: Precession, eccentricity, obliquity, insolation and paleoclimates, in: Long-term climatic variations. Data and modelling, edited by: Duplessy, J.-C. and Spyridakis, M.-T., vol. 22 of NATO ASI subseries I: Global environmental change, Springer, 107–151, https://doi.org/10.1007/978-3-642-79066-9_5, 1994. a
Brady, P. and Carroll, S.: Direct effects of CO2 and temperature on silicate weathering: possible implications for climate control, Geochim. Cosmochim. Ac., 58, 1853–1856, https://doi.org/10.1016/0016-7037(94)90543-6, 1994. a
Brugger, J., Hofmann, M., Petri, S., and Feulner, G.: On the sensitivity of the Devonian climate to continental configuration, vegetation cover, orbital configuration, CO2 concentration, and insolation, Paleoceanogr. Paleoclimatol., 34, 1375–1398, https://doi.org/10.1029/2019PA003562, 2019. a
Brunetti, M. and Ragon, C.: Attractors and bifurcation diagrams in complex climate models, Phys. Rev. E, 107, 054214, https://doi.org/10.1103/PhysRevE.107.054214, 2023. a, b
Crowley, T., Zielinski, G., Vinther, B., Udisti, R., Kreutz, K., Cole-Dai, J., and Castellano, E.: Volcanism and the Little Ice Age, PAGES News, 16, 22–23, https://doi.org/10.22498/PAGES.16.2.22, 2008. a
Dalziel, I.: Overview: Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation, GSA Bull., 109, 16–42, https://doi.org/10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2, 1997. a
Donnadieu, Y., Ramstein, G., Fluteau, F., Besse, J., and Meert, J.: Is high obliquity a plausible cause for Neoproterozoic glaciations?, Geophys. Res. Lett., 29, 2127, https://doi.org/10.1029/2002GL015902, 2002. a
Eberhard, J., Bevan, O., Feulner, G., Petri, S., van Hunen, J., and Baldini, J.: Climate model ensemble data for Neoproterozoic Snowball-Earth inceptions, GFZ Data Services [data set], https://doi.org/10.5880/PIK.2023.002, 2023. a
Embrechts, P., Klüppelberg, C., and Mikosch, T.: Modelling extremal events for insurance and finance, Springer, https://doi.org/10.1007/978-3-642-33483-2, 1997. a, b
Feulner, G.: The faint young Sun problem, Rev. Geophys., 50, RG2006, https://doi.org/10.1029/2011RG000375, 2012. a
Feulner, G.: Formation of most of our coal brought Earth close to global glaciation, P. Natl. Acad. Sci. USA, 114, 11333–11337, https://doi.org/10.1073/pnas.1712062114, 2017. a
Feulner, G. and Kienert, H.: Climate simulations of Neoproterozoic snowball Earth events: similar critical carbon dioxide levels for the Sturtian and Marinoan glaciations, Earth Planet. Sc. Lett., 404, 200–205, https://doi.org/10.1016/j.epsl.2014.08.001, 2014. a, b, c, d
Feulner, G., Hallmann, C., and Kienert, H.: Snowball cooling after algal rise, Nat. Geosci., 8, 659–662, https://doi.org/10.1038/ngeo2523, 2015. a, b
Fichefet, T. and Morales Maqueda, M.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997. a
Frierson, D., Lu, J., and Chen, G.: Width of the Hadley cell in simple and comprehensive general circulation models, Geophys. Res. Lett., 34, L18804, https://doi.org/10.1029/2007GL031115, 2007. a
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008. a, b
Goddéris, Y., Donnadieu, Y., Nédélec, A., Dupré, B., Dessert, C., Grard, A., Ramstein, G., and François, L.: The Sturtian `snowball' glaciation: fire and ice, Earth Planet. Sc. Lett., 211, 1–12, https://doi.org/10.1016/S0012-821X(03)00197-3, 2003. a
Goode, P., Qiu, J., Yurchyshyn, V., and Hickey, J.: Earthshine observations of the Earth's reflectance, Geophys. Res. Lett., 28, 1671–1674, https://doi.org/10.1029/2000GL012580, 2001. a
Gupta, M., Marshall, J., and Ferreira, D.: Triggering global climate transitions through volcanic eruptions, J. Climate, 32, 3727–3742, https://doi.org/10.1175/JCLI-D-18-0883.1, 2019. a, b
Halekotte, L. and Feudel, U.: Minimal fatal shocks in multistable complex networks, Sci. Rep., 11783, https://doi.org/10.1038/s41598-020-68805-6, 2020. a, b
Heinemann, M., Jungclaus, J. H., and Marotzke, J.: Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM, Clim. Past, 5, 785–802, https://doi.org/10.5194/cp-5-785-2009, 2009. a
Held, I. and Suarez, M.: Simple albedo feedback models of the icecaps, Tellus, 26, 613–629, https://doi.org/10.3402/tellusa.v26i6.9870, 1974. a
Hoffman, P. and Schrag, D.: The snowball Earth hypothesis: testing the limits of global change, Terra Nova, 14, 129–155, https://doi.org/10.1046/j.1365-3121.2002.00408.x, 2002. a
Hoffman, P., Kaufman, A., Halverson, G., and Schrag, D.: A Neoproterozoic snowball Earth, Science, 281, 1342–1346, https://doi.org/10.1126/science.281.5381.1342, 1998. a
Hoffman, P., Abbot, D., Ashkenazy, Y., Benn, D., Brocks, J., Cohen, P., Cox, G., Creveling, J., Donnadieu, Y., Erwin, D., Fairchild, I., Ferreira, D., Goodman, J., Halverson, G., Jansen, M., Le Hir, G., Love, G., Macdonald, F., Maloof, A., Partin, C., Ramstein, G., Rose, B., Rose, C., Sadler, P., Tziperman, E., Voigt, A., and Warren, S.: Snowball Earth climate dynamics and Cryogenian geology–geobiology, Sci. Adv., 3, e1600983, https://doi.org/10.1126/sciadv.1600983, 2017. a, b, c, d, e, f, g
Hofmann, M. and Morales Maqueda, M.: Performance of a second-order moments advection scheme in an ocean general circulation model, J. Geophys. Res., 111, C05006, https://doi.org/10.1029/2005JC003279, 2006. a
Hunke, E. and Dukowicz, J.: An elastic–viscous–plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2, 1997. a
Hyde, W., Crowley, T., Baum, S., and Peltier, W.: Neoproterozoic `snowball Earth' simulations with a coupled climate/ice-sheet model, Nature, 405, 425–429, https://doi.org/10.1038/35013005, 2000. a, b, c, d
Jenkins, G.: Examining the sensitivity of Earth's climate to the removal of ozone, landmasses and enhanced ocean heat transport in the GENESIS global climate model, Global Planet. Change, 20, 257–279, https://doi.org/10.1016/S0921-8181(98)00070-8, 1999. a, b
Jones, G., Gregory, J., Stott, P., Tett, S., and Thorpe, R.: An AOGCM simulation of the climate response to a volcanic super-eruption, Clim. Dynam., 25, 725–738, https://doi.org/10.1007/s00382-005-0066-8, 2005. a
Kirschvink, J.: Late Proterozoic low-latitude global glaciation: the snowball earth, in: The Proterozoic biosphere: a multidisciplinary study, edited by: Schopf, J. and Klein, C., Cambridge University Press, 51–52, https://resolver.caltech.edu/CaltechAUTHORS:20130117-100718783 (last access: 19 October 2023), 1992. a
Landwehrs, J., Feulner, G., Petri, S., Sames, B., and Wagreich, M.: Investigating Mesozoic climate trends and sensitivities with a large ensemble of climate model simulations, Paleoceanogr. Paleoclimatol., 36, 2020PA004134, https://doi.org/10.1029/2020PA004134, 2021. a
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004. a
Le Hir, G., Donnadieu, Y., Krinner, G., and Ramstein, G.: Toward the snowball earth deglaciation…, Clim. Dynam., 35, 285–297, https://doi.org/10.1007/s00382-010-0748-8, 2010. a, b
Lewis, J., Weaver, A., Johnston, S., and Eby, M.: Neoproterozoic “snowball Earth”: dynamic sea ice over a quiescent ocean, Paleoceanogr., 18, 1092, https://doi.org/10.1029/2003PA000926, 2003. a, b
Linsenmeier, M., Pascale, S., and Lucarini, V.: Climate of Earth-like planets with high obliquity and eccentric orbits: implications for habitability conditions, Planet. Space Sci., 105, 43–59, https://doi.org/10.1016/j.pss.2014.11.003, 2015. a
Liu, Y., Peltier, W. R., Yang, J., and Vettoretti, G.: The initiation of Neoproterozoic ”snowball” climates in CCSM3: the influence of paleocontinental configuration, Clim. Past, 9, 2555–2577, https://doi.org/10.5194/cp-9-2555-2013, 2013. a, b, c
Liu, Y., Liu, P., Li, D., Peng, Y., and Hu, Y.: Influence of dust on the initiation of Neoproterozoic snowball Earth events, J. Climate, 34, 6673–6689, https://doi.org/10.1175/JCLI-D-20-0803.1, 2021. a
Lucarini, V. and Bódai, T.: Edge states in the climate system: exploring global instabilities and critical transitions, Nonlinearity, 30, R32–R66, https://doi.org/10.1088/1361-6544/aa6b11, 2017. a
Lucarini, V., Fraedrich, K., and Lunkeit, F.: Thermodynamic analysis of snowball Earth hysteresis experiment: efficiency, entropy production and irreversibility, Q. J. R. Meteor. Soc., 136, 2–11, https://doi.org/10.1002/qj.543, 2010. a
Lucarini, V., Serdukova, L., and Margazoglou, G.: Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model, Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022, 2022. a
Macdonald, F. and Wordsworth, R.: Initiation of Snowball Earth with volcanic sulfur aerosol emissions, Geophys. Res. Lett., 44, 1938–1946, https://doi.org/10.1002/2016GL072335, 2017. a, b, c
Mantsis, D., Clement, A., Broccoli, A., and Erb, M.: Climate feedbacks in response to changes in obliquity, J. Climate, 24, 2830–2845, https://doi.org/10.1175/2010JCLI3986.1, 2011. a
Merdith, A., Collins, A., Williams, S., Pisarevsky, S., Foden, J., Archibald, D., Blades, M., Alessio, B., Armistead, S., Plavsa, D., Clark, C., and Müller, R.: A full-plate global reconstruction of the Neoproterozoic, Gondwater Res., 50, 84–134, https://doi.org/10.1016/j.gr.2017.04.001, 2017. a
Merdith, A., Williams, S., Collins, A., Tetley, M., Mulder, J., Blades, M., Young, A., Armistead, S., Cannon, J., Zahirovic, S., and Müller, R.: Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic, Earth-Sci. Rev., 214, 103477, https://doi.org/10.1016/j.earscirev.2020.103477, 2021. a, b, c, d, e, f, g, h
Metzner, D., Kutterolf, S., Toohey, M., Timmreck, C., Niemeier, U., Freundt, A., and Krüger, K.: Radiative forcing and climate impact resulting from SO2 injections based on a 200,000-year record of Plinian eruptions along the Central American Volcanic Arc, Int. J. Earth Sci. (Geol. Rundsch.), 103, 2063–2079, https://doi.org/10.1007/s00531-012-0814-z, 2014. a
Mitchell, R., Gernon, T., Cox, G., Nordsvan, A., Kirscher, U., Xuan, C., Liu, Y., and He, X.: Orbital forcing of ice sheets during snowball Earth, Nat. Commun., 12, 4187, https://doi.org/10.1038/s41467-021-24439-4, 2021. a
Moczydłowska, M.: The Ediacaran microbiota and the survival of Snowball Earth conditions, Precambrian Res., 167, 1–15, https://doi.org/10.1016/j.precamres.2008.06.008, 2008. a
Montoya, M., Griesel, A., Levermann, A., Mignot, J., Hofmann, M., Ganopolski, A., and Rahmstorf, S.: The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions, Clim. Dynam., 25, 237–263, https://doi.org/10.1007/s00382-005-0044-1, 2005. a, b, c
Müller, P.: Handbook of dynamics and probability, Springer, https://doi.org/10.1007/978-3-030-88486-4, 2022. a
Müller, R., Cannon, J., Qin, X., Watson, R., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S., and Zahirovic, S.: GPlates: building a virtual Earth through deep time, Geochem. Geophy. Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018. a
Naveau, P. and Ammann, C.: Statistical distributions of ice core sulfate from climatically relevant volcanic eruptions, Geophys. Res. Lett., 32, L05711, https://doi.org/10.1029/2004GL021732, 2005. a, b
North, G. and Kim, K.: Energy balance climate models, Wiley-VCH, Weinheim, https://doi.org/10.1002/9783527698844, 2017. a
Nowajewski, P., Rojas, M., Rojo, R., and Kimeswenger, S.: Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations, Icarus, 305, 84–90, https://doi.org/10.1016/j.icarus.2018.01.002, 2018. a
Olcott, A., Sessions, A., Corsetti, F., Kaufman, A., and de Oliviera, T.: Biomarker evidence for photosynthesis during Neoproterozoic glaciation, Science, 310, 471–474, https://doi.org/10.1126/science.1115769, 2005. a
Olson, S., Jansen, M., Abbot, D., Halevy, I., and Goldblatt, C.: The effect of ocean salinity on climate and its implications for Earth's habitability, Geophys. Res. Lett., 49, e2021GL095748, https://doi.org/10.1029/2021GL095748, 2022. a
Pacanowski, R. and Griffies, S.: MOM 3.0 manual, Tech. rep., NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, GitHub, https://mom-ocean.github.io/assets/pdfs/MOM3_manual.pdf (last access: 28 April 2023), 2000. a
Palter, J.: The role of the Gulf Stream in European climate, Annu. Rev. Mar. Sci., 7, 113–137, https://doi.org/10.1146/annurev-marine-010814-015656, 2015. a
Peixoto, J. and Oort, A.: Physics of Climate, Springer, New York, ISBN 978-0-88318-712-8, 1992. a
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate, Clim. Dynam., 16, 1–17, https://doi.org/10.1007/PL00007919, 2000. a, b
Pierrehumbert, R.: Principles of planetary climate, Cambridge University Press, New York, https://doi.org/10.1017/CBO9780511780783, 2010. a
Pierrehumbert, R., Abbot, D., Voigt, A., and Koll, D.: Climate of the Neoproterozoic, Annu. Rev. Earth Pl. Sc., 39, 417–460, https://doi.org/10.1146/annurev-earth-040809-152447, 2011. a, b
Ridgwell, A., Kennedy, M., and Caldeira, K.: Carbonate deposition, climate stability, and Neoproterozoic ice ages, Science, 302, 859–862, https://doi.org/10.1126/science.1088342, 2003. a
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054, 2000. a
Robock, A., Ammann, C., Oman, L., Shindell, D., Levis, S., and Stenchikov, G.: Did the Toba volcanic eruption of ∼ 74 ka B.P. produce widespread glaciation?, J. Geophys. Res.-Atmos., 114, D10107, https://doi.org/10.1029/2008JD011652, 2009. a
Roe, G. and Baker, M.: Notes on a catastrophe: a feedback analysis of snowball Earth, J. Climate, 23, 4694–4703, https://doi.org/10.1175/2010JCLI3545.1, 2010. a
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012. a
Segschneider, J., Beitsch, A., Timmreck, C., Brovkin, V., Ilyina, T., Jungclaus, J., Lorenz, S. J., Six, K. D., and Zanchettin, D.: Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations, Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, 2013. a
Timmreck, C., Graf, H.-F., Lorenz, S., Niemeier, U., Zanchettin, D., Matei, D., Jungclaus, J., and Crowley, T.: Aerosol size confines climate response to volcanic super‐eruptions, Geophys. Res. Lett., 37, L24705, https://doi.org/10.1029/2010GL045464, 2010. a, b
Timmreck, C., Graf, H.-F., Zanchettin, D., Hagemann, S., Kleinen, T., and Krüger, K.: Climate response to the Toba super-eruption: regional changes, Quaternary Int., 258, 30–44, https://doi.org/10.1016/j.quaint.2011.10.008, 2012. a
Voigt, A.: Snowball Earth – initiation and Hadley cell dynamics, PhD thesis, Universität Hamburg and Max-Planck-Institut für Meteorologie, Hamburg, https://doi.org/10.17617/2.993685, 2010. a, b
Voigt, A., Abbot, D. S., Pierrehumbert, R. T., and Marotzke, J.: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model, Clim. Past, 7, 249–263, https://doi.org/10.5194/cp-7-249-2011, 2011. a, b, c, d
Walker, J., Hays, P., and Kasting, J.: A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776–9782, https://doi.org/10.1029/JC086iC10p09776, 1981. a
Yang, J., Peltier, W., and Hu, Y.: The initiation of modern “soft Snowball” and “hard Snowball” climates in CCSM3. Part I: the influences of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization, J. Climate, 25, 2711–2736, https://doi.org/10.1175/JCLI-D-11-00189.1, 2012a. a, b
Yang, J., Peltier, W., and Hu, Y.: The initiation of modern “soft Snowball” and “hard Snowball” climates in CCSM3. Part II: climate dynamic feedbacks, J. Climate, 25, 2737–2754, https://doi.org/10.1175/JCLI-D-11-00190.1, 2012b. a, b
Yang, J., Peltier, W. R., and Hu, Y.: The initiation of modern soft and hard Snowball Earth climates in CCSM4, Clim. Past, 8, 907–918, https://doi.org/10.5194/cp-8-907-2012, 2012c. a, b, c
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
During at least two phases in its past, Earth was more or less covered in ice. These “snowball...