Articles | Volume 19, issue 9
https://doi.org/10.5194/cp-19-1743-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1743-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon isotope chemostratigraphy, geochemistry, and biostratigraphy of the Paleocene–Eocene Thermal Maximum, deepwater Wilcox Group, Gulf of Mexico (USA)
Department of Geosciences, University of Arkansas, Fayetteville, AR
72701, USA
Eugene Szymanski
Department of Geosciences, University of Arkansas, Fayetteville, AR
72701, USA
Utah Geological Survey, 1594 W. North Temple, Suite 3110, Salt Lake
City, UT 84116, USA
Rebecca A. Hackworth
Chevron Technology Center, 1500 Louisiana St., Houston, TX 77002, USA
Alicia C. M. Kahn
Chevron Technology Center, 1500 Louisiana St., Houston, TX 77002, USA
Lawrence A. Febo
Chevron Technology Center, 1500 Louisiana St., Houston, TX 77002, USA
Jordan Oefinger
Department of Geosciences, University of Arkansas, Fayetteville, AR
72701, USA
Gunnar M. Gregory
Department of Geosciences, University of Arkansas, Fayetteville, AR
72701, USA
Related authors
Glenn R. Sharman and Matthew A. Malkowski
Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024, https://doi.org/10.5194/gchron-6-37-2024, 2024
Short summary
Short summary
The mineral zircon is widely used to determine the age of rocks based on the radioactive decay of U to Pb, but the measured U–Pb date can be too young if the zircon loses Pb. We present a method for estimating the distribution of apparent Pb loss by mathematical convolution. Applying this approach to 10 samples illustrates contrasting patterns of apparent Pb loss. This study highlights the importance of quantifying Pb loss to better understand its potential effects on zircon U–Pb dates.
Glenn R. Sharman and Matthew A. Malkowski
Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024, https://doi.org/10.5194/gchron-6-37-2024, 2024
Short summary
Short summary
The mineral zircon is widely used to determine the age of rocks based on the radioactive decay of U to Pb, but the measured U–Pb date can be too young if the zircon loses Pb. We present a method for estimating the distribution of apparent Pb loss by mathematical convolution. Applying this approach to 10 samples illustrates contrasting patterns of apparent Pb loss. This study highlights the importance of quantifying Pb loss to better understand its potential effects on zircon U–Pb dates.
Cited articles
Agnini, C., Muttoni, G., Kent, D.V., and Rio, D.: Eocene biostratigraphy and
magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil
response to climate variability, Earth Planet. Sci. Lett., 241, 815–830,
2006.
Algeo, T. J. and Lyons, T. W.: Mo-total organic carbon covariation in modern
anoxic marine environments: Implications for analysis of paleoredox and
paleohydrographic conditions, Paleoceanography, 12, 1–23,
https://doi.org/10.1029/2004PA001112, 2006.
Algeo, T. J. and Tribovillard, N.: Environmental analysis of
paleoceanographic systems based on molybdenum-uranium covariation,
Chem. Geol., 268, 211–225, 2009.
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.:
Transformation of tectonic and climatic signals from source to sedimentary
archive, Nat. Geosci., 4, 231–235, https://doi.org/10.1038/ngeo1087, 2011.
Armitage, J. J., Dunkley Jones, T., Duller, R. A., Whittaker, A. C., and
Allen. P. A.: Temporal buffering of climate-driven sediment flux cycles by
transient climate response, Earth Planet. Sc. Lett., 369–370,
200–210, https://doi.org/10.1016/j.epsl.2013.03.020, 2013.
Aubry, M.-P.: Early Paleogene calcareous nannoplankton evolution: A tale of
climatic amelioration, in: Late Paleocene-Early Eocene Climatic and Biotic
Events in the Marine and Terrestrial Records, edited by: Aubry, M.-P. and
Benjamini, C., Columbia Univeristy Press, New York, 158–180, ISBN 9780231102384, 1998.
Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R.,
Pancost, R. D., Gibbs, S. J., Huber, B. T., Leng, M. J., Coe, A. L., Cohen,
A. S., and Foster, G. L.: Extreme warming of tropical waters during the
Paleocene-Eocene thermal maximum, Geology, 42, 739–742,
https://doi.org/10.1130/G35637.1, 2014.
Berggren, W. A. and Pearson, P. N.: A revised tropical to subtropical
Paleogene planktonic foraminiferal zonation,
J. Foramin. Res., 35, 279–298, 2005.
Berggren, W. A. and Pearson, P. N.: Tropical to subtropical Paleogene
planktonic foraminiferal zonation of the Eocene and Oligocene, in: Atlas of
Eocene Planktonic Foraminifera, edited by: Pearson, N. P., Olsson, R. K.,
Huber, B. T., Hemleben, C., and Berggren, W. A., Cushman Foundation Special
Publication No. 41, 29–40, Lawrence, KS, USA, https://cushmanfoundation.org/PersonifyEbusiness/Store/Product-Details/productId/107978 (last access: 31 August 2023), 2006.
Bernard, J. M., Sen Gupta, B. K., and Borne, P. F.: Benthic foraminiferal proxy
to estimate dysoxic bottom water oxygen concentrations, Santa Barbara Basin,
US Pacific continental margin, J. Foramin. Res., 27,
301–310, https://doi.org/10.2113/gsjfr.27.4.301, 1997.
Bernhardt, A., Melnick, D., Jara-Muñoz, J., Argandoña, B.,
González, J., and Strecker, M. R.: Controls on submarine canyon activity
during sea-level highstands: The Biobío canyon system offshore Chile, Geosphere, 11, 1226–1255, https://doi.org/10.1130/GES01063.1, 2015.
Bernhardt, A., Schwanghart, W., Hebbeln, D., Stuut, J. B. W., and Strecker,
M. R.: Immediate propagation of deglacial environmental change to
deep-marine turbidite systems along the Chile convergent margin, Earth
Planet. Sci. Lett., 473, 190–204,
https://doi.org/10.1016/j.epsl.2017.05.017, 2017.
Bird, D. E., Burke, K., Hall, S. A., and Casey, J. F.: Gulf of Mexico
tectonic history: hotspot tracks, crustal boundaries, and early salt
distribution, AAPG Bull., 89, 311–328, 2005.
Blum, M. and Pecha, M.: Mid-Cretaceous to Paleocene North American drainage
reorganization from detrital zircons, Geology, 42, 607–610, 2014.
Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B.
C., and Galloway, W. E.: Detrital-zircon records of Cenomanian, Paleocene,
and Oligocene Gulf of Mexico drainage integration and sediment routing:
Implications for scales of basin-floor fans, Geosphere, 13, 2169–2205, 2017.
Bolle, M. P., Pardo, A., Adatte, T., Von Salis, K., and Burns, S.: Climatic
evolution on the southeastern margin of the Tethys (Negev, Israel) from the
Palaeocene to the early Eocene: Focus on the late Palaeocene thermal
maximum, J. Geol. Soc. London., 157, 929–941,
https://doi.org/10.1144/jgs.157.5.929, 2000.
Bonnet, S. and Crave, A.: Landscape response to climate change: Insights
from experimental modeling and implications for tectonic versus climatic
uplift of topography, Geology, 31, 123–126,
https://doi.org/10.1130/0091-7613(2003)031<0123:LRTCCI>2.0.CO;2, 2003.
Bornemann, A., Norris, R. D., Lyman, J. A., D'haenens, S., Groeneveld, J.,
Röhl, U., Farley, K. A., and Speijer, R. P.: Persistent environmental
change after the Paleocene-Eocene Thermal Maximum in the eastern North
Atlantic, Earth Planet. Sci. Lett., 394, 70–81,
https://doi.org/10.1016/j.epsl.2014.03.017, 2014.
Bowen, G. J. and Bowen, B. B.: Mechanisms of a PETM global change
constrained by a new record from central Utah, Geology, 36, 379–382, 2008.
Bralower, T. J.: Evidence of surface water oligotrophy during the
Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean
Drilling Program Site 690, Maud Rise, Weddell Sea, Paleoceanography, 17,
13-1–13-12, https://doi.org/10.1029/2001pa000662, 2002.
Bralower, T. J., Thomas, D. J., Zachos, J. C., Hirschmann, M. M., Röhl,
U., Sigurdsson, H., Thomas, E., and Whitney, D. L.: High-resolution records
of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is
there a causal link?, Geology, 25, 963–966,
https://doi.org/10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2, 1997.
Brown Jr., L. F. and Loucks, R. G.: Chronostratigraphy of Cenozoic
depositional sequences and systems tracts: A Wheeler chart of the northwest
margin of the Gulf of Mexico Basin, Texas Bureau of Economic Geology Report
of Investigations 273, Austin, 28 pp., https://store.beg.utexas.edu/reports-of-investigations/1814-ri0273.html (last access: 31 August 2023), 2009.
Buffler, R. T. and Thomas, W. A., Crustal structure and evolution of the
southeastern margin of North America and the Gulf of Mexico basin, in:
Phanerozoic Evolution of North American Continent-Ocean Transitions, edited
by: Speed, R. C., Boulder, CO, Decade of North American Geology,
Continent-Ocean Transect Series, Geological Society of America, 219–264, https://doi.org/10.1130/DNAG-COT-PEN.219, 1994.
Bush, M. A., Horton, B. K., Murphy, M. A., and Stockli, D. F.: Detrital
record of initial basement exhumation along the Laramide deformation front,
southern Rocky Mountains, Tectonics, 35, 2117–2130, 2016.
Canudo, J. I., Keller, G., Molina, E., and Ortiz, N.: Planktic foraminiferal
turnover and δ13C isotopes across the Paleocene-Eocene transition at
Caravaca and Zumaya, Spain, Palaeogeogr. Palaeocl., 114,
75–100, https://doi.org/10.1016/0031-0182(95)00073-U, 1995.
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A.,
Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A.,
Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.:
Hydrological and associated biogeochemical consequences of rapid global
warming during the Paleocene-Eocene Thermal Maximum, Global Planet. Change,
157, 114–138, https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Carvajal, C., Steel, R., and Petter, A.: Sediment supply: The main driver of
shelf-margin growth, Earth-Sci. Rev., 96, 221–248, 2009.
Carvajal, C. R. and Steel, R. J.: Thick turbidite successions from
supply-dominated shelves during sea-level highstand, Geology, 34,
665–668, 2006.
Carney, J. L. and Pierce, R. W.: Graphic Correlation and Composite Standard
Databases As Tools for the Exploration Biostratigrapher, SEPM Sec. P., 53, 23–43, 1995.
Castelltort, S. and Van Den Driessche, J.: How plausible are high-frequency
sediment supply-driven cycles in the stratigraphic record?, Sediment. Geol.,
157, 3–13, https://doi.org/10.1016/S0037-0738(03)00066-6, 2003.
Chen, Z., Ding, Z., Yang, S., Zhang, C., and Wang, X.: Increased
precipitation and weathering across the Paleocene-Eocene Thermal Maximum in
central China, Geochem. Geophy. Geosy., 17, 2286–2297,
https://doi.org/10.1002/2016GC006406, 2016.
Chun, C. O. J., Delaney, M. L., and Zachos, J. C.: Paleoredox changes across
the Paleocene-Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263,
and 1266): Evidence from Mn and U enrichment factors, Paleoceanography, 25,
1–13, https://doi.org/10.1029/2009PA001861, 2010.
Colosimo, A. B., Bralower, T. J., and Zachos, J. C.: Evidence for lysocline
shoaling at the Paleocene/Eocene Thermal Maximum on Shatsky Rise, northwest
Pacific, Proc. Ocean Drill. Progr. Sci. Results, 198, 1–36,
https://doi.org/10.2973/odp.proc.sr.198.112.2006, 2005.
Copeland, P., Currie, C. A., Lawton, T. F., and Murphy, M. A.: Location,
location, location: The variable lifespan of the Laramide orogeny, Geology,
45, 223–226, 2017.
Cornish, F. G.: Incised valleys of the Upper Wilcox, middle Texas Gulf
Coast: Additional pathways for Wilcox sand delivery to the deep GOM?,
Bulletin of the South Texas Geological Society, 51, 15–48, 2011.
Cornish, F. G.: Stratigraphy of Wilcox Canyons, Tyler and Harden Counties,
Texas, GCAGS GeoGulf Transactions, 69, 333–342, 2019.
Cossey, S. P. J., Van Nieuwenhuise, D., Davis, J., Rosenfeld, J. H., and
Pindell, J.: Compelling evidence from eastern Mexico for a Late
Paleocene/Early Eocene isolation, drawdown, and refill of the Gulf of
Mexico, Interpretation, 4, SC63–SC80,
https://doi.org/10.1190/INT-2015-0107.1, 2016.
Cossey, S. P. J., Bitter, M. R., Dickens, G. R., Nieuwenhuise, D. Van,
Rosenfeld, J. H., Beltrán-triviño, A., Cornick, P., and Agnini, C.:
Paleo-Canyon formation and contemporaneous oil seepage near the
Paleocene/Eocene boundary, Tampico-Misantla Basin, eastern Mexico, GeoGulf
Trans., 69, 27–53, 2019.
Cossey, S. P. J., Rosenfeld, J., Bitter, M., and Pindell, J.: Update on the
Paleogene water-level drawdown hypothesis, Gulf of Mexico, Gulf Coast Assoc.
Geol. Soc. J., 10, 123–141, 2021.
Covault, J. A., Normark, W. R., Romans, B. W., and Graham, S. A.: Highstand
fans in the California borderland: The overlooked deep-water depositional
systems, Geology, 35, 783–786, https://doi.org/10.1130/G23800A.1, 2007.
Crouch, E. M., Heilman-Clausen, C., Brinkhuis, H., Morgan, K. M., Rogers,
K. M., Egger, H., and Schmitz, B.: Global dinoflagellate event associated
with the late Paleocene thermal maximum, Geology, 29, 315–318, 2001.
Crouch, E. M., Brinkhuis, H., Visscher, H., Adatte, T., and Bolle, M. P.:
Late Paleocene-early Eocene dinoflagellate cyst records from the Tethys:
Further observations on the global distribution of Apectodinium, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by:
Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Spec. Pap. Geol.
Soc. Am., 369, 113–131, https://doi.org/10.1130/0-8137-2369-8.113, 2003a.
Crouch, E. M., Dickens, G. R., Brinkhuis, H., Aubry, M. P., Hollis, C. J.,
Rogers, K. M., and Visscher, H.: The Apectodinium acme and terrestrial
discharge during the Paleocene-Eocene thermal maximum: New palynological,
geochemical and calcareous nannoplankton observations at Tawanui, New
Zealand, Palaeogeogr. Palaeocl., 194, 387–403,
https://doi.org/10.1016/S0031-0182(03)00334-1, 2003b.
Cunningham, R., Phillips, M. P., Snedden, J. W., Norton, I. O., Lowery, C.
M., Virdell, J. W., Barrie, C. D., and Avery, A.: Productivity and organic
carbon trends through the Wilcox Group in the deep Gulf of Mexico: Evidence
for ventilation during the Paleocene-Eocene Thermal Maximum, Mar. Pet.
Geol., 140, 105634, https://doi.org/10.1016/j.marpetgeo.2022.105634, 2022.
Dechesne, M., Currano, E. D., Dunn, R. E., Higgins, P., Hartman, J. H.,
Chamberlain, K. R., and Holm-Denoma, C. S.: A new stratigraphic framework
and constraints for the position of the Paleocene-Eocene boundary in the
rapidly subsiding Hanna Basin, Wyoming, Geosphere, 16, 594–618,
https://doi.org/10.1130/GES02118.1, 2020.
Denison, C. N.: Stratigraphic and sedimentological aspects of the worldwide
distribution of Apectodinium in Paleocene/Eocene Thermal Maximum deposits,
Geological Society, London, Special Publications, 511, 269–308, https://doi.org/10.1144/SP511-2020-4, 2021.
Dickson, A. J., Rees-Owen, R. L., März, C., Coe, A. L., Cohen, A. S.,
Pancost, R. D., Taylor, K., and Shcherbinina, E.: The spread of marine
anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal
Maximum, Paleoceanography, 29, 471–488,
https://doi.org/10.1002/2014PA002629, 2014.
Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R.,
McKittrick, M. A., and Olivares, M. D.: Paleogeographic and paleotectonic
setting of Laramide sedimentary basins in the central Rocky Mountain region, Geol. Soc. Am. Bull., 100, 1023–1039, 1988.
Droser, M. L. and Bottjer, D. J.: A semiquantitative field classification of
ichnofabric, J. Sediment. Res., 56, 558–559, 1986.
Duller, R. A., Armitage, J. J., Manners, H. R., Grimes, S., and Jones, T.
D.: Delayed sedimentary response to abrupt climate change at the
Paleocene-Eocene boundary, northern Spain, Geology, 47, 159–162,
https://doi.org/10.1130/G45631.1, 2019.
Dunkley Jones, T., Manners, H. R., Hoggett, M., Kirtland Turner, S., Westerhold, T., Leng, M. J., Pancost, R. D., Ridgwell, A., Alegret, L., Duller, R., and Grimes, S. T.: Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, 2018.
Edwards, M. B.: Upper Wilcox Rosita delta system of south Texas: Growth
faulted shelf edge deltas, AAPG Bull., 65, 54–73, 1981.
Feng, J., Buffler, R. T., and Kominz, M. A.: Laramide orogenic influence on
late Mesozoic-Cenozoic subsidence history, western deep Gulf of Mexico
basin, Geology, 22, 359–362, 1994.
Fisher, W. L. and McGowen, J. H.: Depositional systems in the Wilcox Group
of Texas and their relationship to occurrence of oil and gas, Trans. Gulf
Coast Assoc. Geol. Soc., 17, 105–125, 1967.
Foreman, B. Z.: Climate-driven generation of a fluvial sheet sand body at
the Paleocene-Eocene boundary in north-west Wyoming (USA), Basin Res., 26,
225–241, https://doi.org/10.1111/bre.12027, 2014.
Foreman, B. Z., Heller, P. L., and Clementz, M. T.: Fluvial response to
abrupt global warming at the Palaeocene/Eocene boundary, Nature, 490,
92–95, https://doi.org/10.1038/nature11513, 2012.
Foster, G. L., Hull, P., Lunt, D. J., and Zachos, J. C.: Placing our current
“hyperthermal” in the context of rapid climate change in our geological
past, Philos. Trans. A, 376, 20170086, https://doi.org/10.1098/rsta.2017.0086, 2018.
Frieling, J. and Sluijs, A.: Towards quantitative environmental reconstructions from ancient non-analogue microfossil assemblages: Ecological preferences of Paleocene-Eocene dinoflagellates, Earth-Sci. Rev., 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014, 2018.
Frieling, J., Iakovleva, A. I., Reichart, G.-J., Aleksandrova, G. N.,
Gnibidenko, Z. N., Schouten, S., and Sluijs, A.: Paleocene-Eocene warming and
biotic response in the epicontinental West Siberian Sea, Geology, 42,
767–770, 2014.
Galloway W. E.: Depositional and structural architecture of prograding
clastic continental margins: tectonic influence on patterns of basin
filling, Norsk Geologisk Tidsskrift, Oslo, Norwegen, 67, 237–251, 1987.
Galloway, W. E.: Wilcox Submarine Canyons: Distribution, Attributes, Origins,
and Relationship to Basinal Sands, in: The Paleogene of the Gulf of Mexico
and Caribbean Basins: Processes, Events and Petroleum Systems, edited by: Kennan, L., Pindell, J., and Rosen, N. C.; SEPM Society for Sedimentary Geology,
27, https://doi.org/10.5724/gcs.07.27, 2007.
Galloway, W. E.: Depositional evolution of the Gulf of Mexico sedimentary
basin, in: The Sedimentary Basins of the United States and Canada, edited
by: Miall, A. D., 5, 505–549, ISBN 9780444504258, 2008.
Galloway, W. E., Bebout, D. G., Fisher, W. L., Dunlap, J. B.,
Cabrera-Castro Jr., R., Lugo-Rivera, J. E., and Scott, T. M.: Cenozoic, in: The Gulf of Mexico Basin, edited by: Salvador, A., Geological
Society of America, The Geology of North America, v. J., Boulder, Colorado, ISBN 9780813754598, 1991a.
Galloway, W. E., Dingus, W. F., and Paige, R. E.: Seismic and depositional
facies of Paleocene-Eocene Wilcox Group submarine canyon fills, northwest
Gulf Coast, USA, in: Seismic facies and sedimentary processes of submarine
fans and turbidite systems, Springer, New York, NY, 247–271, ISBN-13 978-0387974699, 1991b.
Galloway, W. E., Ganey-Curry, P. E., Li, X., and Buffler, R. T.: Cenozoic
depositional history of the Gulf of Mexico basin, AAPG Bull., 84,
1743–1774, 2000.
Galloway, W. E., Whiteaker, T. L., and Ganey-Curry, P.: History of Cenozoic
North American drainage basin evolution, sediment yield, and accumulation in
the Gulf of Mexico basin, Geosphere, 7, 938–973,
https://doi.org/10.1130/GES00647.1, 2011.
Gavrilov, Y. O., Shcherbinina, E. A., and Oberhansli, H.: Paleocene-Eocene
boundary events in the northeastern Peri-Tethys, in: Causes and Consequences
of Globally Warm Climates in the Early Paleogene, edited by: Wing, S. L.,
Gingerich, P. D., Schmitz, B., and Thomas, E., Geol. Soc. Am. Spec. Pap.,
369, 147–168, 2003.
Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F.,
and Oddone, M.: Mode and tempo of the Paleocene-Eocene thermal maximum in an
expanded section from the Venetian pre-Alps, Bull. Geol. Soc. Am., 119,
391–412, https://doi.org/10.1130/B25994.1, 2007.
Goodbred, S. L.: Response of the Ganges dispersal system to climate change:
A source-to-sink view since the last interstade, Sediment. Geol., 162,
83–104, https://doi.org/10.1016/S0037-0738(03)00217-3, 2003.
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N.,
Pälike, H., Norris, R. D., Thomas, E., and Foster, G. L.: Very large
release of mostly volcanic carbon during the Palaeocene-Eocene Thermal
Maximum, Nature, 548, 573–577, https://doi.org/10.1038/nature23646, 2017.
Hackworth, R., Gary, A., Kahn, A., Febo, L., and Zarra, L.: A
probabilistically-constrained zonation of the Paleogene Wilcox: Initial
application of ranking and scaling (RASC) to a robust deep-water Gulf of
Mexico (GoM) Wilcox palynological dataset, American Association of
Stratigraphic Palynologist (AASP) – The Palynological Society 51st annual meeting,
Calgary, Canada, 2018.
Harding, I. C., Charles, A. J., Marshall, J. E. A., Pälike, H., Roberts,
A. P., Wilson, P. A., Jarvis, E., Thorne, R., Morris, E., Moremon, R.,
Pearce, R. B., and Akbari, S.: Sea-level and salinity fluctuations during
the Paleocene-Eocene thermal maximum in Arctic Spitsbergen, Earth Planet.
Sci. Lett., 303, 97–107, https://doi.org/10.1016/j.epsl.2010.12.043, 2011.
Harrington, G. J. and Kemp, S. J.: US Gulf Coast vegetation dynamics during
the latest Palaeocene, Palaeogeogr. Palaeocl.,
167, 1–21, https://doi.org/10.1016/S0031-0182(00)00228-5, 2001.
Hasty, E. and Revesz, R.: Total petroleum hydrocarbon determination by
microwave solvent extraction, American Laboratory (Fairfield), 27, 66–74,
1995.
Hatano, N., Yoshida, K., and Sasao, E.: Effects of grain size on chemical
weathering index: A case study of Neogene fluvial sediments in southwest
Japan, Sediment. Geol., 386, 1–8, https://doi.org/10.1016/j.sedgeo.2019.03.017, 2019.
Hessler, A. M., Zhang, J., Covault, J. A., and Ambrose, W.: Continental
weathering coupled to Paleogene climate changes in North America, Geology,
45, 1–4, https://doi.org/10.1130/G39245.1, 2017.
Hessler, A. M., Covault, J. A., Stockli, D. F., and Fildani, A.: Late
Cenozoic cooling favored glacial over tectonic controls on sediment supply
to the western Gulf of Mexico, Geology, 46, 995–998,
https://doi.org/10.1130/G45528.1, 2018.
Hoyt, W. V.: Erosional Channel in Middle Wilcox Near Yoakum, Lavaca County,
Texas, AAPG Bull., 43, 2515–2516, 1959.
Jepson, G., George, S., and Carrapa, B.: The Paleocene-Eocene Thermal
Maximum enhanced erosion of Laramide ranges, Geological Society of America,
Abstracts with Programs, 54, https://doi.org/10.1130/abs/2022AM-380363, 2022.
Jerolmack, D. J. and Paola, C.: Shredding of environmental signals by
sediment transport, Geophys. Res. Lett., 37, 1–5,
https://doi.org/10.1029/2010GL044638, 2010.
Jiang, S. and Wise, S. W.: Distinguishing the influence of diagenesis on the
paleoecological reconstruction of nannoplankton across the Paleocene/Eocene
Thermal Maximum: An example from the Kerguelen Plateau, southern Indian
Ocean, Mar. Micropaleontol., 72, 49–59,
https://doi.org/10.1016/j.marmicro.2009.03.003, 2009.
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis,
H., and Bralower, T. J.: North American continental margin records of the
Paleocene-Eocene thermal maximum: Implications for global carbon and
hydrological cycling, Paleoceanography, 23, 1–20,
https://doi.org/10.1029/2007PA001465, 2008.
John, C. M., Banerjee, N. R., Longstaffe, F. J., Sica, C., Law, K. R., and
Zachos, J. C.: Clay assemblage and oxygen isotopic constraints on the
weathering response to the Paleocene-Eocene thermal maximum, East Coast of
North America, Geology, 40, 591–594, https://doi.org/10.1130/G32785.1,
2012.
Kahn, A. and Aubry, M. P.: Provincialism associated with the
Paleocene/Eocene Thermal Maximum: temporal constraint, Mar. Micropaleontol., 52, 117–132, 2004.
Kaminski, M. A., Kuhnt, W., and Radley, J. D.: Palaeocene-Eocene deep water agglutinated foraminifera from the Numidian Flysch (Rif, Northern Morocco): their significance for the palaeoceanography of the Gibraltar gateway, J. Micropalaeontol., 15, 1–19, 1996.
Kelly, D. C., Zachos, J. C., Bralower, T. J., and Schellenberg, S. A.:
Paleoceanography, 20, PA4023, https://doi.org/10.1029/2005PA001163, 2005.
Kender, S., Stephenson, M. H., Riding, J. B., Leng, M. J., Knox, R. W. O.
B., Peck, V. L., Kendrick, C. P., Ellis, M. A., Vane, C. H., and Jamieson,
R.: Marine and terrestrial environmental changes in NW Europe preceding
carbon release at the Paleocene-Eocene transition, Earth Planet. Sci. Lett.,
353–354, 108–120, https://doi.org/10.1016/j.epsl.2012.08.011, 2012.
Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming, palaeoceanographic
changes and benthic extinctions at the end of the Palaeocene, Nature, 353,
225–229, https://doi.org/10.1038/353225a0, 1991.
Khozyem, H., Adatte, T., Spangenberg, J. E., Tantawy, A. A., and Keller, G.:
Palaeoenvironmental and climatic changes during the Palaeocene-Eocene
Thermal Maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt, J. Geol.
Soc. London., 170, 341–352, https://doi.org/10.1144/jgs2012-046, 2013.
Kraus, M. J., Woody, D., Smith, J. J., and Dukic, V.: Alluvial response to
the Paleocene-Eocene Thermal Maximum climatic event, Polecat Bench, Wyoming, USA, Palaeogeogr. Palaeocl., 435, 177–192,
2015.
Lawton, T. F.: Laramide sedimentary basins, in: Sedimentary basins of the
world, 5, 429–450, Elsevier, https://doi.org/10.1016/S1874-5997(08)00012-9, 2008.
Lawton, T. F., Pindell, J., Beltran-Triviño, A., Juárez-Arriaga, E.,
Molina-Garza, R., and Stockli, D.: Late Cretaceous-Paleogene Foreland
Sediment-Dispersal Systems, in: Northern and Eastern Mexico: Interpretations
From Preliminary Detrital-Zircon Analysis, American Association of Petroleum
Geologists Search and Discovery, 30423, 2015.
Loucks, R. G., Kerans, C., Zeng, H., and Sullivan, P. A.: Documentation and
characterization of the Lower Cretaceous (Valanginian) Calvin and Winn
carbonate shelves and shelf margins, onshore north-central Gulf of Mexico,
AAPG Bull., 101, 119–142, 2017.
Lowe, D. R. and Ghosh, B.: A stratigraphic and architectural-element
methodology for the subdivision and interpretation of deep-water clastic
sequences: an example from the Cretaceous Venado Sandstone, Sacramento
Valley, California, in: Deep-water Sedimentation: Technological Challenges
for the Next Millennium, edited by: Appi, C. J., D'Avila, R., and Viana, A.,
Brazilian Association of Petroleum Geologists Special Paper, 42–56, 2004.
Mason, C. C., Romans, B. W., Stockli, D. F., Mapes, R. W., and Fildani, A.:
Detrital zircons reveal sea-level and hydroclimate controls on Amazon River
to deep-sea fan sediment transfer, Geology, 47, 563–567,
https://doi.org/10.1130/G45852.1, 2019.
McDonnell, A., Loucks, R. G., and Galloway, W. E.: Paleocene to Eocene
deep-water slope canyons, western Gulf of Mexico: Further insights for the
provenance of deep-water offshore Wilcox Group plays, AAPG Bull., 92,
1169–1189, 2008.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
perturbation of carbon cycle, climate, and biosphere with implications for
the future, Annu. Rev. Earth Planet. Sci., 39, 489–516,
https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
McLennan, S. M.: Weathering and global denudation, J. Geol., 101, 295–303,
https://doi.org/10.1086/648222, 1993.
Meyer, D., Zarra, L., and Yun, J.: From BAHA to Jack, Evolution of the Lower
Tertiary Wilcox Trend in the Deepwater Gulf of Mexico, The Sedimentary
Record, 5, 4–9, 2007.
Minguez, D., Hensel, G. E., and Johnson, E. A.: A fresh look at Gulf of
Mexico tectonics: Testing rotations and breakup mechanisms from the
perspective of seismically constrained potential-fields modeling and plate
kinematics, Interpretation, 8, SS31–SS45, 2020.
Mutterlose, J., Linnert, C., and Norris, R.: Calcareous nannofossils from
the Paleocene-Eocene Thermal Maximum of the equatorial Atlantic (ODP Site
1260B): Evidence for tropical warming, Mar. Micropaleontol., 65, 13–31,
https://doi.org/10.1016/j.marmicro.2007.05.004, 2007.
Nesbitt, H. W. and Young, G. M.: Early Proterozoic climates and plate
motions inferred from major element chemistry of lutites, Nature, 299, 715–717, https://doi.org/10.1038/299715a0, 1982.
Nicolo, M. J., Dickens, G. R., and Hollis, C. J.: South Pacific intermediate
water oxygen depletion at the onset of the Paleocene-Eocene thermal maximum
as depicted in New Zealand margin sections, Paleoceanography, 25, 1–12,
https://doi.org/10.1029/2009PA001904, 2010.
Ogg, J. G., Ogg, G. M., and Gradstein, F. M.: A Concise Geologic Time Scale 1st Edition, Elsevier, 234 p., https://doi.org/10.1016/C2009-0-64442-1, 2016.
Pälike, C., Delaney, M. L., and Zachos, J. C.: Deep-sea redox across the
Paleocene-Eocene thermal maximum, Geochem. Geophy. Geosy., 15,
1038–1053, https://doi.org/10.1002/2013GC005074, 2014.
Paola, C., Heller, P. L., and Angevine, C. L.: The large-scale dynamics of
grain-size variation in alluvial basins, 1: Theory, Basin Res., 4, 73–90,
1992.
Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E., and Zachos, J. C.:
Rapid and sustained surface ocean acidification during the Paleocene-Eocene
Thermal Maximum, Paleoceanography, 29, 357–369,
https://doi.org/10.1002/2014PA002621, 2014.
Pflum, C. E. and Frerichs, W. E.: Gulf of Mexico deep-water foraminifers,
Cushman Foundation for Foraminiferal Research, Spec. Publ., 14,
1–125, 1976.
Pindell, J. L.: Alleghenian reconstruction and subsequent evolution of the
Gulf of Mexico, Bahamas, and Proto-Caribbean, Tectonics, 4, 1–39, https://doi.org/10.1029/TC004i001p00001, 1985.
Pindell, J. and Cossey, S.: It Is Still Viable! Paleogene Gulf of Mexico
Water-Level Drawdown Hypothesis, AAPG Explorer, 2020.
Pindell, J., Villagómez, D., Molina-Garza, R., Graham, R., and Weber,
B.: A revised synthesis of the rift and drift history of the Gulf of Mexico
and surrounding regions in the light of improved age dating of the Middle
Jurassic salt, Geological Society, London, Spec. Publ., 504,
29–76, 2021.
Pujalte, V., Baceta, J. I., and Schmitz, B.: A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime, Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, 2015.
Pujalte, V., Robador, A., Payros, A., and Samsó, J. M.: A siliciclastic
braid delta within a lower Paleogene carbonate platform (Ordesa-Monte
Perdido National Park, southern Pyrenees, Spain): Record of the
Paleocene – Eocene Thermal Maximum perturbation, Palaeogeogr. Palaeocl., 459, 453–470, https://doi.org/10.1016/j.palaeo.2016.07.029,
2016.
Raffi, I., Backman, J., Zachos, J. C., and Sluijs, A.: The response of
calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum
at the Walvis Ridge in the South Atlantic, Mar. Micropaleontol., 70,
201–212, https://doi.org/10.1016/j.marmicro.2008.12.005, 2009.
Ravizza, G., Norris, R. N., and Blusztajn, J.: As osmium isotope excursion
associated with the late Paleocene thermal maximum: Evidence of intensified
chemical weathering, Paleoceanography, 16, 155–163, 2001.
Robinson, S. A.: Shallow-water carbonate record of the Paleocene-Eocene
Thermal maximum from a Pacific Ocean Guyot, Geology, 39, 51–54,
https://doi.org/10.1130/G31422.1, 2011.
Romans, B. W. and Graham, S. A.: A deep-time perspective of land-ocean
linkages in the sedimentary record, Ann. Rev. Mar. Sci., 5, 69–94,
https://doi.org/10.1146/annurev-marine-121211-172426, 2013.
Rosenfeld, J.: Paleogene Drawdown of the Gulf of Mexico?, AAPG Explorer,
April, 1–6, 2020.
Rosenfeld, J. and Pindell, J.: Early Paleogene Isolation of the Gulf of
Mexico from the World's Oceans? Implications from Hydrocarbon Exploration
and Eustasy, in: The Circum-Gulf of Mexico and the Caribbean, edited by:
Bartolini, C., Buffler, R. T., and Blickwede, J., AAPG Memoir, 79, 89–103, https://doi.org/10.1306/M79877C4, 2003.
Sadler, P. M.: Sediment accumulation rates and the completeness of the
stratigraphic sections, J. Geol., 89, 569–584, 1981.
Salvador, A.: Late Triassic-Jurassic paleogeography and origin of Gulf of
Mexico basin, AAPG Bull., 71, 419–451, 1987.
Salvador, A.: Origin and development of the Gulf of Mexico basin, in: The
Gulf of Mexico Basin, The Geology of North America, edited by: Salvador, A.,
Boulder, CO, Decade of North American Geology, Geological Society of
America, J, 389–444, https://doi.org/10.1130/DNAG-GNA-J.389, 1991.
Schmitz, B. and Pujalte, V.: Sea-level, humidity, and land-erosion records
across the initial Eocene thermal maximum from a continental-marine transect
in northern Spain, Geology, 31, 689–692, https://doi.org/10.1130/G19527.1,
2003.
Schmitz, B., Pujalte, V., and Núñez-Betelu, K.: Climate and
sea-level perturbations during the Initial Eocene Thermal Maximum: Evidence
from siliciclastic units in the Basque basin (Ermua, Zumaia and Trabakua
Pass), northern Spain, Palaeogeogr. Palaeocl., 165,
299–320, https://doi.org/10.1016/S0031-0182(00)00167-X, 2001.
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Sinninghe Damsté,
J. S., and Schouten, S.: Warming and environmental changes in the eastern
North Sea Basin during the Palaeocene-Eocene Thermal Maximum as revealed by
biomarker lipids, Org. Geochem., 78, 79–88,
https://doi.org/10.1016/j.orggeochem.2014.11.003, 2015.
Schulte, P., Scheibner, C., and Speijer, R. P.: Fluvial discharge and
sea-level changes controlling black shale deposition during the
Paleocene-Eocene Thermal Maximum in the Dababiya Quarry section, Egypt,
Chem. Geol., 285, 167–183, https://doi.org/10.1016/j.chemgeo.2011.04.004,
2011.
Scotese, C.: PALEOMAP PaleoAtlas for GPlates, earthbyte.org [data set],
https://www.earthbyte.org/paleomap-paleoatlas-for-gplates/ (last access: 3 May 2022), 2016.
Self-Trail, J. M., Powars, D. S., Watkins, D. K., and Wandless, G. A.:
Calcareous nannofossil assemblage changes across the Paleocene-Eocene
Thermal Maximum: Evidence from a shelf setting, Mar. Micropaleontol.,
92–93, 61–80, https://doi.org/10.1016/j.marmicro.2012.05.003, 2012.
Sewall, J. O. and Sloan, L. C.: Come a little bit closer: A high-resolution
climate study of the early Paleogene Laramide foreland, Geology, 34,
81–84, 2006.
Sharman, G. R., Covault, J. A., Stockli, D. F., Wroblewski, F. A. J., and
Bush, M. A.: Early Cenozoic drainage reorganization of the United States
Western Interior-Gulf of Mexico sediment routing system, Geology, 45,
187–190, https://doi.org/10.1130/G38765.1, 2017.
Sharman, G. R., Szymanski, E., Hackworth, R. A., Kahn, A. C. M., Febo, L.
A., Oefinger, J., and Gregory, G. M.: Carbon-isotope, geochemical, and
biostratigraphic data from the Anchor 3 well, Green Canyon protraction area,
Gulf of Mexico, Zenodo [data set], https://doi.org/10.5281/zenodo.7291552, 2022.
Sharman, G. R., Covault, J. A., Flaig, P. P., Dunn, R., Fussee-Durham, P.,
Larson, T., Shanahan, T. M., Dubois, K., Shaw, J. B., Crowley, J. L., and
Shaulis, B.: Coastal Response to Global Warming During the Paleocene-Eocene
Thermal Maximum, 625, 111664, https://doi.org/10.1016/j.palaeo.2023.111664, 2023.
Shourd, M. L. and Levin, H. L.: Chrondrites in the upper Plattin subgroup (Middle Ordovician) of eastern Missouri, J. Paleontol., 50, 260–268, 1976.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycl perturbations, Global Biogeochem. Cy., 26, GB4005, https://doi.org/10.1029/2011GB004224, 2012.
Sluijs, A.,
G. J. Bowen, H. Brinkhuis, L. J. Lourens, and Thomas, E.,: The
Palaeocene-Eocene Thermal Maximum super greenhouse: Biotic and geochemical
signatures, age models and mechanisms of global change, in: Deep Time
Perspectives on Climate Change: Marrying the Signal From Computer Models and
Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J.,
and Schmidt, D. N., The Micropalaeontological Society, Special Publications, 2, 329–349, ISBN 9781862392403, 2007a.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos,
J. C., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens, G. R.:
Environmental precursors to light carbon input at the Paleocene/Eocene
boundary, Nature, 450, 1218–1221, https://doi.org/10.1038/nature06400, 2007b.
Sluijs, A., Röhl, U., Schouten, S., Brumsack, H. J., Sangiorgi, F.,
Sinninghe Damsté, J. S., and Brinkhuis, H.: Arctic late Paleocene -
Early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene
thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program
Expedition 302), Paleoceanography, 23, 1–17,
https://doi.org/10.1029/2007PA001495, 2008a.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L.,
Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G. J., Schouten, S.,
Pancost, R. D., Damsté, J. S. S., Welters, N. L. D., Lotter, A. F., and
Dickens, G. R.: Eustatic variations during the Paleocene-Eocene greenhouse
world, Paleoceanography, 23, 1–18, https://doi.org/10.1029/2008PA001615,
2008b.
Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf, Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, 2009.
Sluijs, A., van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart, G.-J., and Slomp, C. P.: Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling, Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, 2014.
Smith, V., Warny, S., Vellekoop, J., Vajda, V., Gilles Escarguel, G., and
Jarzen, D. M.: Palynology from ground zero of the Chicxulub impact, southern
Gulf of Mexico, Palynology, 45, 283–299,
https://doi.org/10.1080/01916122.2020.1813826, 2021.
Snedden, J. W., Bovay, A. C., and Xu, J.: New Models of Early Cretaceous
Source-to-Sink Pathways in the Eastern Gulf of Mexico, in: Mesozoic of the
Gulf Rim and Beyond: New Progress in Science and Exploration of the Gulf of
Mexico Basin, edited by: Lowery, C. M., Snedden, J. W., and Rosen, N. C.,
Gulf Coast Section SEPM, 35, https://doi.org/10.5724/gcs.15.35, 2016a.
Snedden, J. W., Virdell, J., Whiteaker, T. L., and Ganey-Curry, P.: A
basin-scale perspective on Cenomanian-Turonian (Cretaceous) depositional
systems, greater Gulf of Mexico (USA), Interpretation, 4, SC1–SC22, 2016b.
Snedden, J. W., Tinker, L. D., and Virdell, J.: Southern Gulf of Mexico
Wilcox source to sink: Investigating and predicting Paleogene Wilcox
reservoirs in eastern Mexico deep-water areas, AAPG Bull., 102, 2045–2074, 2018.
Snedden, J. W., Hull, H. L., Whiteaker, T. L., Virdell, J. W., and Ross, C.
H.: Late Mesozoic sandstone volumes recorded in Gulf of Mexico subsurface
depocentres: Deciphering long-term sediment supply trends and contributions
by paleo river systems, Basin Res., 00, 1–23,
https://doi.org/10.1111/bre.12659, 2022.
Sømme, T. O., Huwe, S. I., Martinsen, O. J., Sandbakken, P. T.,
Skogseid, J., and Valore, L. A.: Stratigraphic expression of the
Paleocene-Eocene Thermal Maximum climate event during long-lived transient
uplift – An example from a shallow to deep-marine clastic system in the
Norwegian Sea, Front. Earth Sci., 11, 1082203, https://doi.org/10.3389/feart.2023.1082203,
2023.
Stern, R. J. and Dickinson, W. R.: The Gulf of Mexico is a Jurassic backarc
basin, Geosphere, 6, 739–754, 2010.
Steurbaut, E., Magioncalda, R., Dupuis, C., Van Simaeys, S., Roche, E., and
Roche, M.: Palynology, paleoenvironments, and organic carbon isotope
evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium,
in: Causes and Consequences of Globally Warm Climates in the Early
Paleogene, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and
Thomas, E., Spec. Pap. Geol. Soc. Am., 369, 291–317, 2003.
Suarez, M. B., Ludvigson, G. A., González, L. A., Al-Suwaidi, A. H., and
You, H.-L.: Stable isotope chemostratigraphy in lacustrine strata of the
Xiagou Formation, Gansu Province, NW China, Geological Society London Special Publications,
382, 143–155, https://doi.org/10.1144/SP382.1, 2013.
Sweet, M. L. and Blum, M. D.: Paleocene-Eocene Wilcox submarine canyons and
thick deepwater sands of the Gulf of Mexico: Very large systems in a
Greenhouse world, not a Messinian-Like crisis, GCAGS Transactions, 61, 443–450,
2011.
Sweet, M. L. and Blum, M. D.: Connections between fluvial to shallow marine
environments and submarine canyons: Implications for sediment transfer to
deep water, J. Sediment. Res., 86, 1147–1162, 2016.
Thomas, E. and Shackleton, N. J.: The Palaeocene-Eocene benthic
foraminiferal extinction and stable isotope anomalies, in: Correlation of
the Early Paleogene in Northwest Europe, Geological Society London Special
Publication, 101, edited by: Knox, R. W. O. B., Corfield, R. M., and Dunay,
R. E., Geological Society of London, London, United Kingdom, 401–441, https://doi.org/10.1144/GSL.SP.1996.101.01.20, 1996.
Tofelde, S., Bernhardt, A., Guerit, L., and Romans, B. W.: Times associated
with source-to-sink propagation of environmental signals during landscape
transience, Front. Earth Sci., 9, 1–51,
https://doi.org/10.3389/feart.2021.628315, 2021.
Turner, S. K.: Constraints on the onset duration of the Paleocene-Eocene
Thermal Maximum, Philos. T. R. Soc. A, 376, 20170082,
https://doi.org/10.1098/rsta.2017.0082, 2018.
Tribovillard, N., Lageo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: An Update, Chem. Geol.,
232, 12–32, 2006.
Tyson, R. V.: Palynological Kerogen Classification, in: Sedimentary Organic
Matter, Springer, Dordrecht,
https://doi.org/10.1007/978-94-011-0739-6_20, 1995.
Vangriesheim, A., Khripounoff, A., and Crassous, P.: Turbidity events
observed in situ along the Congo submarine channel, Deep-Sea Res. Part Pt. II, 56, 2208–2222, https://doi.org/10.1016/j.dsr2.2009.04.004,
2009.
Van Morkhoven, F., Berggren, W. A., and Edwards, A. S.: Cenozoic
cosmopolitan deep-water benthic foraminifera, B. Cent. Rech. Expl., 11, 90–91, 1986.
van Roij, L.: The Paleocene-Eocene Thermal Maximum in the Gulf of Mexico,
Utrecht University, M.S. thesis, 26 pp., 2009.
Versteegh, G. J. M.: Recognition of cyclic and non-cyclic environmental
changes in the Mediterranean Pliocene: A palynological approach, Mar. Micropaleontol., 23, 147–183,
https://doi.org/10.1016/0377-8398(94)90005-1, 1994.
Vimpere, L., Spangenberg, J. E., Roige, M., Adatte, T., Kaenel, E. D.,
Fildani, A., Clark, J., Sahoo, S., Bowman, A., Sternai, P., and Castelltort,
S.: Carbon isotope and biostratigraphic evidence for an expanded
Paleocene-Eocene Thermal Maximum sedimentary record in the deep Gulf of
Mexico, Geology, 51, 334–339, https://doi.org/10.1130/G50641.1, 2023.
Watkins, D. K. and Bergen J. A.: Late Albian adaptive radiation in the
calcareous nannofossil genus Eiffellithus, Micropaleontology, 49, 231–252, 2003.
Wedepohl, K. H.: Environmental influences on the chemical composition of
shales and clays, in: Physics and Chemistry of the Earth, Pergamon, edited by: Ahrens, L. H., Press, F., Runcorn, S. K., and Urey, H. C., Oxford, 305–333, https://doi.org/10.1016/0079-1946(71)90020-6, 1971.
Wedepohl, K. H.: The composition of the upper Earth's crust and the natural
cycles of selected metals, in: Metals and their Compounds
in the Environment, edited by: Merian, E., VCH-Verlagsgesellschaft, Weinheim, 3–17, ISBN-13 9780895735621, 1991.
Westerhold, T., Röhl, U., Wilkens, R. H., Gingerich, P. D., Clyde, W. C., Wing, S. L., Bowen, G. J., and Kraus, M. J.: Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores, Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, 2018.
White, C. J., Snedden, J. W., and Virdell, J.: Calibrated seismic
stratigraphic analysis of the Lavaca/Yoakum Canyon Complex, south Texas,
USA, GCAGS Journal, 8, 210–230, 2019.
Wieczorek, R., Fantle, M. S., Kump, L. R., and Ravizza, G.: Geochemical
evidence for volcanic activity prior to and enhanced terrestrial weathering
during the Paleocene Eocene Thermal Maximum, Geochim. Cosmochim. Acta, 119,
391–410, https://doi.org/10.1016/j.gca.2013.06.005, 2013.
Wing, S. L., Harrington, G. J., Bowen, G. J., and Koch, P. L.: Floral change
during the Initial Eocene Thermal Maximum in the Powder River Basin,
Wyoming, in: Causes and Consequences of Globally Warm Climates in the Early
Paleogene, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and
Thomas, E., Spec. Pap. Geol. Soc. Am., 369, 425–440,
https://doi.org/10.1130/0-8137-2369-8.425, 2003.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and
Freeman, K. H.: Transient floral change and rapid global warming at the
Paleocene-Eocene boundary, Science, 310, 993–996, 2005.
Winker, C. D.: Cenozoic shelf margins, northwestern Gulf of Mexico, Gulf
Coast Association of Geological Societies Transactions, 32, 427–448, 1982.
Winker, C. D.: Clastic shelf margins of the post-Comanchean Gulf of Mexico:
implications for deepwater sedimentation, GCSSEPM 4th Annual Bob F. Perkins
Research Conference, 109–120, 2–5 December, https://doi.org/10.5724/gcs.84.05.0109, 1984.
Xiong, S., Ding, Z., Zhu, Y., Zhou, R., and Lu, H.: A ∼6 Ma chemical weathering history, the grain size dependence of chemical
weathering intensity, and its implications for provenance change of the
Chinese loess-red clay deposit, Quaternary Sci. Rev., 29, 1911–1922,
2010.
Xue, L.: Depositional cycles and evolution of the Paleogene Wilcox strata,
Gulf of Mexico Basin, Texas, AAPG Bull., 81, 937–953, 1997.
Xue, L. and Galloway, W. E.: Sequence stratigraphic and depositional
framework of the Paleocene lower Wilcox strata, northwest Gulf of Mexico
Basin, Gulf Coast Association of Geological Societies Transactions, 43,
453–464, 1993.
Xue, L. and Galloway, W. E.: High-resolution depositional framework of the
Paleocene middle Wilcox strata, Texas coastal plain, AAPG Bull., 79,
205–230, 1995.
Yonkee, W. A. and Weil, A. B.: Tectonic evolution of the Sevier and
Laramide belts within the North American Cordillera orogenic system, Earth-Sci. Rev., 150, 531–593, 2015.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D.
A., Kelley, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J.,
McCarren, H., and Kroon, D.: Rapid acidification of the ocean during the
Paleocene-Eocene Thermal Maximum, Science, 308, 1611–1615, 2005.
Zarra, L., Meyer, D., and Neal, S. L.: Wilcox depositional systems: shelf to
deep basin: abst., GCSSEPM Bob F. Perkins 23rd Annual Research Conference,
575–576, https://doi.org/10.5724/gcs.03.23.0575, 2013.
Zarra, L.: Chronostratigraphic framework for the Wilcox Formation (upper
Paleocene-lower Eocene) in the deep-water Gulf of Mexico: Biostratigraphy,
sequences, and depositional system, in: The Paleogene of the Gulf of Mexico
and Caribbean Basins: Processes, Events and Petroleum Systems, edited by:
Kennan, L., Pindell, J., and Rosen, N. C., Houston, Texas, Gulf Coast
Section SEPM, 27, 81–145, https://doi.org/10.5724/gcs.07.27.0081, 2007.
Zarra, L., Hackworth, R., and Kahn, A.: Wilcox Chronostratigraphic
Framework: Update, AAPG Annual Convention and Exhibition, https://www.searchanddiscovery.com/abstracts/html/2019/ace2019/abstracts/181.html (last access: 31 August 2023), 19–22 May, San Antonio, TX, USA, 2019.
Zeebe, R. E. and Zachos, J. C.: Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene, Phil. Trans. R. Soc. A, 371, 20120006, https://doi.org/10.1098/rsta.2012.0006, 2013.
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release
rate unprecedented during the past 66 million years, Nat. Geosci., 9,
325–329, https://doi.org/10.1038/ngeo2681, 2016.
Zhang, J., Covault, J., Pyrcz, M., Sharman, G., Carvajal, C., and Milliken,
K.: Quantifying sediment supply to continental margins: Application to the
Paleogene Wilcox Group, Gulf of Mexico, AAPG Bull., 102, 1685–1702,
2018.
Zhou, X., Li, A., Jiang, F., and Lu, J.: Effects of grain size distribution
on mineralogical and chemical compositions: a case study from
size-fractional sediments of the Huanghe (Yellow River) and Changjiang
(Yangtze River), Geol, J., 50, 414–433, 2015.
Short summary
This study examines deepwater deposits within the Gulf of Mexico (USA) that record an episode of pronounced global warming that occurred ∼56 million years ago. We show that the supply of sand and silt into the basin shut off after a delay of about 30 000 years, followed by an influx of clay derived from deep erosion of central North America. Our results are consistent with other studies that indicate rapid sea-level rise, ocean acidification, and decreased oxygen during this warming event
This study examines deepwater deposits within the Gulf of Mexico (USA) that record an episode of...