Articles | Volume 19, issue 9
https://doi.org/10.5194/cp-19-1743-2023
https://doi.org/10.5194/cp-19-1743-2023
Research article
 | 
05 Sep 2023
Research article |  | 05 Sep 2023

Carbon isotope chemostratigraphy, geochemistry, and biostratigraphy of the Paleocene–Eocene Thermal Maximum, deepwater Wilcox Group, Gulf of Mexico (USA)

Glenn R. Sharman, Eugene Szymanski, Rebecca A. Hackworth, Alicia C. M. Kahn, Lawrence A. Febo, Jordan Oefinger, and Gunnar M. Gregory

Related authors

Modeling apparent Pb loss in zircon U–Pb geochronology
Glenn R. Sharman and Matthew A. Malkowski
Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024,https://doi.org/10.5194/gchron-6-37-2024, 2024
Short summary

Cited articles

Agnini, C., Muttoni, G., Kent, D.V., and Rio, D.: Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability, Earth Planet. Sci. Lett., 241, 815–830, 2006. 
Algeo, T. J. and Lyons, T. W.: Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 12, 1–23, https://doi.org/10.1029/2004PA001112, 2006. 
Algeo, T. J. and Tribovillard, N.: Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation, Chem. Geol., 268, 211–225, 2009. 
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.: Transformation of tectonic and climatic signals from source to sedimentary archive, Nat. Geosci., 4, 231–235, https://doi.org/10.1038/ngeo1087, 2011. 
Armitage, J. J., Dunkley Jones, T., Duller, R. A., Whittaker, A. C., and Allen. P. A.: Temporal buffering of climate-driven sediment flux cycles by transient climate response, Earth Planet. Sc. Lett., 369–370, 200–210, https://doi.org/10.1016/j.epsl.2013.03.020, 2013. 
Download
Short summary
This study examines deepwater deposits within the Gulf of Mexico (USA) that record an episode of pronounced global warming that occurred ∼56 million years ago. We show that the supply of sand and silt into the basin shut off after a delay of about 30 000 years, followed by an influx of clay derived from deep erosion of central North America. Our results are consistent with other studies that indicate rapid sea-level rise, ocean acidification, and decreased oxygen during this warming event