Articles | Volume 19, issue 1
https://doi.org/10.5194/cp-19-159-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-159-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deglacial records of terrigenous organic matter accumulation off the Yukon and Amur rivers based on lignin phenols and long-chain n-alkanes
Mengli Cao
CORRESPONDING AUTHOR
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und
Meeresforschung (AWI), 27570 Bremerhaven, Germany
Jens Hefter
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und
Meeresforschung (AWI), 27570 Bremerhaven, Germany
Ralf Tiedemann
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und
Meeresforschung (AWI), 27570 Bremerhaven, Germany
Department of Geosciences, University of Bremen, 28359 Bremen,
Germany
Lester Lembke-Jene
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und
Meeresforschung (AWI), 27570 Bremerhaven, Germany
Vera D. Meyer
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Gesine Mollenhauer
CORRESPONDING AUTHOR
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und
Meeresforschung (AWI), 27570 Bremerhaven, Germany
Department of Geosciences, University of Bremen, 28359 Bremen,
Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Related authors
No articles found.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-60, https://doi.org/10.5194/cp-2024-60, 2024
Preprint under review for CP
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1992, https://doi.org/10.5194/egusphere-2024-1992, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age-depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246, https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial-interglacial sea ice response to a changing climate and enhance our understanding of the ocean-sea ice-ice shelf interactions and dynamics.
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Oscar E. Romero, Karl-Heinz Baumann, Karin A. F. Zonneveld, Barbara Donner, Jens Hefter, Bambaye Hamady, Vera Pospelova, and Gerhard Fischer
Biogeosciences, 17, 187–214, https://doi.org/10.5194/bg-17-187-2020, https://doi.org/10.5194/bg-17-187-2020, 2020
Short summary
Short summary
Monitoring of the multiannual evolution of populations representing different trophic levels allows for obtaining insights into the impact of climate variability in marine coastal upwelling ecosystems. By using a multiyear, continuous (1,900 d) sediment trap record, we assess the dynamics and fluxes of calcareous, organic and siliceous microorganisms off Mauritania (NW Africa). The experiment allowed for the recognition of a general sequence of seasonal variations of the main populations.
Thomas Opel, Julian B. Murton, Sebastian Wetterich, Hanno Meyer, Kseniia Ashastina, Frank Günther, Hendrik Grotheer, Gesine Mollenhauer, Petr P. Danilov, Vasily Boeskorov, Grigoriy N. Savvinov, and Lutz Schirrmeister
Clim. Past, 15, 1443–1461, https://doi.org/10.5194/cp-15-1443-2019, https://doi.org/10.5194/cp-15-1443-2019, 2019
Short summary
Short summary
To reconstruct past winter climate, we studied ice wedges at two sites in the Yana Highlands, interior Yakutia (Russia), the most continental region of the Northern Hemisphere. Our ice wedges of the upper ice complex unit of the Batagay megaslump and a river terrace show much more depleted stable-isotope compositions than other study sites in coastal and central Yakutia, reflecting lower winter temperatures and a higher continentality of the study region during Marine Isotope Stages 3 and 1.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Eunmi Park, Jens Hefter, Gerhard Fischer, Morten Hvitfeldt Iversen, Simon Ramondenc, Eva-Maria Nöthig, and Gesine Mollenhauer
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019, https://doi.org/10.5194/bg-16-2247-2019, 2019
Short summary
Short summary
We analyzed GDGT-based proxy temperatures in the polar oceans. In the eastern Fram Strait (79° N), the nutrient distribution may determine the depth habit of Thaumarchaeota and thus the proxy temperature. In the Antarctic Polar Front (50° S), the contribution of Euryarchaeota or the nonlinear correlation between the proxy values and temperatures may cause the warm biases of the proxy temperatures relative to SSTs.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
Vera D. Meyer, Jens Hefter, Gerrit Lohmann, Lars Max, Ralf Tiedemann, and Gesine Mollenhauer
Clim. Past, 13, 359–377, https://doi.org/10.5194/cp-13-359-2017, https://doi.org/10.5194/cp-13-359-2017, 2017
Gerhard Fischer, Johannes Karstensen, Oscar Romero, Karl-Heinz Baumann, Barbara Donner, Jens Hefter, Gesine Mollenhauer, Morten Iversen, Björn Fiedler, Ivanice Monteiro, and Arne Körtzinger
Biogeosciences, 13, 3203–3223, https://doi.org/10.5194/bg-13-3203-2016, https://doi.org/10.5194/bg-13-3203-2016, 2016
Short summary
Short summary
Particle fluxes at the Cape Verde Ocean Observatory in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on deep sediment trap time-series data collected at 1290 and 3439 m water depths. The typically open-ocean flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen eddy in winter 2010. The eddy passage was accompanied by high biogenic and lithogenic fluxes, lasting from December 2009 to May 2010.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
M. Winterfeld, T. Laepple, and G. Mollenhauer
Biogeosciences, 12, 3769–3788, https://doi.org/10.5194/bg-12-3769-2015, https://doi.org/10.5194/bg-12-3769-2015, 2015
M. Winterfeld, M. A. Goñi, J. Just, J. Hefter, and G. Mollenhauer
Biogeosciences, 12, 2261–2283, https://doi.org/10.5194/bg-12-2261-2015, https://doi.org/10.5194/bg-12-2261-2015, 2015
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Millenial/D-O
Rejuvenating the ocean: mean ocean radiocarbon, CO2 release, and radiocarbon budget closure across the last deglaciation
Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka)
δ13C decreases in the upper western South Atlantic during Heinrich Stadials 3 and 2
Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean
Marine productivity response to Heinrich events: a model-data comparison
Ventilation changes in the western North Pacific since the last glacial period
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Carlye D. Peterson and Lorraine E. Lisiecki
Clim. Past, 14, 1229–1252, https://doi.org/10.5194/cp-14-1229-2018, https://doi.org/10.5194/cp-14-1229-2018, 2018
Short summary
Short summary
Our study presents an analysis of a four-dimensional compilation of globally distributed carbon isotope time series that span 20 to 6 thousand years ago. We explore carbon cycle connections between the deep ocean, atmosphere, and land-based carbon storage on thousand-year time scales to provide useful constraints for global carbon cycle reconstructions. Additionally, these carbon isotope time series are suitable for comparison with deglacial simulations from isotope-enabled Earth system models.
Marília C. Campos, Cristiano M. Chiessi, Ines Voigt, Alberto R. Piola, Henning Kuhnert, and Stefan Mulitza
Clim. Past, 13, 345–358, https://doi.org/10.5194/cp-13-345-2017, https://doi.org/10.5194/cp-13-345-2017, 2017
Short summary
Short summary
Our new planktonic foraminiferal stable carbon isotopic data from the western South Atlantic show major decreases during abrupt climate change events of the last glacial. These anomalies are likely related to periods of a sluggish Atlantic meridional overturning circulation and increase (decrease) in atmospheric CO2 (stable carbon isotopic ratios). We hypothesize that strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump are responsible for these decreases.
M. Sarnthein, B. Schneider, and P. M. Grootes
Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, https://doi.org/10.5194/cp-9-2595-2013, 2013
V. Mariotti, L. Bopp, A. Tagliabue, M. Kageyama, and D. Swingedouw
Clim. Past, 8, 1581–1598, https://doi.org/10.5194/cp-8-1581-2012, https://doi.org/10.5194/cp-8-1581-2012, 2012
Y. Okazaki, T. Sagawa, H. Asahi, K. Horikawa, and J. Onodera
Clim. Past, 8, 17–24, https://doi.org/10.5194/cp-8-17-2012, https://doi.org/10.5194/cp-8-17-2012, 2012
Cited articles
Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A.,
Guggenberger, G., Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M.,
McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.:
Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim.
Ac., 94, 217–237, https://doi.org/10.1016/j.gca.2012.07.015, 2012.
An, Z., Porter, S. C., Kutzbach, J. E., Wu, X., Wang, S., Liu, X., Li, X.,
and Zhou, W.: Asynchronous Holocene optimum of the east Asian monsoon,
Quaternary Sci. Rev., 19, 743–762, https://doi.org/10.1016/S0277-3791(99)00031-1, 2000.
Anderson, P. M., Edwards, M. E., and Brubaker, L. B.: Results and paleoclimate implications of 35 years of paleoeco logical research in Alaska, in: The Quaternary Period in the United States, edited by: Gillespie, A. R., Porter, S. C., and Atwater, B. F., Elsevier, Amsterdam, 427–440, https://doi.org/10.1016/S1571-0866(03)01019-4, 2003.
Ballantyne, A. P., Axford, Y., Miller, G. H., Otto-Bliesner, B. L., Rosenbloom, N., and White, J. W. C.: The amplification of Arctic terrestrial
surface temperatures by reduced sea-ice extent during the Pliocene, Palaeogeogr. Palaeocl., 386, 59–67, https://doi.org/10.1016/j.palaeo.2013.05.002, 2013.
Bazarova, V. B., Klimin, M. A., Mokhova, L. M., and Orlova, L. A.: New pollen records of Late Pleistocene and Holocene changes of environment and climate in the Lower Amur River basin, NE Eurasia, Quatern. Int., 179, 9–19, https://doi.org/10.1016/j.quaint.2007.08.015, 2008.
Belt, S. T., Massé, G., Rowland, S. J., Poulin, M., Michel, C., and LeBlanc, B.: A novel chemical fossil of palaeo sea ice: IP25, Org.
Geochem., 38, 16–27, https://doi.org/10.1016/j.orggeochem.2006.09.013, 2007.
Bigelow, N. H.: Pollen Records, Late Pleistocene|Northern North America, in: Encyclopedia of Quaternary Science, 2nd Edn., edited by: Elias, S. A. and Mock, C. J., Elsevier, 39–51, https://doi.org/10.1016/B978-0-444-53643-3.00187-4, 2013.
Binney, H. A., Willis, K. J. Edwards, M. E., Bhagwat, S. A., Anderson, P. M., Andreev, A. A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K. V., Krivonogov, S. K., Lozhkin, A. V., Macdonald, G. M.,
Novenko, E. Y., Oksanen, P., Sapelko, T. V., Väliranta, M., and Vazhenina, L.: The distribution of late-Quaternary woody taxa in northern
Eurasia: evidence from a new macrofossil database, Quaternary Sci. Rev., 28,
2445–2464, https://doi.org/10.1016/j.quascirev.2009.04.016, 2009.
Bröder, L., Tesi, T., Andersson, A., Semiletov, I., and Gustafsson, Ö.: Bounding cross-shelf transport time and degradation in Siberian-Arctic land-ocean carbon transfer, Nat. Commun., 9, 806,
https://doi.org/10.1038/s41467-018-03192-1, 2018.
Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic
Map of Permafrost and Ground-Ice Conditions, version 2, Boulder, Colorado
USA, NSIDC – National Snow and Ice Data Center [data set], https://doi.org/10.7265/skbg-kf16, 2002.
Caissie, B. E., Brigham-Grette, J., Lawrence, K. T., Herbert, T. D., and Cook, M. S.: Last Glacial Maximum to Holocene sea surface conditions at
Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable
isotope records, Paleoceanography, 25, PA1206, https://doi.org/10.1029/2008PA001671, 2010.
Cao, M., Hefter, J., Tiedemann, R., Lembke-Jene, L., Meyer, V. D., and Mollenhauer, G.: Lignin phenols contents and sea surface temperatures in sediment cores from the Bering and Okhotsk Seas, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.948376, 2022.
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T.
M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J.,
Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., and Williams, J.
W.: Global climate evolution during the last deglaciation, P. Natl. Acad.
Sci. USA, 109, E1134–E1142, https://doi.org/10.1073/pnas.1116619109, 2012.
Couture, N. J., Irragang, A., Pollard, W., Lantuit, H., and Fritzs, M.: Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes
of organic carbon to the Canadian Beaufort Sea, J. Geophys. Res.-Biogeo., 123, 406–422, https://doi.org/10.1002/2017JG004166, 2018.
Dullo, W. C., Biebow, N., and Georgeleit, K.: SO178-KOMEX Cruise Report:
Mass Exchange Processes and Balances in the Okhotsk Sea, GEOMAR Report, GEOMAR, Germany, 110 pp., https://oceanrep.geomar.de/id/eprint/29530/1/SO178 Cruise Report.pdf (last access: December 2022), 2004.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, in: Developments in Quaternary Sciences, volume 2, part B, edited by: Ehlers, J. and Gibbard, P. L., Elsevier, 373–424, https://doi.org/10.1016/S1571-0866(04)80209-4, 2004.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes: The waxy outer
surfaces of most plants display a wide diversity of fine structure and chemical constituents, Science, 156, 1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Ertel, J. R. and Hedges, J. I.: Sources of sedimentary humic substances:
vascular plant debris, Geochim. Cosmochim. Ac., 49, 2097–2107,
https://doi.org/10.1016/0016-7037(85)90067-5, 1985.
Feng, X., Vonk, J. E., van Dongend, B. E., Gustafssone, Ö., Semiletov,
I. P., Dudarev, O. V., Wang, Z., Montlucon, D. B., Wacker, L., and Eglinton,
T. I.: Differential mobilization of terrestrial carbon pools in Eurasian
Arctic river basins, P. Natl. Acad. Sci. USA, 110, 14168–14173,
https://doi.org/10.1073/pnas.1307031110, 2013.
Feng, X., Gustafssone, Ö., Holmes, R. M., Vonk, J. E., van Dongend, B.
E., Semiletov, I. P., Dudarev, O. V., Yunker, M. B., Macdonald, R. W.,
Montlucon, D. B., and Eglinton, T. I.: Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols, Biogeosciences, 12, 4841–4860, https://doi.org/10.5194/bg-12-4841-2015, 2015.
Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G.: An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes, Org. Geochem., 31, 745–749, https://doi.org/10.1016/S0146-6380(00)00081-4, 2000.
Fritz, M., Herzschuh, U., Wetterich, S., Lantuit, H., De Pascale, G. P.,
Pollard, W. H., and Schirrmeister, L.: Late glacial and Holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada), Quatern. Res., 78, 549–560,
https://doi.org/10.1016/j.yqres.2012.07.007, 2012.
Gersonde, R.: The expedition of the research vessel “Sonne” to the subpolar
North Pacific and the Bering Sea in 2009 (SO202-INOPEX), Berichte zur Polar-
und Meeresforschung/ Reports on polar and marine research, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 323 pp., https://doi.org/10.2312/BzPM_0643_2012, 2012.
Goñi, M. A. and Montgomery, S.: Alkaline CuO Oxidation with a Microwave
Digestion System: Lignin Analyses of Geochemical Samples, Anal. Chem., 72,
3116–3121, https://doi.org/10.1021/ac991316w, 2000.
Goñi, M. A., Nelson, B., Blanchette, R. A., and Hedges, J. I.: Fungal
degradation of wood lignins: geochemical perspectives from CuO-derived
phenolic dimers and monomers, Geochim. Cosmochim. Ac., 57, 3985–4002,
https://doi.org/10.1016/0016-7037(93)90348-Z, 1993.
Goñi, M. A., Yunker, M. B., Macdonald, R. W., and Eglinton, T. I.:
Distribution and sources of organic biomarkers in arctic sediments from the
Mackenzie River and Beaufort Shelf, Mar. Chem., 71, 23–51,
https://doi.org/10.1016/S0304-4203(00)00037-2, 2000.
Hedges, J. I. and Mann, D. C.: The characterization of plant tissues by their lignin oxidation products, Geochim. Cosmochim. Ac., 43, 1803–1807,
https://doi.org/10.1016/0016-7037(79)90028-0, 1979.
Hedges, J. I., Blanchette, R. A., Weliky, K., and Devol, A. H.: Effects of
fungal degradation on the CuO oxidation products of lignin: A controlled
laboratory study, Geochim. Cosmochim. Ac., 52, 2717–2726,
https://doi.org/10.1016/0016-7037(88)90040-3, 1988.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coasts, 35, 369–382, https://doi.org/10.1007/s12237-011-9386-6, 2012.
Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sc. Lett., 224, 107–116,
https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Hu, F. S., Hedges, J. I., Gordon, E. S., and Brubaker, L. B.: Lignin biomarkers and pollen in postglacial sediments of an Alaskan lake, Geochim.
Cosmochim. Ac., 63, 1421–1430, https://doi.org/10.1016/S0016-7037(99)00100-3, 1999.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Igarashi, Y. and Zharov, A. E.: Climate and vegetation change during the late Pleistocene and early Holocene in Sakhalin and Hokkaido, northeast Asia, Quatern. Int., 237, 24–31, https://doi.org/10.1016/j.quaint.2011.01.005, 2011.
Irrgang, A. M., Bendixen, M., Farquharson, L. M., Baranskaya, A. V., Erikson, L. H., Gibbs, A. E., Ogorodov, S. A., Overduin, P. P., Lantuit, H., Grigoriev, M. N., and Jones, B. M.: Drivers, dynamics and impacts of changing Arctic coasts, Nat. Rev. Earth Environ., 3, 39–54, https://doi.org/10.1038/s43017-021-00232-1, 2022.
Jakobsson, M., Pearce, C., Cronin, T. M., Backman, J., Anderson, L. G.,
Barrientos, N., Björk, G., Coxall, H., de Boer, A., Mayer, L. A., Mörth, C.-M., Nilsson, J., Rattray, J. E., Stranne, C., Semiletov, I., and O'Regan, M.: Post-glacial flooding of the Bering land bridge dated to 11 cal ka BP based on new geophysical and sediment records, Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, 2017.
Jones, M. C., Berkelhammer, M., Keller, K. J., Yoshimura, K., and Wooller, M. J.: High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5500 years, Sci. Adv., 6, eaaz9588, https://doi.org/10.1126/sciadv.aaz9588., 2020.
Kaufman, D. S., Axford, Y. L., Henderson, A. C. G., Mckay, N. P., Oswald, W.
W., Saenger, C., Anderson, R. S., Bailey, H. L., Clegg, B., Gajewshi, K., Hu, F. S., Jones, M. C., Massa, C., Routson, C. C., Werner, A., Wooller, M. J., and Yu, Z.: Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence, Quaternary Sci. Rev., 147, 312–339, https://doi.org/10.1016/j.quascirev.2015.10.021, 2015.
Kennedy, K. E., Froese, D. G., Zazula, G. D., and Lauriol, B.: Last glacial
maximum age for the northwest Laurentide maximum from the eagle river spillway and delta complex, northern Yukon, Quaternary Sci. Rev. 29, 1288–1300, https://doi.org/10.1016/j.quascirev.2010.02.015, 2010.
Keskitalo, K., Tesi, T., Bröder, L., Andersson, A., Pearce, C., Sköld, M., Semiletov, I. P., Dudarev, O. V., and Gustafsson, Ö.: Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea, Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, 2017.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghé Damsté, J.
S.: New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface
temperature reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kuehn, H., Lembke-Jene, L., Gersonde, R., Esper, O., Lamy, F., Arz, H., Kuhn, G., and Tiedemann, R.: Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal
timescales during the last deglaciation, Clim. Past, 10, 2215–2236,
https://doi.org/10.5194/cp-10-2215-2014, 2014.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 11, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F., Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D. L.,
Graves-Gaylord, A., Grigoriev, M., Hubberten, H.-W., Jordan, J., Jorgenson,
T., Ødegård, R. S., Ogorodov, S., Pollard, W. H., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., and Vasiliev, A.: The Arctic Coastal Dynamics Database: A New Classification Scheme and
Statistics on Arctic Permafrost Coastlines, Estuar. Coasts, 35, 383–400,
https://doi.org/10.1007/s12237-010-9362-6, 2012.
Lattaud, J., Lo,L., Zeeden, C., Liu, Y.-J., Song, S.-R., van der Meer, M. T.
J., Damsté, J. S. S., and Schouten, S.: A multiproxy study of past
environmental changes in the Sea of Okhotsk during the last 1.5 Ma, Org.
Geochem., 132, 50–61, https://doi.org/10.1016/j.orggeochem.2019.04.003, 2019.
Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M., and Deser, C.:
Accelerated Arctic land warming and permafrost degradation during rapid sea
ice loss, Geophys. Res. Lett., 35, L11506, https://doi.org/10.1029/2008GL033985, 2008.
Lembke-Jene, L., Tiedemann, R., Nürnberg, D., Kokfelt, U., Kozdon, R.,
Max, L., Röhl, U., and Gorbarenko, S. A.: Deglacial variability in
Okhotsk Sea Intermediate Water ventilation and biogeochemistry: Implications
for North Pacific nutrient supply and productivity, Quaternary Sci. Rev., 160, 116–137, https://doi.org/10.1016/j.quascirev.2017.01.016, 2017.
Liu, J., Curry, J. A., Wang, H., Song, M., and Horton, R. M.: Impact of declining Arctic sea ice on winter snowfall, P. Natl Acad. Sci. USA, 109,
4074–4079, https://doi.org/10.1073/pnas.1114910109, 2012.
Lo, L., Belt, S. T., Lattaud, J., Friedrich, T., Zeeden, C., Schouten, S.,
Smik, L., Timmermann, A., Cabedo-Sanz, P., Huang, J.-J., Zhou, L., Ou, T.-H., Chang, Y.-P., Wang, L.-C., Chou, Y.-M., Shen, C.-C., Chen, M.-T., Wei, K.-Y., Song, S.-R., Fang, T.-H., Gorbarenko, S. A., Wang, W.-L., Lee, T.-Q., Elderfield, H., and Hodell, D. A.: Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130,000 years ago, Earth Planet. Sc. Lett., 488, 36–45,
https://doi.org/10.1016/j.epsl.2018.02.005, 2018.
Lobbes, J., Fitznar, H. P., and Kattner, G.: Biogeochemical characteristics
of dissolved and particulate organic matter in Russian rivers entering the
Arctic Ocean, Geochim. Cosmochim. Ac., 64, 2973–2983,
https://doi.org/10.1016/S0016-7037(00)00409-9, 2000.
Manley, W. F.: Postglacial flooding of the bering land bridge: a
geospatial animation: INSTAAR, v1, University of Colorado,
http://instaar.colorado.edu/QGISL/bering_land_bridge (last access: October 2022), 2002.
Martens, J., Wild, B., Pearce, C., Tesi, T., Andersson, A., Bröder, L.,
O'Regan, M., Jacobsson, M., Sköld, M., Gemery, L., Cronin, T. M., Semiletov, I., Dudarev, O. V., and Gustafsson, Ö.: Remobilization of old
permafrost carbon to Chukchi Sea sediments during the end of the last
deglaciation, Global Biogeochem. Cy., 33, 2–14, https://doi.org/10.1029/2018GB005969, 2019.
Martens, J., Wild, B., Muschitiello, F., O'Regan, M., Jacobsson, M., Semiletov, I., Dudarev, O. V., and Gustafsson, Ö.: Remobilization of
dormant carbon from Siberian-Arctic permafrost during three past warming
events, Sci. Adv., 6, eabb6546, https://doi.org/10.1126/sciadv.abb6546, 2020.
Max, L., Riethdorf, J.-R., Tiedemann, R., Smirnova, M., Lembke-Jene, L., Fahl, K., Nürnberg, D., Matul, A., and Mollenhauer, G.: Sea surface
temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years, Paleoceanography, 27, PA3213, https://doi.org/10.1029/2012PA002292, 2012.
Max, L., Lembke-Jene, L., Riethdorf, J.-R., Tiedemann, R., Nürnberg, D.,
and Mackensen, A.: Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation, Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, 2014.
Méheust, M., Stein, R., Fahl, K., Max, L., and Riethdorf, J. R.:
High-resolution IP25-based reconstruction of sea-ice variability in the
western North Pacific and Bering Sea during the past 18,000 years, Geo-Mar.
Lett., 36, 101–111, https://doi.org/10.1007/s00367-015-0432-4, 2016.
Méheust, M., Stein, R., Fahl, K., and Gersonde, R.: Sea-ice variability
in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: new insights from IP25 and U proxy records,
Arktos, 4, 1–19, https://doi.org/10.1007/s41063-018-0043-1, 2018.
Menard, E., Allard, M., and Michaud, Y.: Monitoring of ground surface
temperatures in various biophysical micro-environments near Umiujaq, eastern
Hudson Bay, Canada, in: vol. 57, Proceedings of the 7th International Conference on Permafrost, 23–27 June 1998, Yellowknife, Canada, Nordicana, edited by: Lewkowicz, A. G. and Allard, M., Univ. Laval, Quebec, Canada, 723–729, https://www.arlis.org/docs/vol1/ICOP/40770716/CD-ROM/Proceedings/PDF001189/112326.pdf (last access: October 2022), 1998.
Meyer, V. D., Max, L., Hefter, J., Tiedemann, R., and Mollenhauer, G.:
Glacial-to-Holocene evolution of sea surface temperature and surface circulation in the subarctic northwest Pacific and the Western Bering Sea,
Paleoceanography, 31, 916–927, https://doi.org/10.1002/2015PA002877, 2016.
Meyer, V. D., Hefter, J., Lohmann, G., Max, L., Tiedemann, R., and Mollenhauer, G.: Summer temperature evolution on the Kamchatka Peninsula, Russian Far East, during the past 20 000 years, Clim. Past, 13, 359–377,
https://doi.org/10.5194/cp-13-359-2017, 2017.
Meyer, V. D., Hefter, J., Köhler, P., Tiedemann, R., Gersonde, R., Wacker, L., and Mollenhauer, G.: Permafrost-carbon mobilization in Beringia
caused by deglacial meltwater runoff, sea-level rise and warming, Environ.
Res. Lett., 14, 085003, https://doi.org/10.1088/1748-9326/ab2653, 2019.
Morley, J. J., Heusser, L. E., and Shackleton, N. J.: Late Pleistocene/Holocene radiolarian and pollen records from sediments in the Sea of Okhotsk, Paleoceanography, 6, 121–131, https://doi.org/10.1029/90PA02031, 1991.
Nakatsuka, T., Toda, M., Kawamura, K., and Wakatsuchi, M.: Dissolved and
particulate organic carbon in the Sea of Okhotsk: Transport from continental
shelf to ocean interior, J. Geophys. Res., 109, C09S14, https://doi.org/10.1029/2003JC001909, 2004.
Otto, A. and Simpson, M. J.: Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada,
Biogeochemistry, 74, 377–409, https://doi.org/10.1007/s10533-004-5834-8, 2005.
Otto, A. and Simpson, M. J.: Evaluation of CuO oxidation parameters for
determining the source and stage of lignin degradation in soil, Biogeochemistry, 80, 121–142, https://doi.org/10.1007/s10533-006-9014-x, 2006.
Park, H., Walsh, J. E., Kim, Y., Nakai, T., and Ohata, T.: The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths, Polar Sci., 7, 174–187, https://doi.org/10.1016/j.polar.2012.10.002, 2013.
Praetorius, S. K., Mix, A. C., Walczak, M. H., Wohowe, M. D., Addison, J. A., and Prahl, F. G.: North Pacific deglacial hypoxic events linked to abrupt ocean warming, Nature, 527, 362–366, https://doi.org/10.1038/nature15753, 2015.
Rasmussen, S. O., Seierstad, I. K., Andersen, K. K., Bigler, M., Dahl-Jensen, D., and Johnsen, S. J.: Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications, Quaternary Sci. Rev., 27, 18–28, https://doi.org/10.1016/j.quascirev.2007.01.016, 2008.
Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L., and Tiedemann,
R.: Deglacial history of (sub) sea surface temperatures and salinity in the
subarctic NW Pacific: implications for upper-ocean stratification,
Paleoceanography 28, 91–104, https://doi.org/10.1002/palo.20014, 2013.
Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G., and Wetterich, S.:
Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia, in:
Encyclopedia of Quaternary Science, 2nd Edn., edited by: Elias, S. A. and Mock, C. J., Elsevier, Amsterdam, 542–552, https://doi.org/10.1016/B978-0-444-53643-3.00106-0, 2013.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J.
S.: Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sc. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeld, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Schweger, C., Froese, D., White, J. M., and Westgate, J. A.: Pre-glacial and
interglacial pollen records over the last 3 Ma from northwest Canada: Why do
Holocene forests differ from those of previous interglaciations?, Quaternary
Sci. Rev., 30, 2124–2133, https://doi.org/10.1016/j.quascirev.2011.01.020, 2011.
Seki, O., Harada, N., Sato, M., Kawamura, K., Ijiri, A., and Nakatsuka, T.:
Assessment for paleoclimatic utility of terrestrial biomarker records in the
Okhotsk Sea sediments, Deep-Sea Res. Pt. II, 61–64, 85–92, https://doi.org/10.1016/j.dsr2.2011.03.008, 2012.
Seki, O., Mikami, Y., Nagao, S., Bendle, J. A., Nakatsuka, T., Kim, V. I.,
Shesterkin, V. P., Makinov, A. N., Fukushima, M., Mossen, H. M., and Schouten, S.: Lignin phenols and BIT index distribution in the Amur River and the Sea of Okhotsk: Implications for the source and transport of particulate terrestrial OC to the Ocean, Prog. Oceanogr., 126, 146–154,
https://doi.org/10.1016/j.pocean.2014.05.003, 2014a.
Seki, O, Bendle, J. A., Harada, N., Kobayashi, M., Sawada, K., Moossen, H., Inglis, G. N., Nagao, S., and Sakamoto, T.: Assessment and calibration of
TEX86 paleothermometry in the Sea of Okhotsk and sub-polar North Pacific region: Implications for paleoceanography, Prog. Oceanogr., 126, 254–266, https://doi.org/10.1016/j.pocean.2014.04.013, 2014b.
Smith, C. A. S., Burn, C. R., Tarnocai, C., and Sproule, B.: Air and soil
temperature relations along an ecological transect through the permafrost
zones of northwestern Canada, in: vol. 57, Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, Nordicana, 23–27 June 1998, edited by Lewkowicz, A. G., and Allard, M., Univ. Laval,
Quebec, Canada, 1009–1015, https://www.researchgate.net/publication/301327393 (last access: October 2022), 1998.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M., Herzschuh, U., and Hubberten, H. W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40, 6165–6170,
https://doi.org/10.1002/2013GL058088, 2013.
Sun, S., Schefuβ, E., Mulitza, S., Chiessi, C. M., Sawakuchi, A. O.,
Zabel, M., Baker, P. A., Hefter, J., and Mollenhauer, G.: Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments, Biogeosciences, 14, 2495–2512,
https://doi.org/10.5194/bg-14-2495-2017, 2017.
Tarasov, P. E., Bezrukova, E. V., and Krivonogov, S. K.: Late Glacial and
Holocene changes in vegetation cover and climate in southern Siberia derived
from a 15 kyr long pollen record from Lake Kotokel, Clim. Past, 5, 285–295,
https://doi.org/10.5194/cp-5-285-2009, 2009.
Tesi, T., Semiletov, I., Hugelius, G., Dudarev, O., Kuhry, P., and Gustafsson, Ö.: Composition and fate of terrigenous organic matter along
the Arctic land-ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes, Geochim. Cosmochim. Ac., 133, 235–256, https://doi.org/10.1016/j.gca.2014.02.045, 2014.
Tesi, T., Muschitiello, F., Smittenberg, R. H., Jakobsson, M., Vonk, J. E.,
Hill, P., Andersson, A., Kirchner, N., Noormets, R., Dudarev, O., Semiletov,
I., and Gustafsson, Ö.: Massive remobilization of permafrost carbon during post-glacial warming, Nat. Commun., 7, 13653, https://doi.org/10.1038/ncomms13653, 2016.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0, 2020.
Vaks, A., Gutareva, O. S., Breitenbach, S. F. M., Avirmed, E., Mason, A. J.,
Thomas, A. L., Osinzev, A. V., Kononov, A. M., and Henderson, G. M.: Speleothems Reveal 500,000-year history of Siberian Permafrost, Science,
340, 183–186, 2013.
Vaks, A., Mason, A. J., Breitenbach, S. F. M., Kononov, A. M., Osinzev, A.
V., Rosensaft, M., Borshevsky, A., Gutareva, O. S., and Henderson, G. M.:
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice,
Nature, 577, 221–225, https://doi.org/10.1038/s41586-019-1880-1, 2020.
Vandenberghe, J., French, H. M., Gorbunov, A., Marchenko, S., Velichko, A.
A., Jin, H., Cui, Z., Zhang, T., and Wan, X.: The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP, Boreas, 43, 652–666,
https://doi.org/10.1111/bor.12070, 2014.
Viau, A. E., Gajewski, K., Sawada, M. C., and Bunbury, J.: Low- and high-frequency climatevariability in eastern Beringia during the past 25 000 years, Can. J. Earth Sci., 45, 1435–1453, https://doi.org/10.1139/E08-036, 2008.
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin III, F.
S.: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming, Nature, 443, 71–75, https://doi.org/10.1038/nature05040, 2006.
Walter, K. M., Edwards, M. E., Grosse, G., Zimov, S. A., and Chapin III, F.
S.: Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation, Science, 318, 633–636, https://doi.org/10.1126/science.1142924, 2007.
Walter Anthony, K. M., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P.
M., Chapin III, F. S., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P.,
and Frolking, S.: A shift of thermokarst lakes from carbon sources to sinks
during the Holocene epoch, Nature, 511, 452–456, https://doi.org/10.1038/nature13560, 2014.
Wang, R., Kuhn, G., Gong, X., Biskabrn, B. K., Gersonde, R., Lembke-Jene, L., Lohmann, G., Tiedemann, R., and Diekmann, B.: Deglacial land-ocean linkages at the Alaskan continental margin in the Bering Sea, Front. Earth Sci., 9, 712415, https://doi.org/10.3389/feart.2021.712415, 2021.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index, Org. Geochem., 37, 1680–1693, https://doi.org/10.1016/j.orggeochem.2006.07.018, 2006.
Wild, B., Shakhova, N., Dudarev, O., Ruban, A., Kosmach, D., Tumskoy, V.,
Tesi, T., Grimm, H., Nybomy, I., Matsubara, F., Alexanderson, H., Jakobsson,
M., Mazurov, A., Semiletov, I., and Gustafsson, Ö.: Organic matter composition and greenhouse gas production of thawing subsea permafrost in
the Laptev Sea, Nat. Commun., 13, 5057, https://doi.org/10.1038/s41467-022-32696-0, 2022.
Winterfeld, M., Goñi, M. A., Just, J., Hefter, J., and Mollenhauer, G.:
Characterization of particulate organic matter in the Lena River delta and
adjacent nearshore zone, NE Siberia – Part 2: Lignin-derived phenol
compositions, Biogeosciences, 12, 2261–2283, https://doi.org/10.5194/bg-12-2261-2015, 2015.
Winterfeld, M., Mollenhauer, G., Dummann, W., Köhler, P., Lembke-Jene,
L., Meyer, V. D., Hefter, J., Mclntyre, C., Wacker, L., Kokfelt, U., and
Tiedemann, R.: Deglacial mobilization of pre-aged terrestrial carbon from
degrading permafrost, Nat. Commun., 9, 3666, https://doi.org/10.1038/s41467-018-06080-w, 2018.
Wu, J., Mollenhauer, G., Stein, R., Köhler, P., Hefter, J., Fahl, K.,
Grotheer, H., Wei, B., and Nam, S.: Deglacial release of petrogenic and
permafrost carbon from the Canadian Arctic impacting the carbon cycle,
Nat. Commun., 13, 7172, https://doi.org/10.1038/s41467-022-34725-4, 2022.
Yu, S.-H., Zheng, Z., Kershaw, P., Skrypnikova, M., and Huang, K.-Y.: A late
Holocene record of vegetation and fire from the Amur Basin, far-eastern
Russia, Quatern. Int., 432, 79–92, https://doi.org/10.1016/j.quaint.2014.07.059, 2017.
Short summary
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost mobilization, which occurred earlier in the Yukon than in the Amur river basin. Sea ice extent or surface temperatures of adjacent oceans might have had a strong influence on the timing of permafrost mobilization. In contrast to previous evidence, our records imply that during glacial peaks of permafrost decomposition, lipids and lignin might have been delivered to the ocean by identical processes.
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost...