Articles | Volume 19, issue 1
https://doi.org/10.5194/cp-19-123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition
Department of Geoenergy and Storage, Geological Survey of Denmark and
Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
Department of
Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ 't Horntje,
Texel, the Netherlands
Helen K. Coxall
Department of Geological Sciences, Stockholm University, Svante
Arrhenius väg 8, 114 18 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
Sweden
David K. Hutchinson
Department of Geological Sciences, Stockholm University, Svante
Arrhenius väg 8, 114 18 Stockholm, Sweden
Climate Change Research Centre, University of New South Wales, Sydney
NSW 2052, Australia
Diederik Liebrand
National Oceanography Centre, European Way, SO14 3ZH, Southampton,
United Kingdom
Stefan Schouten
Department of
Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ 't Horntje,
Texel, the Netherlands
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Vening Meinesz building A, Princetonlaan 8a, 3584 CB Utrecht,
the Netherlands
Agatha M. de Boer
CORRESPONDING AUTHOR
Department of Geological Sciences, Stockholm University, Svante
Arrhenius väg 8, 114 18 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
Sweden
Related authors
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Kasia K. Śliwińska
J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, https://doi.org/10.5194/jm-38-143-2019, 2019
Short summary
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-59, https://doi.org/10.5194/cp-2024-59, 2024
Preprint under review for CP
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9,600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that 7,200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Diederik Liebrand, Anouk T. M. de Bakker, Heather J. H. Johnstone, and Charlotte S. Miller
Clim. Past, 19, 1447–1459, https://doi.org/10.5194/cp-19-1447-2023, https://doi.org/10.5194/cp-19-1447-2023, 2023
Short summary
Short summary
Climate cycles with millennial periodicities are enigmatic because no Earth external climate forcing exists that operates on millennial timescales. Using a statistical analysis of a famous Greenlandic air temperature record, we show that two disparate energy sources (one astronomical and one centennial) fuel millennial climate variability. We speculate that two distinct Earth internal cryospheric/climatic/oceanic processes are responsible for the transfer of energy to millennial climate cycles.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Cécile L. Blanchet, Rik Tjallingii, Anja M. Schleicher, Stefan Schouten, Martin Frank, and Achim Brauer
Clim. Past, 17, 1025–1050, https://doi.org/10.5194/cp-17-1025-2021, https://doi.org/10.5194/cp-17-1025-2021, 2021
Short summary
Short summary
The Mediterranean Sea turned repeatedly into an oxygen-deprived basin during the geological past, as evidenced by distinct sediment layers called sapropels. We use here records of the last sapropel S1 retrieved in front of the Nile River to explore the relationships between riverine input and seawater oxygenation. We decipher the seasonal cycle of fluvial input and seawater chemistry as well as the decisive influence of primary productivity on deoxygenation at millennial timescales.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Diederik Liebrand and Anouk T. M. de Bakker
Clim. Past, 15, 1959–1983, https://doi.org/10.5194/cp-15-1959-2019, https://doi.org/10.5194/cp-15-1959-2019, 2019
Short summary
Short summary
We present a new analysis and interpretation of a well-established climate record that spans the past 5 million years. We describe how the energy the Earth receives from the Sun is transferred among climate cycles with different duration. This analysis offers new insights into the complex evolution of the global climate system and land-ice volumes during this time. Furthermore, it provides a more complete solution to the long-standing 40 000- and ~100 000-year problems of the ice ages.
Kasia K. Śliwińska
J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, https://doi.org/10.5194/jm-38-143-2019, 2019
Short summary
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
Gabriella M. Weiss, David Chivall, Sebastian Kasper, Hideto Nakamura, Fiz da Costa, Philippe Soudant, Jaap S. Sinninghe Damsté, Stefan Schouten, and Marcel T. J. van der Meer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-147, https://doi.org/10.5194/bg-2019-147, 2019
Preprint withdrawn
Short summary
Short summary
In this study, we used four different haptophyte species and six different organic compounds to investigate the relationship between organic matter synthesis and salinity. We showed that creation in different parts of the cell (chloroplast versus cytosol) determined which compounds retain a correlation between their hydrogen isotopes and salinity. This is important for using hydrogen isotopes to reconstruct salinity in the geologic record.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
Sergio Balzano, Julie Lattaud, Laura Villanueva, Sebastiaan W. Rampen, Corina P. D. Brussaard, Judith van Bleijswijk, Nicole Bale, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 5951–5968, https://doi.org/10.5194/bg-15-5951-2018, https://doi.org/10.5194/bg-15-5951-2018, 2018
Short summary
Short summary
We tried to identify the microbes which biosynthesize a class of lipids widespread in seawater, the long chain alkyl diols (LCDs). We could not find any microorganism likely involved in the production of LCDs. The amounts of LCDs found are too high to be produced by living organisms and are likely to be part of the refractory organic matter persisting for long periods in the water column.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
David K. Hutchinson, Agatha M. de Boer, Helen K. Coxall, Rodrigo Caballero, Johan Nilsson, and Michiel Baatsen
Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, https://doi.org/10.5194/cp-14-789-2018, 2018
Short summary
Short summary
The Eocene--Oligocene transition was a major cooling event 34 million years ago. Climate model studies of this transition have used low ocean resolution or topography that roughly approximates the time period. We present a new climate model simulation of the late Eocene, with higher ocean resolution and topography which is accurately designed for this time period. These features improve the ocean circulation and gateways which are thought to be important for this climate transition.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Nicole J. Bale, Tracy A. Villareal, Ellen C. Hopmans, Corina P. D. Brussaard, Marc Besseling, Denise Dorhout, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 1229–1241, https://doi.org/10.5194/bg-15-1229-2018, https://doi.org/10.5194/bg-15-1229-2018, 2018
Short summary
Short summary
Associations between diatoms and N-fixing cyanobacteria (diatom–diazotroph associations, DDAs) play an important role in the N cycle of the tropical North Atlantic. Heterocysts are the site of N fixation and contain unique glycolipids. We measured these glycolipids in the water column and surface sediment from the tropical North Atlantic. We found a significant correlation between the concentration of glycolipid and of DDAs, strengthening their application as biomarkers.
Gabriella M. Weiss, Eva Y. Pfannerstill, Stefan Schouten, Jaap S. Sinninghe Damsté, and Marcel T. J. van der Meer
Biogeosciences, 14, 5693–5704, https://doi.org/10.5194/bg-14-5693-2017, https://doi.org/10.5194/bg-14-5693-2017, 2017
Short summary
Short summary
Algal-derived compounds allow us to make assumptions about environmental conditions in the past. In order to better understand how organisms record environmental conditions, we grew microscopic marine algae at different light intensities, salinities, and alkalinities in a temperature-controlled environment. We determined how these environmental parameters affected specific algal-derived compounds, especially their relative deuterium content, which seems to be mainly affected by salinity.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Louise C. Sime, Dominic Hodgson, Thomas J. Bracegirdle, Claire Allen, Bianca Perren, Stephen Roberts, and Agatha M. de Boer
Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, https://doi.org/10.5194/cp-12-2241-2016, 2016
Short summary
Short summary
Latitudinal shifts in the Southern Ocean westerly wind jet could explain large observed changes in the glacial to interglacial ocean CO2 inventory. However there is considerable disagreement in modelled deglacial-warming jet shifts. Here multi-model output is used to show that expansion of sea ice during the glacial period likely caused a slight poleward shift and intensification in the westerly wind jet. Issues with model representation of the winds caused much of the previous disagreement.
Sandra Mariam Heinzelmann, Nicole Jane Bale, Laura Villanueva, Danielle Sinke-Schoen, Catharina Johanna Maria Philippart, Jaap Smede Sinninghe Damsté, Stefan Schouten, and Marcel Teunis Jan van der Meer
Biogeosciences, 13, 5527–5539, https://doi.org/10.5194/bg-13-5527-2016, https://doi.org/10.5194/bg-13-5527-2016, 2016
Short summary
Short summary
In order to understand microbial communities in the environment it is necessary to assess their metabolic potential. The hydrogen isotopic composition of fatty acids has been shown to be promising tool to study the general metabolism of microorganisms in pure culture. Here we showed that it is possible to study seasonal changes in the general metabolism of the whole community by studying the hydrogen isotopic composition of fatty acids.
Douwe S. Maat, Nicole J. Bale, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, Stefan Schouten, and Corina P. D. Brussaard
Biogeosciences, 13, 1667–1676, https://doi.org/10.5194/bg-13-1667-2016, https://doi.org/10.5194/bg-13-1667-2016, 2016
Short summary
Short summary
This study shows that the phytoplankter Micromonas pusilla alters its lipid composition when the macronutrient phosphate is in low supply. This reduction in phospholipids is directly dependent on the strength of the limitation. Furthermore we show that, when M. pusilla is infected by viruses, lipid remodeling is lower. The study was carried out to investigate how phytoplankton and its viruses are affected by environmental factors and how this affects food web dynamics.
M. Rodrigo-Gámiz, S. W. Rampen, H. de Haas, M. Baas, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 12, 6573–6590, https://doi.org/10.5194/bg-12-6573-2015, https://doi.org/10.5194/bg-12-6573-2015, 2015
Short summary
Short summary
This research reports a test of the applicability of three organic-derived temperature proxies (UK'37, TEX86 and LDI) at high latitudes around Iceland. A range of samples including suspended particular material (SPM), trapped descending particles and surface sediments were collected to test the different proxies in the water column and the sediment.The combination of three independent SST organic proxies provided important information about seasonality and differences in habitat depth.
M. Sollai, E. C. Hopmans, S. Schouten, R. G. Keil, and J. S. Sinninghe Damsté
Biogeosciences, 12, 4725–4737, https://doi.org/10.5194/bg-12-4725-2015, https://doi.org/10.5194/bg-12-4725-2015, 2015
Short summary
Short summary
The distribution of Thaumarchaeota and anammox bacteria in the water column of the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) was investigated by collecting suspended particulate matter (SPM) and analyzing it for the content of specific intact polar lipids (IPLs) produced by the two microbial groups. We found a clear niche segregation in the distribution of the two groups in the coastal waters of the ETNP but a partial overlap of their niches in the open-water setting.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
A. de Kluijver, P. L. Schoon, J. A. Downing, S. Schouten, and J. J. Middelburg
Biogeosciences, 11, 6265–6276, https://doi.org/10.5194/bg-11-6265-2014, https://doi.org/10.5194/bg-11-6265-2014, 2014
A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, and C. P. Slomp
Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, https://doi.org/10.5194/cp-10-1421-2014, 2014
U. Schuster, A. J. Watson, D. C. E. Bakker, A. M. de Boer, E. M. Jones, G. A. Lee, O. Legge, A. Louwerse, J. Riley, and S. Scally
Earth Syst. Sci. Data, 6, 175–183, https://doi.org/10.5194/essd-6-175-2014, https://doi.org/10.5194/essd-6-175-2014, 2014
S. K. Lengger, Y. A. Lipsewers, H. de Haas, J. S. Sinninghe Damsté, and S. Schouten
Biogeosciences, 11, 201–216, https://doi.org/10.5194/bg-11-201-2014, https://doi.org/10.5194/bg-11-201-2014, 2014
N. J. Bale, L. Villanueva, E. C. Hopmans, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 10, 7195–7206, https://doi.org/10.5194/bg-10-7195-2013, https://doi.org/10.5194/bg-10-7195-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Marine Archives | Timescale: Cenozoic
Climate variability, heat distribution, and polar amplification in the warm unipolar “icehouse” of the Oligocene
The role of atmospheric CO2 in controlling sea surface temperature change during the Pliocene
Bayesian multi-proxy reconstruction of early Eocene latitudinal temperature gradients
Resilient Antarctic monsoonal climate prevented ice growth during the Eocene
Amplified surface warming in the south-west Pacific during the mid-Pliocene (3.3–3.0 Ma) and future implications
The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions
Could the Pliocene constrain the equilibrium climate sensitivity?
Palaeogeographic controls on climate and proxy interpretation
On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets
Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project
A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Erin L. McClymont, Sze Ling Ho, and Heather L. Ford
Clim. Past, 20, 1177–1194, https://doi.org/10.5194/cp-20-1177-2024, https://doi.org/10.5194/cp-20-1177-2024, 2024
Short summary
Short summary
The Pliocene (~ 3 million years ago) is of interest because its warm climate is similar to projections of the future. We explore the role of atmospheric carbon dioxide in forcing sea surface temperature during the Pliocene by combining climate model outputs with palaeoclimate proxy data. We investigate whether this role changes seasonally and also use our data to suggest a new estimate of Pliocene climate sensitivity. More data are needed to further explore the results presented.
Kilian Eichenseer and Lewis A. Jones
Clim. Past, 20, 349–362, https://doi.org/10.5194/cp-20-349-2024, https://doi.org/10.5194/cp-20-349-2024, 2024
Short summary
Short summary
Large-scale palaeoclimate reconstructions are often based on sparse and unevenly sampled records, inviting potential biases. Here, we present a Bayesian hierarchical model that combines geochemical with ecological proxy data to model the latitudinal sea surface temperature gradient. Applying this model to the early Eocene climatic optimum highlights how our integrated approach can improve palaeoclimate reconstructions from datasets with limited sampling.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Youichi Kamae, Kohei Yoshida, and Hiroaki Ueda
Clim. Past, 12, 1619–1634, https://doi.org/10.5194/cp-12-1619-2016, https://doi.org/10.5194/cp-12-1619-2016, 2016
Short summary
Short summary
Climate model simulations conducted in previous studies tended to underestimate the late-Pliocene higher-latitude warming suggested by proxy evidences. We explore how prescribed trace gases, ice sheets, vegetation, lakes and orography affect the Pliocene climate simulation based on a protocol of the PlioMIP Phase 2. The revised boundary forcing data lead to amplified higher-latitude warming that is qualitatively consistent with the paleoenvironment reconstructions.
J. C. Hargreaves and J. D. Annan
Clim. Past, 12, 1591–1599, https://doi.org/10.5194/cp-12-1591-2016, https://doi.org/10.5194/cp-12-1591-2016, 2016
Short summary
Short summary
The mid-Pliocene Warm Period, 3 million years ago, was the most recent interval with high greenhouse gases. By modelling the period with the same models used for future projections, we can link the past and future climates. Here we use data from the mid-Pliocene to produce a tentative result for equilibrium climate sensitivity. We show that there are considerable uncertainties that strongly influence the result, but we are optimistic that these may be reduced in the next few years.
Daniel J. Lunt, Alex Farnsworth, Claire Loptson, Gavin L. Foster, Paul Markwick, Charlotte L. O'Brien, Richard D. Pancost, Stuart A. Robinson, and Neil Wrobel
Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, https://doi.org/10.5194/cp-12-1181-2016, 2016
Short summary
Short summary
We explore the influence of changing geography from the period ~ 150 million years ago to ~ 35 million years ago, using a set of 19 climate model simulations. We find that without any CO2 change, the global mean temperature is remarkably constant, but that regionally there are significant changes in temperature which we link back to changes in ocean circulation. Finally, we explore the implications of our findings for the interpretation of geological indicators of past temperatures.
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
A. M. Haywood, D. J. Hill, A. M. Dolan, B. L. Otto-Bliesner, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, H. J. Dowsett, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, A. Abe-Ouchi, S. J. Pickering, G. Ramstein, N. A. Rosenbloom, U. Salzmann, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, https://doi.org/10.5194/cp-9-191-2013, 2013
D. J. Lunt, T. Dunkley Jones, M. Heinemann, M. Huber, A. LeGrande, A. Winguth, C. Loptson, J. Marotzke, C. D. Roberts, J. Tindall, P. Valdes, and C. Winguth
Clim. Past, 8, 1717–1736, https://doi.org/10.5194/cp-8-1717-2012, https://doi.org/10.5194/cp-8-1717-2012, 2012
Cited articles
Abels, H. A., Dupont-Nivet, G., Xiao, G., Bosboom, R., and Krijgsman, W.:
Step-wise change of Asian interior climate preceding the Eocene-Oligocene
Transition (EOT), Palaeogeogr. Palaeocl., 299, 399–412, https://doi.org/10.1016/j.palaeo.2010.11.028, 2011.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A.,
Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing
atmospheric CO2 concentration was the primary driver of early Cenozoic
climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016.
Arthur, M. A., Srivastava, S. P., Kaminski, M., Jarrard, R., and Osler, J.:
Seismic Stratigraphy and History of Deep Circulation and Sediment Drift
Development in Baffin Bay and the Labrador Sea, in: Proceedings of the Ocean
Drilling Program, 105 Scientific Results, 957–988,
https://doi.org/10.2973/odp.proc.sr.105.118.1989, 1989.
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020.
Bernard, T., Steer, P., Gallagher, K., Szulc, A., Whitham, A., and Johnson,
C.: Evidence for Eocene-Oligocene glaciation in the landscape of the East
Greenland margin, Geology, 44, 895–898, https://doi.org/10.1130/G38248.1,
2016.
de Boer, A. M., Toggweiler, J. R., and Sigman, D. M.: Atlantic Dominance of
the Meridional Overturning Circulation, J. Phys. Oceanogr., 38, 435–450, https://doi.org/10.1175/2007JPO3731.1, 2008.
Bohaty, S. M., Zachos, J. C., and Delaney, M. L.: Foraminiferal Mg Ca
evidence for Southern Ocean cooling across the Eocene-Oligocene transition,
Earth Planet. Sci. Lett., 317–318, 251–261,
https://doi.org/10.1016/j.epsl.2011.11.037, 2012.
Borrelli, C., Cramer, B. S., and Katz, M. E.: Bipolar Atlantic deepwater
circulation in the middle-late Eocene: Effects of Southern Ocean gateway
openings, Paleoceanography, 29, 308–327, https://doi.org/10.1002/2012PA002444, 2014.
Borrelli, C., Katz, M. E., and Toggweiler, J. R.: Middle to Late Eocene
Changes of the Ocean Carbonate Cycle, Paleoceanography and Paleoclimatology,
36, e2020PA004168, https://doi.org/10.1029/2020PA004168, 2021.
Boyer, T. P., Antonov, J. I., Baranova, O. K., Garcia, H. E., Johnson, D.
R., Mishonov, A. V., O'Brien, T. D., Seidov, D., I. (Igor), S., Zweng, M.
M., Paver, C. R., Locarnini, R. A., Reagan, J. R., Coleman, C., and Grodsky,
A.: World ocean database 2013, NOAA Atlas NESDIS 72,
https://doi.org/10.7289/V5NZ85MT, 2013.
Boyle, P. R., Romans, B. W., Tucholke, B. E., Norris, R. D., Swift, S. A.,
and Sexton, P. F.: Cenozoic North Atlantic deep circulation history recorded
in contourite drifts, offshore Newfoundland, Canada, Mar. Geol., 385, 185–203, https://doi.org/10.1016/j.margeo.2016.12.014, 2017.
Brassell, S. C.: Climatic influences on the Paleogene evolution of
alkenones, Paleoceanography, 29, 255–272,
https://doi.org/10.1002/2013PA002576, 2014.
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein,
M.: Molecular stratigraphy: A new tool for climatic assessment, Nature, 320, 129–133, https://doi.org/10.1038/320129a0, 1986.
Broeker, W.: The Great Ocean Conveyor, Oceanography, 4, 79–89, https://doi.org/10.5670/oceanog.1991.07, 1991.
Coxall, H. K. and Wilson, P. A.: Early Oligocene glaciation and productivity
in the eastern equatorial Pacific: Insights into global carbon cycling,
Paleoceanography, 26, PA2221, https://doi.org/10.1029/2010PA002021, 2011.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.:
Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57,
https://doi.org/10.1038/nature03135, 2005.
Coxall, H. K., Huck, C. E., Huber, M., Lear, C. H., Legarda-Lisarri, A.,
O'Regan, M., Śliwińska, K. K., van de Flierdt, T., de Boer, A. M.,
Zachos, J. C., and Backman, J.: Export of nutrient rich Northern Component
Water preceded early Oligocene Antarctic glaciation, Nat. Geosci., 11,
190–196, https://doi.org/10.1038/s41561-018-0069-9, 2018.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K.,
Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L.,
Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.:
Synchronous tropical and polar temperature evolution in the Eocene, Nature,
559, 382–386, https://doi.org/10.1038/s41586-018-0272-2, 2018.
Cramwinckel, M. J., Coxall, H. K., Śliwińska, K. K., Polling, M.,
Harper, D. T., Bijl, P. K., Brinkhuis, H., Eldrett, J. S., Houben, A. J. P.,
Peterse, F., Schouten, S., Reichart, G.-J., Zachos, J. C., and Sluijs, A.: A
Warm, Stratified, and Restricted Labrador Sea Across the Middle Eocene and
Its Climatic Optimum, Paleoceanography and Paleoclimatology, 35,
e2020PA003932, https://doi.org/10.1029/2020PA003932, 2020.
Davies, A., Hunter, S. J., Gréselle, B., Haywood, A. M., and Robson, C.:
Evidence for seasonality in early Eocene high latitude sea-surface
temperatures, Earth Planet. Sci. Lett., 519, 274–283,
https://doi.org/10.1016/j.epsl.2019.05.025, 2019.
Davies, R., Cartwright, J., Pike, J., and Line, C.: Early Oligocene
initiation of North Atlantic Deep Water formation, Nature, 410, 917–920,
https://doi.org/10.1038/35073551, 2001.
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V.,
Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A.,
Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C.
T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R.
S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J.,
Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly,
P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M. D., Shevliakova, E.,
Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T.,
Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 Global Coupled Climate
Models. Part I: Formulation and Simulation Characteristics, J. Climate, 19, 643–674, https://doi.org/10.1175/JCLI3629.1, 2006.
Eldholm, O., Thiede, J., Taylor, E., Bjørklund, K., Bleil, U.,
Ciesielski, P. R., Desprairies, A., Donnally, D., Froget, C., Goll, R. M.,
Henrich, R., Jansen, E., Krissek, L., Kvenvolden, K., Lehuray, A., Love, D.,
Lysne, P., Mcdonald, T., Mudie, P., Osterman, L., Parson, L., Phillips, J.,
Pittenger, A., Qvale, G., Schonharting, G., and Viereck, L.: 5. Site 643:
Norwegian Sea, Proceedings of the Ocean Drilling Program. Initial Reports,
104, 455–615, https://doi.org/10.2973/odp.proc.ir.104.105.1987, 1987.
Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E., and Roberts, A.
P.: Continental ice in Greenland during the Eocene and Oligocene, Nature,
446, 176–179, https://doi.org/10.1038/nature05591, 2007.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M.: Increased
seasonality through the Eocene to Oligocene transition in northern high
latitudes, Nature, 459, 969–973, https://doi.org/10.1038/nature08069, 2009.
Elsworth, G., Galbraith, E., Halverson, G., and Yang, S.: Enhanced
weathering and CO2 drawdown caused by latest Eocene strengthening of the
Atlantic meridional overturning circulation, Nat. Geosci., 10, 213–216,
2017.
Firth, J. V.: Eocene and Oligocene calcareous nannofossils from the Labrador
Sea, ODP Leg 105, Proceedings of the Ocean Drilling Program, Scientific
Results, 105, 263–286, 1989.
Firth, J. V., Eldrett, J. S., Harding, I. C., Coxall, H. K., and Wade, B.
S.: Integrated biomagnetochronology for the Palaeogene of ODP Hole 647A:
implications for correlating palaeoceanographic events from high to low
latitudes, Geological Society, London, Special Publications, 373, 29–78,
https://doi.org/10.1144/SP373.9, 2013.
Fyke, J. G., D'Orgeville, M., and Weaver, A. J.: Drake Passage and Central
American Seaway controls on the distribution of the oceanic carbon
reservoir, Globl Planet. Change, 128, 72–82,
https://doi.org/10.1016/j.gloplacha.2015.02.011, 2015.
Haiblen, A. M., Opdyke, B. N., Roberts, A. P., Heslop, D., and Wilson, P.
A.: Midlatitude Southern Hemisphere Temperature Change at the End of the
Eocene Greenhouse Shortly Before Dawn of the Oligocene Icehouse,
Paleoceanography and Paleoclimatology, 34, 1995–2004,
https://doi.org/10.1029/2019PA003679, 2019.
Herbert, T. D., Rose, R., Dybkjær, K., Rasmussen, E. S., and
Śliwińska, K. K.: Bi-Hemispheric Warming in the Miocene Climatic
Optimum as Seen from the Danish North Sea, Paleoceanography and
Paleoclimatology, 35, e2020PA003935, https://doi.org/10.1029/2020PA003935, 2020.
Hohbein, M. W., Sexton, P. F., and Cartwright, J. A.: Onset of North
Atlantic deep water production coincident with inception of the Cenozoic
global cooling trend, Geology, 40, 255–258,
https://doi.org/10.1130/G32461.1, 2012.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M.,
Creech, J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J.
S., Gibbs, S., Pearson, P. N., and Zachos, J. C.: Early Paleogene
temperature history of the Southwest Pacific Ocean: Reconciling proxies and
models, Earth Planet. Sci. Lett., 349–350, 53–66,
https://doi.org/10.1016/j.epsl.2012.06.024, 2012.
Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether lipids,
Earth Planet. Sci. Lett., 224, 107–116,
https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Houben, A. J. P., Quaijtaal, W., Wade, B. S., Schouten, S., and Brinkhuis,
H.: Quantitative organic-walled dinoflagellate cyst stratigraphy across the
Eocene-Oligocene Transition in the Gulf of Mexico: A record of climate- and
sea level change during the onset of Antarctic glaciation, Newsl. Stratigr., 52,
131–154, https://doi.org/10.1127/nos/2018/0455, 2019.
Huguet, C., Schimmelmann, A., Thunell, R., Lourens, L. J., Sinninghe
Damsté, J. S., and Schouten, S.: A study of the TEX86 paleothermometer
in the water column and sediments of the Santa Barbara Basin, California,
Paleoceanography, 22, 1–9, https://doi.org/10.1029/2006PA001310, 2007.
Huguet, C., Kim, J. H., de Lange, G. J., Sinninghe Damsté, J. S., and
Schouten, S.: Effects of long term oxic degradation on the , TEX86 and
BIT organic proxies, Org. Geochem.,
https://doi.org/10.1016/j.orggeochem.2009.09.003, 2009.
Hutchinson, D. K. and de Boer, A. M.: Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene Transition – model data, https://doi.org/10.17043/hutchinson-2022-eocene-oligocene-1, 2022.
Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, 2018.
Hutchinson, D. K., Coxall, H. K., O'Regan, M., Nilsson, J., Caballero, R.,
and de Boer, A. M.: Arctic closure as a trigger for Atlantic overturning at
the Eocene-Oligocene Transition, Nat. Commun., 10, 3797,
https://doi.org/10.1038/s41467-019-11828-z, 2019.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Inglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J.,
Pagani, M., Jardine, P. E., Pearson, P. N., Markwick, P., Galsworthy, A. M.
J., Raynham, L., Taylor, K. W. R., and Pancost, R. D.: Descent toward the
Icehouse: Eocene sea surface cooling inferred from GDGT distributions,
Paleoceanography, 30, 1000–1020, https://doi.org/10.1002/2014PA002723,
2015.
Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T.,
Mecking, J. V., and Wood, R. A.: Global and European climate impacts of a
slowdown of the AMOC in a high resolution GCM, Clim. Dynam., 45, 3299–3316,
https://doi.org/10.1007/s00382-015-2540-2, 2015.
Kaminski, M. A. and Ortiz, S.: The Eocene-Oligocene turnover of deep-water
agglutinated foraminifera at ODP Site 647, Southern Labrador Sea (North
Atlantic), Micropaleontology, 60, 53–66, 2014.
Kaminski, M. A., Gradstein, F. M., and Berggren, W. A.: Paleogene benthic
foraminifer biostratigraphy and paleoecology at Site 647, southern Labrador
Sea, Proceedings, scientific results, Ocean Drilling Program, Leg 105 Baffin Bay, Labrador Sea,
105, 705–730, 1989.
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V.,
Cramer, B. S., and Rosenthal, Y.: Stepwise transition from the Eocene
greenhouse to the Oligocene icehouse, Nat. Geosci., 1, 329–334,
https://doi.org/10.1038/ngeo179, 2008.
Kim, J. H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Damsté, J. S. S.: New
indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Langton, S. J., Rabideaux, N. M., Borrelli, C., and Katz, M. E.:
Southeastern Atlantic deep-water evolution during the late-middle Eocene to
earliest Oligocene (Ocean Drilling Program Site 1263 and Deep Sea Drilling
Project Site 366), Geosphere, 12, 1032–1047, 2016.
Lasabuda, A., Laberg, J. S., Knutsen, S.-M., and Høgseth, G.: Early to
middle Cenozoic paleoenvironment and erosion estimates of the southwestern
Barents Sea: Insights from a regional mass-balance approach, Mar. Petrol. Geol., 96, 501–521,
https://doi.org/10.1016/j.marpetgeo.2018.05.039, 2018.
Lauretano, V., Kennedy-Asser, A. T., Korasidis, V. A., Wallace, M. W.,
Valdes, P. J., Lunt, D. J., Pancost, R. D., and Naafs, B. D. A.: Eocene to
Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2,
Nat. Geosci., 14, 659–664, https://doi.org/10.1038/s41561-021-00788-z,
2021.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal,
Y.: Cooling and ice growth across the Eocene-Oligocene transition, Geology,
36, 251–254, https://doi.org/10.1130/G24584A.1, 2008.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H.,
Shah, S. R., Leckie, R. M., and Pearson, A.: Global cooling during the
Eocene-Oligocene climate transition, Science, 323, 1187–1190,
https://doi.org/10.1126/science.1166368, 2009.
Liu, Z., He, Y., Jiang, Y., Wang, H., Liu, W., Bohaty, S. M., and Wilson, P.
A.: Transient temperature asymmetry between hemispheres in the Palaeogene
Atlantic Ocean, Nat. Geosci., 11, 656–660, https://doi.org/10.1038/s41561-018-0182-9, 2018.
Lopes dos Santos, R. A., Prange, M., Castañeda, I. S., Schefuß, E.,
Mulitza, S., Schulz, M., Niedermeyer, E. M., Sinninghe Damsté, J. S.,
and Schouten, S.: Glacial-interglacial variability in Atlantic meridional
overturning circulation and thermocline adjustments in the tropical North
Atlantic, Earth Planet. Sci. Lett., 300, 407–414,
https://doi.org/10.1016/j.epsl.2010.10.030, 2010.
Lunt, D. J., Bragg, F., Chan, W.-L., Hutchinson, D. K., Ladant, J.-B., Morozova, P., Niezgodzki, I., Steinig, S., Zhang, Z., Zhu, J., Abe-Ouchi, A., Anagnostou, E., de Boer, A. M., Coxall, H. K., Donnadieu, Y., Foster, G., Inglis, G. N., Knorr, G., Langebroek, P. M., Lear, C. H., Lohmann, G., Poulsen, C. J., Sepulchre, P., Tierney, J. E., Valdes, P. J., Volodin, E. M., Dunkley Jones, T., Hollis, C. J., Huber, M., and Otto-Bliesner, B. L.: DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data, Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, 2021.
Miller, K. G., Mountain, G. S., and Tucholke, B. E.: Oligocene
glacio-eustasy and erosion on the margins of the North Atlantic, Geology, 13, 10–13, https://doi.org/10.1130/0091-7613(1985)13<10:OGAEOT>2.0.CO;2, 1985.
Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I., and
Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core-tops from the eastern South Atlantic and the global ocean
(60∘ N–60∘ S), Geochim. Cosmochim. Ac., 62, 1757–1772, https://doi.org/10.1016/S0016-7037(98)00097-0, 1998.
Müller, R. D., Mather, B., Dutkiewicz, A., Keller, T., Merdith, A.,
Gonzalez, C. M., Gorczyk, W., and Zahirovic, S.: Evolution of Earth's
tectonic carbon conveyor belt, Nature, 605, 629–639,
https://doi.org/10.1038/s41586-022-04420-x, 2022.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J.
S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C.,
Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N.,
Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A.,
Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond,
N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous
sea-surface temperature evolution: Constraints from TEX86 and planktonic
foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
Ortiz, S. and Kaminski, M. A.: Record of Deep-Sea, Benthic
Elongate-Cylindrical Foraminifera Across the Eocene-Oligocene Transition in
the North Atlantic Ocean (ODP Hole 647A), J. Foramin. Res., 42, 345–368, https://doi.org/10.2113/gsjfr.42.4.345, 2012.
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W.,
Krishnan, S., and DeConto, R. M.: The role of carbon dioxide during the
onset of antarctic glaciation, Science, 334, 1261–1264,
https://doi.org/10.1126/science.1203909, 2011.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene–Oligocene climate transition, Nature, 461, 1110–1113,
2009.
Piepjohn, K., von Gosen, W., and Tessensohn, F.: The Eurekan deformation in
the Arctic: an outline, J. Geol. Soc., 173, jgs2016-081,
https://doi.org/10.1144/jgs2016-081, 2016.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in
long-chain ketone compositions for paleotemperature assessment, Nature, 330, 367–369, https://doi.org/10.1038/330367a0, 1987.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of
long-chain alkenones as indicators of paleoceanographic conditions,
Geochim. Cosmochim. Ac., 52, 2303–2310,
https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Pusz, A. E., Thunell, R. C., and Miller, K. G.: Deep water temperature,
carbonate ion, and ice volume changes across the Eocene-Oligocene climate
transition, Paleoceanography, 26, PA2205,
https://doi.org/10.1029/2010PA001950, 2011.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W.,
Stahl, D. A., and Ingalls, A. E.: Confounding effects of oxygen and
temperature on the TEX86 signature of marine Thaumarchaeota, P. Natl. Acad. Sci. USA, 112, 10979–10984, https://doi.org/10.1073/pnas.1501568112,
2015.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J.
S.: Distributional variations in marine crenarchaeol membrane lipids: a new
tool for reconstructing ancient sea water temperatures?, Earth Planet. Sci. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(03)00193-6, 2002.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., and
Damsté, J. S. S.: Analytical methodology for TEX86 paleothermometry
by high-performance liquid chromatography/atmospheric pressure chemical
ionization-mass spectrometry, Anal. Chem., 79, 2940-4, https://doi.org/10.1021/ac062339v, 2007.
Schouten, S., Eldrett, J., Greenwood, D. R., Harding, I., Baas, M., and
Damsté, J. S. S.: Onset of long-term cooling of Greenland near the
Eocene-Oligocene boundary as revealed by branched tetraether lipids,
Geology, 36, 147–150, https://doi.org/10.1130/G24332A.1, 2008.
Schouten, S., Hopmans, E. C., Rosell-Melé, A., Pearson, A., Adam, P.,
Bauersachs, T., Bard, E., Bernasconi, S. M., Bianchi, T. S., Brocks, J. J.,
Carlson, L. T., Castañeda, I. S., Derenne, S., Selver, A. D., Dutta, K.,
Eglinton, T., Fosse, C., Galy, V., Grice, K., Hinrichs, K. U., Huang, Y.,
Huguet, A., Huguet, C., Hurley, S., Ingalls, A., Jia, G., Keely, B., Knappy,
C., Kondo, M., Krishnan, S., Lincoln, S., Lipp, J., Mangelsdorf, K.,
Martínez-García, A., Ménot, G., Mets, A., Mollenhauer, G.,
Ohkouchi, N., Ossebaar, J., Pagani, M., Pancost, R. D., Pearson, E. J.,
Peterse, F., Reichart, G. J., Schaeffer, P., Schmitt, G., Schwark, L., Shah,
S. R., Smith, R. W., Smittenberg, R. H., Summons, R. E., Takano, Y., Talbot,
H. M., Taylor, K. W. R., Tarozo, R., Uchida, M., Van Dongen, B. E., Van
Mooy, B. A. S., Wang, J., Warren, C., Weijers, J. W. H., Werne, J. P.,
Woltering, M., Xie, S., Yamamoto, M., Yang, H., Zhang, C. L., Zhang, Y.,
Zhao, M., and Damsté, J. S. S.: An interlaboratory study of TEX86 and BIT
analysis of sediments, extracts, and standard mixtures, Geochem. Geophy. Geosy., 14, 5263–5285,
https://doi.org/10.1002/2013GC004904, 2013a.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org. Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013b.
Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S., and Verschuren, D.:
Distribution of tetraether lipids in the 25-ka sedimentary record of Lake
Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an
equatorial African lake, Quat. Sci. Rev., 50, 43–54,
https://doi.org/10.1016/J.QUASCIREV.2012.07.001, 2012.
Śliwińska, K. K.: Early Oligocene dinocysts as a tool for
palaeoenvironment reconstruction and stratigraphical framework – a case
study from a North Sea well, J. Micropalaeontol, 38, 143–176,
https://doi.org/10.5194/jm-38-143-2019, 2019.
Śliwińska, K. K.: Data set to: Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene Transition, https://doi.org/10.22008/FK2/FW9WFV, 2022.
Śliwińska, K. K. and Heilmann-Clausen, C.: Early Oligocene cooling
reflected by the dinoflagellate cyst Svalbardella cooksoniae,
Palaeogeogr. Palaeocl., 305, 138–149,
https://doi.org/10.1016/j.palaeo.2011.02.027, 2011.
Śliwińska, K. K., Clausen, O. R., and Heilmann-Clausen, C.: A
mid-Oligocene cooling (Oi-2b) reflected in the dinoflagellate record and in
depositional sequence architecture. An integrated study from the eastern
North Sea Basin, Mar. Petrol. Geol., 27, 1424–1430,
https://doi.org/10.1016/j.marpetgeo.2010.03.008, 2010.
Śliwińska, K. K., Thomsen, E., Schouten, S., Schoon, P. L., and
Heilmann-Clausen, C.: Climate- and gateway-driven cooling of Late Eocene to
earliest Oligocene sea surface temperatures in the North Sea Basin, Sci. Rep.,
9, 4458, https://doi.org/10.1038/s41598-019-41013-7, 2019.
Stärz, M., Jokat, W., Knorr, G. et al.: Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge, Nat. Commun., 8, 15681, https://doi.org/10.1038/ncomms15681, 2017.
Stein, R., Littke, R., Stax, R., and Welte, D.: Quantity, provenance, and
maturity of organic matter at ODP Sites 645, 646, and 647: implications for
reconstruction of paleoenvironments in Baffin Bay and Labrador Sea during
Tertiary and Quaternary time, Proceedings of the Ocean Drilling Program,
Scientific Results, College Station, TX (Ocean Drilling Program), 105,
185–208, https://doi.org/10.2973/odp.proc.sr.105.154.1989, 1989.
Steinthorsdottir, M., Porter, A. S., Holohan, A., Kunzmann, L., Collinson, M., and McElwain, J. C.: Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary, Clim. Past, 12, 439–454, https://doi.org/10.5194/cp-12-439-2016, 2016.
Straume, E. O., Gaina, C., Medvedev, S., and Nisancioglu, K. H.: Global
Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic
Gateways, Gondwana Res., 86, 126–143,
https://doi.org/10.1016/j.gr.2020.05.011, 2020.
Straume, E. O., Nummelin, A., Gaina, C., and Nisancioglu, K. H.: Climate
transition at the Eocene–Oligocene influenced by bathymetric changes to the
Atlantic–Arctic oceanic gateways, P. Natl. Acad. Sci. USA, 119, e2115346119, https://doi.org/10.1073/pnas.2115346119, 2022.
Sun, J. and Windley, B. F.: Onset of aridification by 34 Ma across the
Eocene-Oligocene transition in Central Asia, Geology, 43, 1015–1018, https://doi.org/10.1130/G37165.1, 2015.
Tardif, D., Fluteau, F., Donnadieu, Y., Le Hir, G., Ladant, J.-B., Sepulchre, P., Licht, A., Poblete, F., and Dupont-Nivet, G.: The origin of Asian monsoons: a modelling perspective, Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, 2020.
Tibbett, E. J., Scher, H. D., Warny, S., Tierney, J. E., Passchier, S., and
Feakins, S. J.: Late Eocene Record of Hydrology and Temperature From Prydz
Bay, East Antarctica, Paleoceanography and Paleoclimatology, 36,
e2020PA004204, https://doi.org/10.1029/2020PA004204, 2021.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying calibration
model for the TEX86 proxy, Geochim. Cosmochim. Ac., 127,
83–106, https://doi.org/10.1016/j.gca.2013.11.026, 2014.
Tierney, J. E. and Tingley, M. P.: A TEX86 surface sediment database and
extended Bayesian calibration, Sci. Data, 2, 150029, https://doi.org/10.1038/sdata.2015.29, 2015.
Toggweiler, J. R. and Bjornsson, H.: Drake Passage and palaeoclimate, J. Quaternary Sci., 15, 319–328, https://doi.org/10.1002/1099-1417(200005)15:4<319::AID-JQS545>3.0.CO;2-C, 2000.
Uenzelmann-Neben, G. and Gruetzner, J.: Chronology of Greenland Scotland
Ridge overflow: What do we really know?, Mar. Geol., 406, 109–118,
https://doi.org/10.1016/j.margeo.2018.09.008, 2018.
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Bickert, T., Harper,
D., Kirtland Turner, S., Lohmann, G., Sexton, P., Zachos, J., and
Pälike, H.: Astronomically paced changes in deep-water circulation in
the western North Atlantic during the middle Eocene, Earth Planet. Sci. Lett., 484, 329–340, https://doi.org/10.1016/j.epsl.2017.12.016,
2018.
Vandenberghe, N., Hilgen, F. J., and Speijer, R. P.: The Paleogene Period, 2,
855–921, https://doi.org/10.1016/B978-0-444-59425-9.00028-7, 2012.
Via, R. K. and Thomas, D. J.: Evolution of Atlantic thermohaline
circulation: Early Oligocene onset of deep-water production in the North
Atlantic, Geology, 34, 441–444, https://doi.org/10.1130/G22545.1, 2006.
Villanueva, J., Flores, J. A., and Grimalt, J. O.: A detailed comparison of
the and coccolith records over the past 290 kyears: implications to
the alkenone paleotemperature method, Org. Geochem., 33, 897–905,
https://doi.org/10.1016/S0146-6380(02)00067-0, 2002.
Wade, B. S. and Pälike, H.: Oligocene climate dynamics,
Paleoceanography, 19, 1–16, https://doi.org/10.1029/2004PA001042, 2004.
Wade, B. S., Houben, A. J. P., Quaijtaal, W., Schouten, S., Rosenthal, Y.,
Miller, K. G., Katz, M. E., Wright, J. D., and Brinkhuis, H.: Multiproxy
record of abrupt sea-surface cooling across the Eocene-Oligocene transition
in the Gulf of Mexico, Geology, 40, 159–162,
https://doi.org/10.1130/G32577.1, 2012.
Weijers, J. W. H., Lim, K. L. H., Aquilina, A., Damsté, J. S. S., and
Pancost, R. D.: Biogeochemical controls on glycerol dialkyl glycerol
tetraether lipid distributions in sediments characterized by diffusive
methane flux, Geochem. Geophy. Geosy., 12, Q10010, https://doi.org/10.1029/2011GC003724, 2011.
Weller, P. and Stein, R.: Paleogene biomarker records from the central
Arctic Ocean (Integrated Ocean Drilling Program Expedition 302): Organic
carbon sources, anoxia, and sea surface temperature, Paleoceanography, 23, PA1S17, https://doi.org/10.1029/2007PA001472, 2008.
Zachos, J. C., Quinn, T. M., and Salamy, K. A.: High-resolution (104 years)
deep-sea foraminiferal stable isotope records of the Eocene-Oligocene
climate transition, Paleoceanography, 11, 251–266,
https://doi.org/10.1029/96PA00571, 1996.
Zhang, Y., de Boer, A. M., Lunt, D. J., Hutchinson, D. K., Ross, P., van de
Flierdt, T., Sexton, P., Coxall, H. K., Steinig, S., Ladant, J.-B., Zhu, J.,
Donnadieu, Y., Zhang, Z., Chan, W.-L., Abe-Ouchi, A., Niezgodzki, I.,
Lohmann, G., Knorr, G., Poulsen, C. J., and Huber, M.: Early Eocene Ocean
Meridional Overturning Circulation: The Roles of Atmospheric Forcing and
Strait Geometry, Paleoceanography and Paleoclimatology, 37, e2021PA004329,
https://doi.org/10.1029/2021PA004329, 2022.
Zhang, Y. G., Zhang, C. L., Liu, X. L., Li, L., Hinrichs, K. U., and Noakes,
J. E.: Methane Index: A tetraether archaeal lipid biomarker indicator for
detecting the instability of marine gas hydrates, Earth Planet. Sci. Lett., 307, 525–534, https://doi.org/10.1016/j.epsl.2011.05.031,
2011.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R.: A
40-million-year history of atmospheric CO2, Philos. T. Roy. Soc. A, 371, 20130096, 2013.
Zhang, Y. G., Pagani, M., and Wang, Z.: Ring Index: A new strategy to
evaluate the integrity of TEX86 paleothermometry, Paleoceanography, 31,
220–232, https://doi.org/10.1002/2015PA002848, 2016.
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on...