Articles | Volume 19, issue 6
https://doi.org/10.5194/cp-19-1219-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1219-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Viticulture extension in response to global climate change drivers – lessons from the past and future projections
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE,
Aix-en-Provence, France
Nicolas Bernigaud
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE,
Aix-en-Provence, France
Alberte Bondeau
Institut Méditerranéen de Biodiversité et
d'Écologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Aix-en-Provence, France
Laurent Bouby
ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier,
France
Wolfgang Cramer
Institut Méditerranéen de Biodiversité et
d'Écologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Aix-en-Provence, France
Related authors
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
G. Gea-Izquierdo, F. Guibal, R. Joffre, J. M. Ourcival, G. Simioni, and J. Guiot
Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015, https://doi.org/10.5194/bg-12-3695-2015, 2015
Short summary
Short summary
We developed a process-based model for evergreen Mediterranean forests. We used multiproxy data including eddy covariance CO2 flux and annual growth dendrochronological time series. The model explicitly takes into account the influence of climatic variability to calculate photosynthesis and carbon allocation. We analyzed long-time acclimation processes and climatic trade-offs between the C-source and the C-sink. There is much potentiality to apply the model at a larger scale.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Mohamed Ayache, Alberte Bondeau, Rémi Pagès, Nicolas Barrier, Sebastian Ostberg, and Melika Baklouti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-342, https://doi.org/10.5194/gmd-2020-342, 2020
Preprint withdrawn
Short summary
Short summary
Land forcing is reported as one of the major sources of uncertainty limiting the capacity of marine biogeochemical models. In this study, we present the first basin-wide simulation at 1/12° of water discharge as well as nitrate (NO3) and phosphate (PO4) release into the Mediterranean from basin-wide agriculture and urbanization, by using the agro-ecosystem model (LPJmL-Med). The model evaluation against observation data, and all implemented processes are described in detail in this manuscript.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Susanne Rolinski, Christoph Müller, Jens Heinke, Isabelle Weindl, Anne Biewald, Benjamin Leon Bodirsky, Alberte Bondeau, Eltje R. Boons-Prins, Alexander F. Bouwman, Peter A. Leffelaar, Johnny A. te Roller, Sibyll Schaphoff, and Kirsten Thonicke
Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, https://doi.org/10.5194/gmd-11-429-2018, 2018
Short summary
Short summary
One-third of the global land area is covered with grasslands which are grazed by or mowed for livestock feed. These areas contribute significantly to the carbon capture from the atmosphere when managed sensibly. To assess the effect of this management, we included different options of grazing and mowing into the global model LPJmL 3.6. We found in polar regions even low grazing pressure leads to soil carbon loss whereas in temperate regions up to 1.4 livestock units per hectare can be sustained.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Reinhard Prestele, Almut Arneth, Alberte Bondeau, Nathalie de Noblet-Ducoudré, Thomas A. M. Pugh, Stephen Sitch, Elke Stehfest, and Peter H. Verburg
Earth Syst. Dynam., 8, 369–386, https://doi.org/10.5194/esd-8-369-2017, https://doi.org/10.5194/esd-8-369-2017, 2017
Short summary
Short summary
Land-use change is still overly simplistically implemented in global ecosystem and climate models. We identify and discuss three major challenges at the interface of land-use and climate modeling and propose ways for how to improve land-use representation in climate models. We conclude that land-use data-provider and user communities need to engage in the joint development and evaluation of enhanced land-use datasets to improve the quantification of land use–climate interactions and feedback.
Tyler W. Davis, I. Colin Prentice, Benjamin D. Stocker, Rebecca T. Thomas, Rhys J. Whitley, Han Wang, Bradley J. Evans, Angela V. Gallego-Sala, Martin T. Sykes, and Wolfgang Cramer
Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, https://doi.org/10.5194/gmd-10-689-2017, 2017
Short summary
Short summary
This research presents a comprehensive description for calculating necessary, but sparsely observed, factors related to Earth's surface energy and water budgets relevant in, but not limited to, the study of ecosystems. We present the equations, including their derivations and assumptions, as well as example indicators relevant to plant-available moisture. The robustness of these relatively simple equations provides a tool to be used across broad fields of scientific research.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
Fanny Langerwisch, Ariane Walz, Anja Rammig, Britta Tietjen, Kirsten Thonicke, and Wolfgang Cramer
Earth Syst. Dynam., 7, 953–968, https://doi.org/10.5194/esd-7-953-2016, https://doi.org/10.5194/esd-7-953-2016, 2016
Short summary
Short summary
Amazonia is heavily impacted by climate change and deforestation. During annual flooding terrigenous material is imported to the river, converted and finally exported to the ocean or the atmosphere. Changes in the vegetation alter therefore riverine carbon dynamics. Our results show that due to deforestation organic carbon amount will strongly decrease both in the river and exported to the ocean, while inorganic carbon amounts will increase, in the river as well as exported to the atmosphere.
F. Langerwisch, A. Walz, A. Rammig, B. Tietjen, K. Thonicke, and W. Cramer
Earth Syst. Dynam., 7, 559–582, https://doi.org/10.5194/esd-7-559-2016, https://doi.org/10.5194/esd-7-559-2016, 2016
Short summary
Short summary
In Amazonia, carbon fluxes are considerably influenced by annual flooding. We applied the newly developed model RivCM to several climate change scenarios to estimate potential changes in riverine carbon. We find that climate change causes substantial changes in riverine organic and inorganic carbon, as well as changes in carbon exported to the atmosphere and ocean. Such changes could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean.
M. Fader, S. Shi, W. von Bloh, A. Bondeau, and W. Cramer
Hydrol. Earth Syst. Sci., 20, 953–973, https://doi.org/10.5194/hess-20-953-2016, https://doi.org/10.5194/hess-20-953-2016, 2016
Short summary
Short summary
At present, the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems (EICS). By 2080–2090 the region may face an increase in gross irrigation requirements (IRs) of up to 74 % due to climate change and population growth. EICS may be able to compensate to some degree these increases. Most countries in the northern and eastern Mediterranean have a high risk of not being able to meet future IRs due to water scarcity.
M. Fader, W. von Bloh, S. Shi, A. Bondeau, and W. Cramer
Geosci. Model Dev., 8, 3545–3561, https://doi.org/10.5194/gmd-8-3545-2015, https://doi.org/10.5194/gmd-8-3545-2015, 2015
Short summary
Short summary
This study presents the inclusion of 10 Mediterranean agricultural plants in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses.
The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With this development presented, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture.
G. Gea-Izquierdo, F. Guibal, R. Joffre, J. M. Ourcival, G. Simioni, and J. Guiot
Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015, https://doi.org/10.5194/bg-12-3695-2015, 2015
Short summary
Short summary
We developed a process-based model for evergreen Mediterranean forests. We used multiproxy data including eddy covariance CO2 flux and annual growth dendrochronological time series. The model explicitly takes into account the influence of climatic variability to calculate photosynthesis and carbon allocation. We analyzed long-time acclimation processes and climatic trade-offs between the C-source and the C-sink. There is much potentiality to apply the model at a larger scale.
M. Van Oijen, J. Balkovi, C. Beer, D. R. Cameron, P. Ciais, W. Cramer, T. Kato, M. Kuhnert, R. Martin, R. Myneni, A. Rammig, S. Rolinski, J.-F. Soussana, K. Thonicke, M. Van der Velde, and L. Xu
Biogeosciences, 11, 6357–6375, https://doi.org/10.5194/bg-11-6357-2014, https://doi.org/10.5194/bg-11-6357-2014, 2014
Short summary
Short summary
We use a new risk analysis method, and six vegetation models, to analyse how climate change may alter drought risks in European ecosystems. The conclusions are (1) drought will pose increasing risks to productivity in the Mediterranean area; (2) this is because severe droughts will become more frequent, not because ecosystems will become more vulnerable; (3) future C sequestration will be at risk because carbon gain in primary productivity will be more affected than carbon loss in respiration.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
P. Dass, C. Müller, V. Brovkin, and W. Cramer
Earth Syst. Dynam., 4, 409–424, https://doi.org/10.5194/esd-4-409-2013, https://doi.org/10.5194/esd-4-409-2013, 2013
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
Related subject area
Subject: Feedback and Forcing | Archive: Terrestrial Archives | Timescale: Holocene
Wet–dry status change in global closed basins between the mid-Holocene and the Last Glacial Maximum and its implication for future projection
Volcanism and climate change as drivers in Holocene depositional dynamic of Laguna del Maule (Andes of central Chile – 36° S)
Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales
Xinzhong Zhang, Yu Li, Wangting Ye, Simin Peng, Yuxin Zhang, Hebin Liu, Yichan Li, Qin Han, and Lingmei Xu
Clim. Past, 16, 1987–1998, https://doi.org/10.5194/cp-16-1987-2020, https://doi.org/10.5194/cp-16-1987-2020, 2020
Short summary
Short summary
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were much wetter in a similar warm world 6000 years ago. Why do they respond differently and will it be wetter or drier? We assess the wet–dry status and mechanism at different timescales and suggest that moisture change in the past and future warm periods are controlled by summer and winter precipitation, respectively. Diversified responses in different closed basins need a more resilient strategy.
Matías Frugone-Álvarez, Claudio Latorre, Fernando Barreiro-Lostres, Santiago Giralt, Ana Moreno, Josué Polanco-Martínez, Antonio Maldonado, María Laura Carrevedo, Patricia Bernárdez, Ricardo Prego, Antonio Delgado Huertas, Magdalena Fuentealba, and Blas Valero-Garcés
Clim. Past, 16, 1097–1125, https://doi.org/10.5194/cp-16-1097-2020, https://doi.org/10.5194/cp-16-1097-2020, 2020
Short summary
Short summary
The manuscript identifies the main volcanic phases in the Laguna del Maule volcanic field and their impact in the lake basin through the late glacial and Holocene. We show that the bio-productivity and geochemical variabilities in the lake are related with climatic dynamics type ENSO, SPA and SWW and that the main phases are synchronous with the major regional climate changes on millennial timescales.
Markus Czymzik, Raimund Muscheler, and Achim Brauer
Clim. Past, 12, 799–805, https://doi.org/10.5194/cp-12-799-2016, https://doi.org/10.5194/cp-12-799-2016, 2016
Short summary
Short summary
Integrating discharge data of the River Ammer back to 1926 and a 5500-year flood layer record from an annually laminated sediment core of the downstream Ammersee allowed investigating changes in the frequency of major floods in Central Europe on interannual to multi-centennial timescales. Significant correlations between flood frequency variations in both archives and changes in the activity of the Sun suggest a solar influence on the frequency of these hydrometeorological extremes.
Cited articles
Allen, M. R., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W.,
Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., and Zickfeld, K.: Framing and Context, in: Global Warming of
1.5 ∘C, in: An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse
gas emission pathways, in the context of strengthening the global response
to the threat of climate change, edited by: Masson-Delmotte, V., Zhai, P.,
Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B.
R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M.,
and Water, T., Cambridge University Press, Cambridge, UK and New York, NY, USA, 49–92, https://doi.org/10.1017/9781009157940.003, 2018.
Amara, R.: Views on futures research methodology, Futures, 23, 645–649,
https://doi.org/10.1016/0016-3287(91)90085-G, 1991.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10,000,000 years, Quaternary Sci. Rev., 10, 297–317, 1991.
Bernigaud, N., Bondeau, A., and Guiot, J.: Understanding the development of
viticulture in Roman Gaul during and after the Roman climate optimum: The
contribution of spatial analysis and agro-ecosystem modeling, J. Archaeol.
Sci. Rep., 38, 1–9, https://doi.org/10.1016/j.jasrep.2021.103099, 2021.
Bouby, L., Marinval, P., and Terral, J.-F.: From secondary to speculative
ProductIon? the Protohistory history of viticulture in Southern France, in:
Plants and People: choices and diversity through time, edited by: Chevalier,
A., Marinova, E., and Chocarro, L. P., Oxbow Book, London, Philadelphia, 175–181, https://doi.org/10.2307/1309151, 2014.
Bouby, L., Wales, N., Jalabadze, M., Rusishvili, N., Bonhomme, V., Ramos-Madrigal, J., Evin, A., Ivorra, S., Lacombe, T., Pagnoux, C., Boaretto, E., Gilbert, M. T. P., Bacilieri, R., Lordkipanidze, D., and Maghradze, D.: Tracking the history of grape cultivation in Georgia combining geometric morphometrics and ancient DNA, Veg. Hist. Archaeobot., 30, 63–76, https://doi.org/10.1007/s00334-020-00803-0, 2021.
Bounceur, N., Crucifix, M., and Wilkinson, R. D.: Global sensitivity analysis of the climate-vegetation system to astronomical forcing: An emulator-based approach, Earth Syst. Dynam., 6, 205–224, https://doi.org/10.5194/esd-6-205-2015, 2015.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change,
2, 417–424, https://doi.org/10.1038/nclimate1456, 2012.
Brayshaw, D. J., Hoskins, B., and Black, E.: Some physical drivers of
changes in the winter storm tracks over the North Atlantic and Mediterranean
during the Holocene, Philos. T. Roy. Soc. A, 368, 5185–5223, https://doi.org/10.1098/rsta.2010.0180, 2010.
Brown, A. G., Meadows, I., Turner, S. D., and Mattingley, D.: Roman vineyards in Britain: stratigraphic and palynological data from Wollaston in the Nene Valley, England, Antiquity, 75, 745–757, 2001.
Brun, J.-P.: 15. Viticulture et oléiculture en Gaule, in: Comment les
Gaules devinrent romaines, edited by: Ouzoulias, P., La Découverte, Paris, 231–253, 2010.
Brunsdon, C., Fotheringham, S., and Charlton, M.: Geographically weighted
regression – Modelling spatial non-stationarity, J. Roy. Stat. Soc. Ser. D, 47, 431–443, https://doi.org/10.1111/1467-9884.00145, 1998.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet,
V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J.,
and Esper, J.: 2500 years of European climate variability and human
susceptibility, Science, 331, 578–582, https://doi.org/10.1126/science.1197175, 2011.
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., Mccormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan,
J. O., De Vaan, M. A. C., Luterbacher, J., Wacker, L., and Tegel, W.:
Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD, Nat. Geosci., 9, 231–236, https://doi.org/10.1038/NGEO2652, 2016.
Caffarra, A. and Eccel, E.: Projecting the impacts of climate change on the
phenology of grapevine in a mountain area, Aust. J. Grape Wine Res., 17,
52–61, https://doi.org/10.1111/j.1755-0238.2010.00118.x, 2011.
Castruccio, S., McInerney, D. J., Stein, M. L., Crouch, F. L., Jacob, R. L.,
and Moyer, E. J.: Statistical emulation of climate model projections based
on precomputed GCM runs, J. Climate, 27, 1829–1844, https://doi.org/10.1175/JCLI-D-13-00099.1, 2014.
Chandler, R. E.: Exploiting strength, discounting weakness: Combining
information from multiple climate simulators, Philos. T. Roy. Soc. A, 371, 20120388, https://doi.org/10.1098/rsta.2012.0388, 2013.
Clout, H.: An Overview of the Fluctuating Fortunes of Viticulture in England
and Wales, EchoGeo, 23, https://doi.org/10.4000/echogeo.13333, 2013.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank,
D., Krusic, P. J., Tegel, W., Schrier, G. Vander, Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Eùfar, K., DIttmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K. U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levaniè, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A.,
Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M.,
Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Wany, T., Wilson, R., and
Zang, C.: Old World megadroughts and pluvials during the Common Era, Sci.
Adv., 1, 37, https://doi.org/10.1126/sciadv.1500561, 2015.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development
of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5,
187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Crucifix, M.: Traditional and novel approaches to palaeoclimate modelling,
Quaternary Sci. Rev., 57, 1–16, https://doi.org/10.1016/j.quascirev.2012.09.010, 2012.
de Cortázar-Atauri, I. G., Daux, V., Garnier, E., Yiou, P., Viovy, N.,
Seguin, B., Boursiquot, J. M., Parker, A. K., va Leeuwen, C., and Chuine, I.: Climate reconstructions from grape harvest dates: Methodology and
uncertainties, Holocene, 20, 599–608, https://doi.org/10.1177/0959683609356585, 2010.
douane7: C5P3_B4_emul, GitHub [code and data set], https://github.com/douane7/C5P3_B4_emul (last access: 16 June 2023), 2023.
Finné, M., Holmgren, K., Sundqvist, H. S., Weiberg, E., and Lindblom, M.: Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years – A review, J. Archaeol. Sci., 38, 3153–3173,
https://doi.org/10.1016/j.jas.2011.05.007, 2011.
Fischer, E. a., Luterbacher, J., Zorita, E., Tett, S. F. B., Casty, C., and
Wanner, H.: European climate response to tropical volcanic eruptions over the last half millennium, Geophys. Res. Lett., 34, 1–6, https://doi.org/10.1029/2006GL027992, 2007.
Foley, A. M., Holden, P. B., Edwards, N. R., Mercure, J.-F., Salas, P., Pollitt, H., and Chewpreecha, U.: Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector, Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, 2016.
Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., and Santos, J. A.: Future
scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties, Int. J. Biometeorol., 57, 909–925,
https://doi.org/10.1007/s00484-012-0617-8, 2013.
Franklin, J., Serra-Diaz, J. M., Syphard, A. D., and Regan, H. M.: Global
change and terrestrial plant community dynamics, P. Natl. Acad. Sci. USA, 113, 3725–3734, https://doi.org/10.1073/pnas.1519911113, 2016.
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., and Riva, R.: Assessing the impacts of 1.5 ∘C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
Fuks, D., Ackermann, O., Ayalon, A., Bar-Matthews, M., Bar-Oz, G., Levi, Y.,
Maeir, A. M., Weiss, E., Zilberman, T., and Safrai, Z.: Dust clouds, climate
change and coins: consiliences of palaeoclimate and economy in the Late Antique southern Levant, Levant, 49, 205–223,
https://doi.org/10.1080/00758914.2017.1379181, 2017.
Ganichot, B.: Évolution de la date des vendanges dans les Côtes du
Rhône méridionales, in: Actes des 6e Rencontres rhodaniennes, Institut Rhodanien, Orange, France, 38–41, 2002.
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean region, Global Planet. Change, 63, 90–104, https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Goosse, H., Guiot, J., Mann, M. E. M. E., Dubinkina, S., and Sallaz-Damaz, Y.: The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data
assimilation, Global Planet. Change, 84–85, 35–47,
https://doi.org/10.1016/j.gloplacha.2011.07.002, 2012.
Grouillet, B., Ruelland, D., Ayar, P. V., and Vrac, M.: Sensitivity analysis
of runoff modeling to statistical downscaling models in the western
Mediterranean, Hydrol. Earth Syst. Sci., 20, 1031–1047,
https://doi.org/10.5194/hess-20-1031-2016, 2016.
Guiot, J. and Cramer, W.: Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems, Science, 354, 4528–4532, https://doi.org/10.1126/science.aah5015, 2016.
Guiot, J. and Kaniewski, D.: The Mediterranean Basin and Southern Europe in
a warmer world: What can we learn from the past?, Front. Earth Sci., 3, 28,
https://doi.org/10.3389/feart.2015.00028, 2015.
Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J. J. J., Cheddadi, R.,
Borreux, J. J., and Cheddadi, R.: Inverse vegetation modeling by Monte Carlo
sampling to reconstruct paleoclimate under changed precipitation seasonality
and CO2 conditions: application to glacial climate in Mediterranean region, Ecol. Model., 127, 119–140, https://doi.org/10.1016/S0304-3800(99)00219-7,
2000.
Hargreaves, J. and Annan, J.: Assimilation of paleo-data in simple Earth
system model, Clim. Dynam., 19, 371–381, https://doi.org/10.1007/s00382-002-0241-0, 2002.
Holzhauser, H., Magny, M., and Zumbuhl, H. J.: Glacier and lake-level
variations in west-central Europe over the last 3500 years, Holocene, 15,
789–801, https://doi.org/10.1191/0959683605hl853ra, 2005.
Howell, S. G.: Sustainable Grape Productivity and the Growth-Yield Relationship, Am. J. Enol. Vitic., 52, 165–174, 2001.
Izdebski, A., Holmgren, K., Weiberg, E., Stocker, S. R., Buntgen, U., Florenzano, A., Gogou, A., Leroy, S. A. G., Luterbacher, J., Martrat, B.,
Masi, A., Mercuri, A. M., Montagna, P., Sadori, L., Schneider, A., Sicre, M.
A., Triantaphyllou, M., and Xoplaki, E.: Realising consilience: How better
communication between archaeologists, historians and natural scientists can
transform the study of past climate change in the Mediterranean, Quaternary Sci. Rev., 136, 5–22, https://doi.org/10.1016/j.quascirev.2015.10.038, 2016.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and Morice, C. P.: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010, J. Geophys. Res.-Atmos., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012.
Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T., LeQuere, C.,
and Sarmiento, J. L.: An efficient and accurate representation of complex
oceanic and biospheric models of anthropogenic carbon uptake, Tellus B, 48,
397–417, 1996.
Kaniewski, D., Guiot, J., and Van Campo, E.: Drought and societal collapse
3200 years ago in the Eastern Mediterranean: A review, Wiley Interdisciplin.
Rev. Clim. Change, 6, 369–382, https://doi.org/10.1002/wcc.345, 2015.
Kaniewski, D., Marriner, N., Cheddadi, R., Guiot, J., and Van Campo, E.: The 4.2 ka BP event in the Levant, Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, 2018.
Kaplan, J. O., Prentice, I. C., and Buchmann, N.: The stable carbon isotope
composition of the terrestrial biosphere: Modeling at scales from the leaf
to the globe, Global Biogeochem. Cy., 16, 8-1–8-11, https://doi.org/10.1029/2001gb001403, 2002.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J. F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) Large Ensemble Project: A Community
Resource for Studying Climate Change in the Presence of Internal Climate
Variability, B. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2014.
Kennedy, M. C. and O'Hagan, A.: Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1–13,
https://doi.org/10.1093/biomet/87.1.1, 2000.
Klein Goldewijk, K., Beusen, A., Van Drecht, G., and De Vos, M.: The HYDE 3.1 spatially explicit database of human-induced global land-use change over
the past 12,000 years, Global Ecol. Biogeogr., 20, 73–86,
https://doi.org/10.1111/j.1466-8238.2010.00587.x, 2011.
Lavigne, F., Degeai, J.-P., Komorowski, J.-C., Guillet, S., Robert, V.,
Lahitte, P., Oppenheimer, C., Stoffel, M., Vidal, C. M., Surono, Pratomo, I., Wassmer, P., Hajdas, I., Hadmoko, D. S., and de Belizal, E.: Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia, P. Natl. Acad. Sci. USA, 110, 16742–16747,
https://doi.org/10.1073/pnas.1307520110, 2013.
Le Roy Ladurie, E., Daux, V., and Luterbacher, J.: Vignes et vendanges des
XIV–XXIe siècles, 25e année, Hist. économie société,
421–436, https://doi.org/10.3917/hes.063.0421, 2006.
Levavasseur, G., Vrac, M., Roche, D. M., Paillard, D., Martin, A., and
Vandenberghe, J.: Present and LGM permafrost from climate simulations: Contribution of statistical downscaling, Clim. Past, 7, 1225–1246,
https://doi.org/10.5194/cp-7-1225-2011, 2011.
Leveau, P.: Les conditions environnementales dans le nord de l'Afrique
à l'époque romaine. Contribution historiographique à l'histoire
du climat et des relations homme/milieu, in: Sociétés et climats
dans l'Empire romain. Pour une perspective historique et systémique de
la gestion des ressources en eau dans l'Empire romain, edited by: Hermon,
E., Editoriale Scientifica, Naples, 309–348, 2009.
Lu, B., Charlton, M., Harris, P., and Fotheringham, A. S.: Geographically
weighted regression with a non-Euclidean distance metric: A case study using
hedonic house price data, Int. J. Geogr. Inf. Sci., 28, 660–681,
https://doi.org/10.1080/13658816.2013.865739, 2014.
Luterbacher, J., Werner, J. P. P., Smerdon, J. E. E., Fernández-Donado,
L., González-Rouco, F. J. J., Barriopedro, D., Ljungqvist, F. C. C.,
Büntgen, U., Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti,
A., Frank, D., Jungclaus, J. H. H., Barriendos, M., Bertolin, C., Bothe, O.,
Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J. J. J., Guiot, J.,
Hao, Z., Hegerl, G. C. C., Holmgren, K., Klimenko, V. V. V, Martín-Chivelet, J., Pfister, C., Roberts, N., Schindler, A., Schurer,
A., Solomina, O., Von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki,
E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.: European summer
temperatures since Roman times, Environ. Res. Lett., 11, 024001,
https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Magny, M., Combourieu-Nebout, N., De Beaulieu, J. L., Bout-Roumazeilles, V.,
Colombaroli, D., Desprat, S., Francke, A., Joannin, S., Ortu, E., Peyron,
O., Revel, M., Sadori, L., Siani, G., Sicre, M. A., Samartin, S., Simonneau,
A., Tinner, W., Vanniere, B., Wagner, B., Zanchetta, G., Anselmetti, F.,
Brugiapaglia, E., Chapron, E., Debret, M., Desmet, M., Didier, J., Essallami, L., Galop, D., Gilli, A., Haas, J. N., Kallel, N., Millet, L., Stock, A., Turon, J. L., and Wirth, S.: North-south palaeohydrological contrasts in the central mediterranean during the holocene: Tentative synthesis and working hypotheses, Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, 2013.
Malheiro, A. C., Santos, J. A., Fraga, H., and Pinto, J. G.: Climate change
scenarios applied to viticultural zoning in Europe, Clim. Res., 43, 163–177, https://doi.org/10.3354/cr00918, 2010.
Mann, M. E., Fuentes, J. D., and Rutherford, S.: Underestimation of volcanic
cooling in tree-ring-based reconstructions of hemispheric temperatures, Nat.
Geosci., 5, 202–205, https://doi.org/10.1038/ngeo1394, 2012.
Mccormick, M., Büntgen, U., Cane, M. A., Cook, E. R., Harper, K.,
Huybers, P., Litt, T., Manning, S. W., Mayewski, P. A., More, A. F. M.,
Nicolussi, K., and Tegel, W.: Climate Change During & After the Roman
Empire, J. Interdiscip. Hist., xliii, 169–220, https://doi.org/10.1162/JINH_a_00379, 2012.
Moriondo, M., Trombi, G., Ferrise, R., Brandani, G., Dibari, C., Ammann, C.
M., Lippi, M. M., and Bindi, M.: Olive trees as bio-indicators of climate
evolution in the Mediterranean Basin, Global Ecol. Biogeogr., 22,
818–833, https://doi.org/10.1111/geb.12061, 2013.
Moss, R. H., Edmonds, J. a, Hibbard, K. a, Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. a,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R.
J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation
of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Muscheler, R., Joos, F., Beer, J., Müller, S. A., Vonmoos, M., and
Snowball, I.: Solar activity during the last 1000 yr inferred from radionuclide records, Quaternary Sci. Rev., 26, 82–97,
https://doi.org/10.1016/j.quascirev.2006.07.012, 2007.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013.
Neumann, J. and Parpola, S.: Climatic Change and the Eleventh-Tenth-Century Eclipse of Assyria and Babylonia, J. Near East. Stud., 46, 161–182, 1987.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of
surface climate over global land areas, Clim. Res., 21, 1–25,
https://doi.org/10.3354/cr021001, 2002.
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A.,
and Solomon, A. M.: A global biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19, 117–134, 1992.
Reale, O. and Dirmeyer, P.: Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period. Part I: Climate
history and model sensitivity, Global Planet. Change, 25, 163–184,
https://doi.org/10.1016/S0921-8181(00)00002-3, 2000.
Reale, O. and Shukla, J.: Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period: Part II. Model simulation, Global Planet. Change, 25, 185–214, https://doi.org/10.1016/S0921-8181(00)00003-5, 2000.
Roberts, N., Brayshaw, D., Kuzucuoğlu, C., Perez, R., and Sadori, L.:
The mid-Holocene climatic transition in the Mediterranean: causes and
consequences, Holocene, 21, 3–13, https://doi.org/10.1177/0959683610388058, 2011.
Rougier, J. and Goldstein, M.: Climate Simulators and Climate Projections,
Annu. Rev. Stat. Appl., 1, 103–123,
https://doi.org/10.1146/annurev-statistics-022513-115652, 2014.
Santos, J. A., Malheiro, A. C., Pinto, J. G., and Jones, G. V.: Macroclimate
and viticultural zoning in Europe: Observed trends and atmospheric forcing,
Clim. Res., 51, 89–103, https://doi.org/10.3354/cr01056, 2012.
Sgubin, G., Swingedouw, D., Mignot, J., Alan, G., Benjamin, G., Harilaos, B., Thomas, L., Pieri, P., García, I., Ollat, A. N., and Van Leeuwen, C.: Linear loss of suitable wine regions over Europe in response to increasing global warming, Global Change Biol., 29, 808–826, https://doi.org/10.1111/gcb.16493, 2022.
Sharifi, A., Pourmand, A., Canuel, E. A., Ferer-Tyler, E., Peterson, L. C.,
Aichner, B., Feakins, S. J., Daryaee, T., Djamali, M., Beni, A. N., Lahijani, H. A. K., and Swart, P. K.: Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization?, Quaternary Sci. Rev., 123, 215–230, https://doi.org/10.1016/j.quascirev.2015.07.006, 2015.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F.,
Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M.,
Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.:
Timing and climate forcing of volcanic eruptions for the past 2,500 years,
Nature, 523, 543–549, https://doi.org/10.1038/nature14565, 2015.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S.,
Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and
Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788,
https://doi.org/10.1038/ngeo2526, 2015.
Strassmann, K. M. and Joos, F.: The Bern Simple Climate Model (BernSCM) v1.0: An extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations, Geosci. Model Dev., 11, 1887–1908, https://doi.org/10.5194/gmd-11-1887-2018, 2018.
Su, B., Huang, J., Gemmer, M., Jian, D., Tao, H., Jiang, T., and Zhao, C.:
Statistical downscaling of CMIP5 multi-model ensemble for projected changes
of climate in the Indus River Basin, Atmos. Res., 178, 138–149,
https://doi.org/10.1016/j.atmosres.2016.03.023, 2016.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Telelis, I.: Climatic Fluactions in the Eastern Mediterranean and the Middle
East AD 300–1500 from Byzantine Documentary and Proxy Physical Paleoclimatic
Evidence – A Comparison, Jahrb. Österreich. Byzantin., 58, 167–208, https://doi.org/10.1553/joeb58s167, 2008.
Terral, J.-F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Figueiral, I.,
Picq, S., Chevance, J.-B., Jung, C., Fabre, L., Tardy, C., Compan, M.,
Bacilieri, R., Lacombe, T., and This, P.: Evolution and history of grapevine
(Vitis vinifera) under domestication: new morphometric perspectives to
understand seed domestication syndrome and reveal origins of ancient
European cultivars, Ann. Bot., 105, 443–455, https://doi.org/10.1093/aob/mcp298, 2010.
Tonietto, J. and Carbonneau, A.: A multicriteria climatic classification
system for grape-growing regions worldwide, Agr. Forest Meteorol., 124,
81–97, https://doi.org/10.1016/j.agrformet.2003.06.001, 2004.
Tran, G. T., Oliver, K. I. C., Sóbester, A., Toal, D. J. J., Holden, P. B., Marsh, R., Challenor, P., and Edwards, N. R.: Building a traceable climate model hierarchy with multi-level emulators, Adv. Stat. Climatol.
Meteorol. Oceanogr., 2, 17–37, https://doi.org/10.5194/ascmo-2-17-2016, 2016.
van Leeuwen, C. and Darriet, P.: The Impact of Climate Change on Viticulture
and Wine Quality, J. Wine Econ., 11, 150–167, https://doi.org/10.1017/jwe.2015.21, 2016.
van Vuuren, D. P., Isaac, M., Kundzewicz, Z. W., Arnell, N., Barker, T.,
Criqui, P., Berkhout, F., Hilderink, H., Hinkel, J., Hof, A., Kitous, A.,
Kram, T., Mechler, R., and Scrieciu, S.: The use of scenarios as the basis
for combined assessment of climate change mitigation and adaptation, Global
Environ. Change, 21, 575–591, https://doi.org/10.1016/j.gloenvcha.2010.11.003, 2011.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model Intercomparison Project
(ISI-MIP): project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014.
Weiss, H. and Bradley, R. S.: What Drives Societal Collapse?, Science, 291, 609–611, 2001.
Widmann, M., Goosse, H., van der Schrier, G., Schnur, R., and Barkmeijer, J.: Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium, Clim. Past, 6, 627–644, https://doi.org/10.5194/cp-6-627-2010, 2010.
Williamson, D., Blaker, A. T., Hampton, C., and Salter, J.: Identifying and
removing structural biases in climate models with history matching, Clim.
Dynam., 45, 1299–1324, https://doi.org/10.1007/s00382-014-2378-z, 2015.
Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J., Jiang, H., Yang, Y., and
Yang, G.: Estimating global natural wetland methane emissions using process
modelling: Spatio-temporal patterns and contributions to atmospheric methane
fluctuations, Global Ecol. Biogeogr., 24, 959–972, https://doi.org/10.1111/geb.12307, 2015.
Zobler, L.: A world soil file grobal climate modeling, NASA Tech. Memo 32,
NASA, 1986.
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
In the Mediterranean the vine has been an important part of the economy since Roman times....