Articles | Volume 19, issue 5
https://doi.org/10.5194/cp-19-1101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Buoyancy forcing: a key driver of northern North Atlantic sea surface temperature variability across multiple timescales
Bjørg Risebrobakken
CORRESPONDING AUTHOR
NORCE Norwegian Research Center, Bjerknes Centre for Climate Research, Bergen, Norway
Mari F. Jensen
Department of Earth Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Helene R. Langehaug
Nansen Environmental and Remote Sensing Center, Bjerknes Centre for
Climate Research, Bergen, Norway
Tor Eldevik
Geophysical Institute, University of Bergen and Bjerknes Centre for
Climate Research, Bergen, Norway
Anne Britt Sandø
Institute of Marine Research, Bjerknes Centre for Climate Research,
Bergen, Norway
Camille Li
Geophysical Institute, University of Bergen and Bjerknes Centre for
Climate Research, Bergen, Norway
Andreas Born
Department of Earth Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Erin Louise McClymont
Department of Geography, Durham University, Durham, UK
Ulrich Salzmann
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Stijn De Schepper
NORCE Norwegian Research Center, Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Mari F. Jensen, Aleksi Nummelin, Søren B. Nielsen, Henrik Sadatzki, Evangeline Sessford, Bjørg Risebrobakken, Carin Andersson, Antje Voelker, William H. G. Roberts, Joel Pedro, and Andreas Born
Clim. Past, 14, 901–922, https://doi.org/10.5194/cp-14-901-2018, https://doi.org/10.5194/cp-14-901-2018, 2018
Short summary
Short summary
We combine North Atlantic sea-surface temperature reconstructions and global climate model simulations to study rapid glacial climate shifts (30–40 000 years ago). Pre-industrial climate boosts similar, albeit weaker, sea-surface temperature variability as the glacial period. However, in order to reproduce most of the amplitude of this variability, and to see temperature variability in Greenland similar to the ice-core record, although with a smaller amplitude, we need forced simulations.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025, https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
Short summary
To improve the simulation of surface mass balance (SMB) that influences the advance–retreat of ice sheets, we run a snow model, the BErgen Snow SImulator (BESSI), with transient climate forcing obtained from an Earth system model, iLOVECLIM, over Greenland and Antarctica during the Last Interglacial (LIG; 130–116 ka). Compared to the simple existing SMB scheme of iLOVECLIM, BESSI gives more details about SMB processes with higher physics constraints while maintaining a low computational cost.
Heiko Goelzer, Petra M. Langebroek, Andreas Born, Stefan Hofer, Konstanze Haubner, Michele Petrini, Gunter Leguy, William H. Lipscomb, and Katherine Thayer-Calder
EGUsphere, https://doi.org/10.5194/egusphere-2024-3045, https://doi.org/10.5194/egusphere-2024-3045, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
On the backdrop of observed accelerating ice sheet mass loss over the last few decades, there is growing interest in the role of ice sheet changes in global climate projections. In this regard, we have coupled an Earth system model with an ice sheet model and have produced an initial set of climate projections including an interactive coupling with a dynamic Greenland ice sheet.
Tobias Zolles and Andreas Born
The Cryosphere, 18, 4831–4844, https://doi.org/10.5194/tc-18-4831-2024, https://doi.org/10.5194/tc-18-4831-2024, 2024
Short summary
Short summary
The Greenland ice sheet largely depends on the climate state. The uncertainties associated with the year-to-year variability have only a marginal impact on our simulated surface mass budget; this increases our confidence in projections and reconstructions. Basing the simulations on proxies, e.g., temperature, results in overestimates of the surface mass balance, as climatologies lead to small amounts of snowfall every day. This can be reduced by including sub-monthly precipitation variability.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024, https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Short summary
We present the open-source model ELSA, which simulates the internal age structure of large ice sheets. It creates layers of snow accumulation at fixed times during the simulation, which are used to model the internal stratification of the ice sheet. Together with reconstructed isochrones from radiostratigraphy data, ELSA can be used to assess ice sheet models and to improve their parameterization. ELSA can be used coupled to an ice sheet model or forced with its output.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024, https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
Short summary
The atmospheric circulation response to surface heating at various latitudes was investigated within an idealized framework. We confirm previous results on the importance of temperature advection for balancing heating at lower latitudes. Further poleward, transient eddies become increasingly important, and eventually radiative cooling also contributes. This promotes amplified surface warming for high-latitude heating and has implications for links between sea ice loss and polar amplification.
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024, https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Short summary
The Gulf Stream system is essential for northward ocean heat transport. Here, we use observations along the path of the extended Gulf Stream system and an observationally constrained ocean model to investigate variability in the Gulf Stream system since the 1990s. We find regional differences in the variability between the subtropical, subpolar, and Nordic Seas regions, which warrants caution in using observational records at a single latitude to infer large-scale circulation change.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Chloe A. Brashear, Tyler R. Jones, Valerie Morris, Bruce H. Vaughn, William H. G. Roberts, William B. Skorski, Abigail G. Hughes, Richard Nunn, Sune Olander Rasmussen, Kurt M. Cuffey, Bo M. Vinther, Todd Sowers, Christo Buizert, Vasileios Gkinis, Christian Holme, Mari F. Jensen, Sofia E. Kjellman, Petra M. Langebroek, Florian Mekhaldi, Kevin S. Rozmiarek, Jonathan W. Rheinlænder, Margit Simon, Giulia Sinnl, Silje Smith-Johnsen, and James W. C. White
EGUsphere, https://doi.org/10.5194/egusphere-2024-1003, https://doi.org/10.5194/egusphere-2024-1003, 2024
Short summary
Short summary
We use a series of spectral techniques to quantify the strength of high-frequency climate variability in Northeastern Greenland to 50,000 ka before present. Importantly, we find that variability consistently decreases hundreds of years prior to Dansgaard-Oeschger warming events. Model simulations suggest a change in North Atlantic sea ice behavior contributed to this pattern, thus providing new information on the conditions which proceeded abrupt climate change during the Last Glacial Period.
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Erin L. McClymont, Sze Ling Ho, and Heather L. Ford
Clim. Past, 20, 1177–1194, https://doi.org/10.5194/cp-20-1177-2024, https://doi.org/10.5194/cp-20-1177-2024, 2024
Short summary
Short summary
The Pliocene (~ 3 million years ago) is of interest because its warm climate is similar to projections of the future. We explore the role of atmospheric carbon dioxide in forcing sea surface temperature during the Pliocene by combining climate model outputs with palaeoclimate proxy data. We investigate whether this role changes seasonally and also use our data to suggest a new estimate of Pliocene climate sensitivity. More data are needed to further explore the results presented.
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2024-922, https://doi.org/10.5194/egusphere-2024-922, 2024
Short summary
Short summary
Mass loss from the Greenland ice sheet significantly contributes to rising sea levels, threatening coastal communities globally. To improve future sea-level projections, we simulated ice sheet behavior until 2100, initializing the model with observed geometry and using various climate models. Predictions indicate a sea-level rise of 32 to 228 mm by 2100, with climate model uncertainty being the main source of variability in projections.
Gustav Jungdal-Olesen, Jane Lund Andersen, Andreas Born, and Vivi Kathrine Pedersen
The Cryosphere, 18, 1517–1532, https://doi.org/10.5194/tc-18-1517-2024, https://doi.org/10.5194/tc-18-1517-2024, 2024
Short summary
Short summary
We explore how the shape of the land and underwater features in Scandinavia affected the former Scandinavian ice sheet over time. Using a computer model, we simulate how the ice sheet evolved during different stages of landscape development. We discovered that early glaciations were limited in size by underwater landforms, but as these changed, the ice sheet expanded more rapidly. Our findings highlight the importance of considering landscape changes when studying ice-sheet history.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Katharina M. Holube, Tobias Zolles, and Andreas Born
The Cryosphere, 16, 315–331, https://doi.org/10.5194/tc-16-315-2022, https://doi.org/10.5194/tc-16-315-2022, 2022
Short summary
Short summary
We simulated the surface mass balance of the Greenland Ice Sheet in the 21st century by forcing a snow model with the output of many Earth system models and four greenhouse gas emission scenarios. We quantify the contribution to uncertainty in surface mass balance of these two factors and the choice of parameters of the snow model. The results show that the differences between Earth system models are the main source of uncertainty. This effect is localised mostly near the equilibrium line.
Clio Michel, Erica Madonna, Clemens Spensberger, Camille Li, and Stephen Outten
Weather Clim. Dynam., 2, 1131–1148, https://doi.org/10.5194/wcd-2-1131-2021, https://doi.org/10.5194/wcd-2-1131-2021, 2021
Short summary
Short summary
Climate models still struggle to correctly represent blocking frequency over the North Atlantic–European domain. This study makes use of five large ensembles of climate simulations and the ERA-Interim reanalyses to investigate the Greenland blocking frequency and one of its drivers, namely cyclonic Rossby wave breaking. We particularly try to understand the discrepancies between two specific models, out of the five, that behave differently.
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021, https://doi.org/10.5194/gmd-14-7073-2021, 2021
Short summary
Short summary
The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It adds data assimilation capability to the Norwegian Earth System Model version 1 (NorESM1) and has contributed output to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). We describe the system and evaluate its baseline, reanalysis and prediction performance.
Andreas Born and Alexander Robinson
The Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021, https://doi.org/10.5194/tc-15-4539-2021, 2021
Short summary
Short summary
Ice penetrating radar reflections from the Greenland ice sheet are the best available record of past accumulation and how these layers have been deformed over time by the flow of ice. Direct simulations of this archive hold great promise for improving our models and for uncovering details of ice sheet dynamics that neither models nor data could achieve alone. We present the first three-dimensional ice sheet model that explicitly simulates individual layers of accumulation and how they deform.
Erica Madonna, David S. Battisti, Camille Li, and Rachel H. White
Weather Clim. Dynam., 2, 777–794, https://doi.org/10.5194/wcd-2-777-2021, https://doi.org/10.5194/wcd-2-777-2021, 2021
Short summary
Short summary
The amount of precipitation over Europe varies substantially from year to year, with impacts on crop yields and energy production. In this study, we show that it is possible to infer much of the winter precipitation and temperature signal over Europe by knowing only the frequency of occurrence of certain atmospheric circulation patterns. The results highlight the importance of (daily) weather for understanding and interpreting seasonal signals.
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Tobias Zolles and Andreas Born
The Cryosphere, 15, 2917–2938, https://doi.org/10.5194/tc-15-2917-2021, https://doi.org/10.5194/tc-15-2917-2021, 2021
Short summary
Short summary
We investigate the sensitivity of a glacier surface mass and the energy balance model of the Greenland ice sheet for the cold period of the Last Glacial Maximum (LGM) and the present-day climate. The results show that the model sensitivity changes with climate. While for present-day simulations inclusions of sublimation and hoar formation are of minor importance, they cannot be neglected during the LGM. To simulate the surface mass balance over long timescales, a water vapor scheme is necessary.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Huiling Zou, Yongqi Gao, Helene R. Langehaug, Lei Yu, and Dong Guo
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-16, https://doi.org/10.5194/os-2021-16, 2021
Publication in OS not foreseen
Short summary
Short summary
This work focuses on the the relationships between winter sea ice variability and thermodynamic processes in sea ice in the Bering Sea. It has been found that in the Norwegian Earth System Model, thermodynamics in sea ice plays an important role in winter sea ice variability and they can contribute over 70 % of winter sea ice mass incresea in the Bering Sea. The results can be very helpful to give a better understanding of sea ice changes in an Earth System Model.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, and Martin Peter King
Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, https://doi.org/10.5194/wcd-1-261-2020, 2020
Short summary
Short summary
Arctic sea ice loss has been linked to changes in mid-latitude weather and climate. However, the literature offers differing views on the strength, robustness, and even existence of these linkages. We use a statistical tool (Causal Effect Networks) to show that one proposed pathway linking Barents–Kara ice and mid-latitude circulation is intermittent in observations and likely only active under certain conditions. This result may help explain apparent inconsistencies across previous studies.
Aurélie Marcelle Renée Aubry, Stijn De Schepper, and Anne de Vernal
J. Micropalaeontol., 39, 41–60, https://doi.org/10.5194/jm-39-41-2020, https://doi.org/10.5194/jm-39-41-2020, 2020
Short summary
Short summary
We used organic-walled microfossils to better define the Plio–Pleistocene transition (2.56 Ma) that is associated with the intensification of the Northern Hemisphere glaciation. The disappearance of species around 2.75 Ma reflects an ecological response accompanying the Greenland ice sheet growth.
A strong regionalism marks the Labrador Sea and suggests cooler conditions than elsewhere in the North Atlantic, although our zone boundaries are contemporaneous with the eastern North Atlantic.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Tine Nilsen, Dmitry V. Divine, Annika Hofgaard, Andreas Born, Johann Jungclaus, and Igor Drobyshev
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-123, https://doi.org/10.5194/cp-2019-123, 2019
Revised manuscript not accepted
Short summary
Short summary
Using a set of three climate model simulations we cannot find a consistent relationship between atmospheric conditions favorable for forest fire activity in northern Scandinavia and weaker ocean circulation in the North Atlantic subpolar gyre on seasonal timescales. In the literature there is support of such a relationship for longer timescales. With the motivation to improve seasonal prediction systems, we conclude that the gyre circulation alone does not indicate forthcoming model drought.
Lise S. Graff, Trond Iversen, Ingo Bethke, Jens B. Debernard, Øyvind Seland, Mats Bentsen, Alf Kirkevåg, Camille Li, and Dirk J. L. Olivié
Earth Syst. Dynam., 10, 569–598, https://doi.org/10.5194/esd-10-569-2019, https://doi.org/10.5194/esd-10-569-2019, 2019
Short summary
Short summary
Differences between a 1.5 and a 2.0 °C warmer global climate than 1850 conditions are discussed based on a suite of global atmosphere-only, fully coupled, and slab-ocean runs with the Norwegian Earth System Model. Responses, such as the Arctic amplification of global warming, are stronger with the fully coupled and slab-ocean configurations. While ice-free Arctic summers are rare under 1.5 °C warming in the slab-ocean runs, they are estimated to occur 18 % of the time under 2.0 °C warming.
Andreas Plach, Kerim H. Nisancioglu, Petra M. Langebroek, Andreas Born, and Sébastien Le clec'h
The Cryosphere, 13, 2133–2148, https://doi.org/10.5194/tc-13-2133-2019, https://doi.org/10.5194/tc-13-2133-2019, 2019
Short summary
Short summary
Meltwater from the Greenland ice sheet (GrIS) rises sea level and knowing how the GrIS behaved in the past will help to become better in predicting its future. Here, the evolution of the past GrIS is shown to be dominated by how much ice melts (a result of the prevailing climate) rather than how ice flow is represented in the simulations. Therefore, it is very important to know past climates accurately, in order to be able to simulate the evolution of the GrIS and its contribution to sea level.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Andreas Born, Michael A. Imhof, and Thomas F. Stocker
The Cryosphere, 13, 1529–1546, https://doi.org/10.5194/tc-13-1529-2019, https://doi.org/10.5194/tc-13-1529-2019, 2019
Short summary
Short summary
We present a new numerical model to simulate the surface energy and mass balance of snow and ice. While similar models exist and cover a wide range of complexity from empirical models to those that simulate the microscopic structure of individual snow grains, we aim to strike a balance between physical completeness and numerical efficiency. This new model will enable physically accurate simulations over timescales of hundreds of millennia, a key requirement of investigating ice age cycles.
Florence Sylvestre, Mathieu Schuster, Hendrik Vogel, Moussa Abdheramane, Daniel Ariztegui, Ulrich Salzmann, Antje Schwalb, Nicolas Waldmann, and the ICDP CHADRILL Consortium
Sci. Dril., 24, 71–78, https://doi.org/10.5194/sd-24-71-2018, https://doi.org/10.5194/sd-24-71-2018, 2018
Short summary
Short summary
CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions and the most continuous climatic and environmental record to be compared with hominid migrations across northern Africa and the implications for understanding human evolution.
Andreas Plach, Kerim H. Nisancioglu, Sébastien Le clec'h, Andreas Born, Petra M. Langebroek, Chuncheng Guo, Michael Imhof, and Thomas F. Stocker
Clim. Past, 14, 1463–1485, https://doi.org/10.5194/cp-14-1463-2018, https://doi.org/10.5194/cp-14-1463-2018, 2018
Short summary
Short summary
The Greenland ice sheet is a huge frozen water reservoir which is crucial for predictions of sea level in a warming future climate. Therefore, computer models are needed to reliably simulate the melt of ice sheets. In this study, we use climate model simulations of the last period where it was warmer than today in Greenland. We test different melt models under these climatic conditions and show that the melt models show very different results under these warmer conditions.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Mari F. Jensen, Aleksi Nummelin, Søren B. Nielsen, Henrik Sadatzki, Evangeline Sessford, Bjørg Risebrobakken, Carin Andersson, Antje Voelker, William H. G. Roberts, Joel Pedro, and Andreas Born
Clim. Past, 14, 901–922, https://doi.org/10.5194/cp-14-901-2018, https://doi.org/10.5194/cp-14-901-2018, 2018
Short summary
Short summary
We combine North Atlantic sea-surface temperature reconstructions and global climate model simulations to study rapid glacial climate shifts (30–40 000 years ago). Pre-industrial climate boosts similar, albeit weaker, sea-surface temperature variability as the glacial period. However, in order to reproduce most of the amplitude of this variability, and to see temperature variability in Greenland similar to the ice-core record, although with a smaller amplitude, we need forced simulations.
Camille Li, Clio Michel, Lise Seland Graff, Ingo Bethke, Giuseppe Zappa, Thomas J. Bracegirdle, Erich Fischer, Ben J. Harvey, Trond Iversen, Martin P. King, Harinarayan Krishnan, Ludwig Lierhammer, Daniel Mitchell, John Scinocca, Hideo Shiogama, Dáithí A. Stone, and Justin J. Wettstein
Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, https://doi.org/10.5194/esd-9-359-2018, 2018
Short summary
Short summary
This study investigates the midlatitude atmospheric circulation response to 1.5°C and 2.0°C of warming using modelling experiments run for the HAPPI project (Half a degree Additional warming, Prognosis & Projected Impacts). While the chaotic nature of the atmospheric flow dominates in these low-end warming scenarios, some local changes emerge. Case studies explore precipitation impacts both for regions that dry (Mediterranean) and regions that get wetter (Europe, North American west coast).
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
Alan M. Haywood, Harry J. Dowsett, Aisling M. Dolan, David Rowley, Ayako Abe-Ouchi, Bette Otto-Bliesner, Mark A. Chandler, Stephen J. Hunter, Daniel J. Lunt, Matthew Pound, and Ulrich Salzmann
Clim. Past, 12, 663–675, https://doi.org/10.5194/cp-12-663-2016, https://doi.org/10.5194/cp-12-663-2016, 2016
Short summary
Short summary
Our paper presents the experimental design for the second phase of the Pliocene Model Intercomparison Project (PlioMIP). We outline the way in which climate models should be set up in order to study the Pliocene – a period of global warmth in Earth's history which is relevant for our understanding of future climate change. By conducting a model intercomparison we hope to understand the uncertainty associated with model predictions of a warmer climate.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
M. J. Pound, J. Tindall, S. J. Pickering, A. M. Haywood, H. J. Dowsett, and U. Salzmann
Clim. Past, 10, 167–180, https://doi.org/10.5194/cp-10-167-2014, https://doi.org/10.5194/cp-10-167-2014, 2014
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Impact of the Late Miocene Cooling on the loss of coral reefs in the Central Indo-Pacific
Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering
Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
Lipid-biomarker-based sea surface temperature record offshore Tasmania over the last 23 million years
Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Lessons from a high-CO2 world: an ocean view from ∼ 3 million years ago
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages
Variations in Mediterranean–Atlantic exchange across the late Pliocene climate transition
Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma
Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes
Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific
Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)
A major change in North Atlantic deep water circulation 1.6 million years ago
Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling
Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited
Pliocene three-dimensional global ocean temperature reconstruction
Benjamin Fredericks Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-28, https://doi.org/10.5194/cp-2024-28, 2024
Revised manuscript accepted for CP
Short summary
Short summary
It is known that there was a lack of coral reefs in the Central Indo-Pacific during the Pliocene. The cause of this is unknown. This study uses a new SST record biased on biomarkers from the Coral Sea between 11–2 Ma to demonstrate a 2-degree cooling in the Central Indo-Pacific as part of the Late Miocene Cooling. When combined with other impacts associated with this event, this might explain the collapse of coral reefs. The new data shows the importance of SST changes in Coral Reef loss.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Boris-Theofanis Karatsolis and Jorijntje Henderiks
Clim. Past, 19, 765–786, https://doi.org/10.5194/cp-19-765-2023, https://doi.org/10.5194/cp-19-765-2023, 2023
Short summary
Short summary
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and is characterised by seasonal variations in the activity of a major boundary current named the Leeuwin Current. By investigating nannofossils found in sediment cores recovered from the NW Australian shelf, we reconstructed ocean circulation in the warmer-than-present world from 6 to 3.5 Ma, as mirrored by long-term changes in stratification and nutrient availability.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021, https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Short summary
The Pliocene represents a geologically warm period with polar ice restricted to the Antarctic. Nevertheless, variability and ice volume persisted in the Pliocene. This work revisits a classic site on which much of our understanding of Pliocene paleoclimate variability is based and corrects errors in data sets related to ice volume and ocean surface temperature. In particular, it generates an improved representation of an enigmatic glacial episode in Pliocene times (circa 3.3 Ma).
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019, https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ángela García-Gallardo, Patrick Grunert, and Werner E. Piller
Clim. Past, 14, 339–350, https://doi.org/10.5194/cp-14-339-2018, https://doi.org/10.5194/cp-14-339-2018, 2018
Short summary
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
April N. Abbott, Brian A. Haley, Aradhna K. Tripati, and Martin Frank
Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, https://doi.org/10.5194/cp-12-837-2016, 2016
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) was a brief period when the Earth was in an extreme greenhouse state. We use neodymium isotopes to suggest that during this time deep-ocean circulation was distinct in each basin (North and South Atlanic, Southern, Pacific) with little exchange between. Moreover, the Pacific data show the most variability, suggesting this was a critical region possibly involved in both PETM triggering and remediation.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
M. Bordiga, J. Henderiks, F. Tori, S. Monechi, R. Fenero, A. Legarda-Lisarri, and E. Thomas
Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, https://doi.org/10.5194/cp-11-1249-2015, 2015
Short summary
Short summary
Deep-sea sediments at ODP Site 1263 (Walvis Ridge, South Atlantic) show that marine calcifying algae decreased in abundance and size at the Eocene-Oligocene boundary, when the Earth transitioned from a greenhouse to a more glaciated and cooler climate. This decreased the food supply for benthic foraminifer communities. The plankton rapidly responded to fast-changing conditions, such as seasonal nutrient availability, or to threshold-levels in pCO2, cooling and ocean circulation.
N. Khélifi and M. Frank
Clim. Past, 10, 1441–1451, https://doi.org/10.5194/cp-10-1441-2014, https://doi.org/10.5194/cp-10-1441-2014, 2014
J. Etourneau, C. Ehlert, M. Frank, P. Martinez, and R. Schneider
Clim. Past, 8, 1435–1445, https://doi.org/10.5194/cp-8-1435-2012, https://doi.org/10.5194/cp-8-1435-2012, 2012
M. Dedert, H. M. Stoll, D. Kroon, N. Shimizu, K. Kanamaru, and P. Ziveri
Clim. Past, 8, 977–993, https://doi.org/10.5194/cp-8-977-2012, https://doi.org/10.5194/cp-8-977-2012, 2012
N. Khélifi, M. Sarnthein, and B. D. A. Naafs
Clim. Past, 8, 79–87, https://doi.org/10.5194/cp-8-79-2012, https://doi.org/10.5194/cp-8-79-2012, 2012
H. J. Dowsett, M. M. Robinson, and K. M. Foley
Clim. Past, 5, 769–783, https://doi.org/10.5194/cp-5-769-2009, https://doi.org/10.5194/cp-5-769-2009, 2009
Cited articles
Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A.,
Pershing, A. J., and Thomas, A. C.: Projected sea surface temperatures over
the 21st century: Changes in the mean, variability and extremes for large
marine ecosystem regions of Northern Oceans, Elem. Sci. Anth., 6, 9, https://doi.org/10.1525/elementa.191 2018.
Årthun, M. and Eldevik, T.: On Anomalous Ocean Heat Transport toward the
Arctic and Associated Climate Predictability, J. Climate, 29,
689–704, 2016.
Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H.
L., and Keenlyside, N.: Skilful prediction of northern climate provided by
the ocean, Nat. Commun., 8, 15875, https://doi.org/10.1038/ncomms15875, 2017.
Bachem, P., Risebrobakken, B., and McClymont, E. L.: Sea surface temperature
variability in the Norwegian Sea during the late Pliocene linked to subpolar
gyre and radiative forcing, Earth Planet. Sc. Lett., 446,
113–122, 2016.
Bachem, P. E., Risebrobakken, B., De Schepper, S., and McClymont, E. L.: Highly variable Pliocene sea surface conditions in the Norwegian Sea, Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, 2017.
Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline
during the Pliocene intensification of Northern Hemisphere glaciations,
Paleoceanography, 26, PA4213, https://doi.org/10.1029/2010PA002055, 2011.
Bell, D. B., Jung, S. J. A., Kroon, D., Hodell, D. A., Lourens, L. J., and
Raymo, M. E.: Atlantic Deep-water Response to the Early Pliocene Shoaling of
the Central American Seaway, Sci. Rep., 5, 12252, https://doi.org/10.1038/srep12252, 2015.
Bendle, J. and Rosell-Melé, A.: Distribution of and in the surface waters and sediments of the Nordic Seas: Implications for paleoceanography, Geochem. Geophy. Geosy., 5, Q11013,
https://doi.org/10.1029/2004GC000741, 2004.
Blaschek, M., Bakker, P., and Renssen, H.: The influence of Greenland ice
sheet melting on the Atlantic meridional overturning circulation during past
and future warm periods: a model study, Clim. Dynam., 44, 2137–2157,
https://doi.org/10.1007/s00382-014-2279-1, 2015.
Blindheim, J. and Østerhus, S.: The Nordic Seas, Main Oceanographic
Features, in: The Nordic Seas: An integrated Perspective, edited by: Drange,
H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., Geophysical
Monograph Series, American Geophysical Union, Washington, DC, 11–38, https://doi.org/10.1029/158GM03, 2005.
Bourke, R. H., Weigel, A. M., and Paquette, R. G.: The Westward Turning
Branch of the West Spitsbergen Current, J. Geophys. Res., 93,
14065–14077, 1988.
Bringedal, C., Eldevik, T., Skagseth, Ø., Spall, M., and Østerhus, S.:
Structure and forcing of observed exchanges across the Greenland-Scotland
Ridge, J. Climate, 31, 9881–9901, https://doi.org/10.1175/JCLI-D-17-0889.1, 2018.
Butt, F. A., Drange, H., Elverhøi, A., Otterå, O. H., and Solheim,
A.: Modelling Late Cenozoic isostatic elevation changes in the Barents Sea
and their implications for oceanic and climatic regimes: preliminary
results, Quaternary Sci. Rev., 21, 1643–1660, 2002.
Clotten, C.: Pliocene Sea Ice Evolution in the Iceland and Labrador Sea – A
Biomarker Approach, PhD, Department of Earth Science, Faculty of Mathematics
and Natural Sciences, University of Bergen, Bergen, 145 pp., ISBN 978-82-308-3888-4, 2017.
Clotten, C., Stein, R., Fahl, K., and De Schepper, S.: Seasonal sea ice
cover during the warm Pliocene: Evidence from the Iceland Srea (ODP Site
907), Earth Planet. Sc. Lett., 481, 61–72, https://doi.org/10.1016/j.epsl.2017.10.011, 2018.
Clotten, C., Stein, R., Fahl, K., Schreck, M., Risebrobakken, B., and De
Schepper, S.: On the causes of Sea Ice in the warm Early Pliocene, Sci. Rep., 9, 989, https://doi.org/10.1038/s41598-018-37047-y, 2019.
Conte, M. H., Sicre, M.-A., Rühlemann, C., Weber, J. C., Schulte, S.,
Schulz-Bull, D. E., and Blanz, T.: Global temperature calibration of the
alkenone unsaturation index ( ) in surface waters and comparison with surface sediments, Geochem. Gephy. Geosy., 7, Q02005,
https://doi.org/10.1029/2005GC001054, 2006.
de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., and Foster, G.
L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2
glaciation, Sci. Rep., 10, 11002, https://doi.org/10.1038/s41598-020-67154-8, 2020.
DeRepentigny, P., Jahn, A., Holland, M. M., and Smith, A.: Arctic sea ice in
two configurations of the CESM2 during the 20th and 21st centuries, J.
Geophys. Res.-Ocean, 125, e2020JC016133, https://doi.org/10.1029/2020JC016133, 2020.
De Schepper, S., Schreck, M., Beck, K. M., Matthiessen, J., Fahl, K., and
Mangerud, G.: Early Pliocene onset of modern Nordic Seas circulation related
to ocean gateway changes, Nat. Commun., 6, 8659,
https://doi.org/10.1038/ncomms9659, 2015.
Dickson, R. R., Meincke, J., Malmberg, S. A., and Lee, J. A.: The “Great
Salinity Anomaly” in the northern North Atlantic 1968–1982, Progress in
Oceanography, 20, 103–151, 1988.
Eldevik, T. and Nilsen, J. E. Ø.: The Arctic/Atlantic thermohaline
circulation, J. Climate, 26, 8698–8705,
https://doi.org/10.1175/JCLI-D-13-00305.1, 2013.
Eldevik, T., Nilsen, J. E. Ø., Iovino, D., Olsson, K. A., Sandø, A.
B., and Drange, H.: Observed sources and variability of the Nordic Seas
overflow, Nat. Geosci., 2, 406–410, 2009.
Furevik, T., Drange, H., and Sorteberg, A.: Anticipated changes in the
Nordic Seas marine climate: Scenarios for 2020, 2050, and 2080, Fisken og
Havet, 4, http://hdl.handle.net/11250/113241 (last access: 24 May 2023), 2002.
Furevik, T., Mauritzen, C., and Ingvaldsen, R.: The flow of Atlantic Water
to the Nordic Seas and Arctic Ocean, in: Arctic-Alpine Ecosystems and People
in a Changing Environment, edited by: Ørbæk, J. B., Kallenborn, R.,
Tombre, I., Nøst Hegseth, E., Falk-Petersen, S., and Hoel, A. H.,
Springer, 123–146, https://doi.org/10.1007/978-3-540-48514-8_8, 2007.
Hátún, H., Sandø, A. B., Drange, H., Hansen, B., and
Valdimarsson, H.: Influence of the Atlantic Subpolar Gyre on the
Thermohaline Circulation, Science, 309, 1841–1844, 2005.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–849, 2016.
Holliday, N. P., Hughes, S. L., Bacon, S., Beszczynska-Möller, A.,
Hansen, A. W., Lavin, H., Loeng, H., Mork, K. A., Østerhus, S., Sherwin,
T., and Walczowski, W.: Reversal of the 1960s to1990s freshening trend in
the northeast North Atlantic and Nordic Seas, Geophys. Res. Lett., 35, L03614, https://doi.org/10.1029/2007GL032675, 2008.
Hu, A., Meehl, G. A., Han, W., Otto-Bliesner, B., Abe-Ouchi, A., and
Rosenbloom, N.: Effects of the Bering Strait closure on AMOC and global
climate under different background climates, Prog. Oceanogr., 132,
174–196, https://doi.org/10.1016/j.pocean.2014.02.004, 2015.
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
is-enes: Analysis Platforms for CMIP6 and CORDEX, https://is.enes.org/sdm-analysis-platforms-service/ (last access: 26 May 2023), 2023.
Jackett, D. R. and McDougall, T. J.: Minimal adjustment of hydrographic
profiles to achieve static stability, J. Atmos. Ocean. Tech., 12,
381–389, 1995.
Jansen, E., Fronval, T., Rack, F., and Channell, J. E. T.:
Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas
during the last 3.5 Myr, Paleoceanography, 15, 709–721, 2000.
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonschenck, D., and
Ghosh, R.: Multiple drivers of the North Atlantic warming hole, Nat.
Clim. Change, 10, 667–671, 2020.
Knies, J., Cabedo-Sanz, P., Belt, S. T., Baranwal, S., Fietz, S., and
Rosell-Melé, A.: The emergence of modern sea ice cover in the Arctic
Ocean, Nat. Commun., 5, 5608, https://doi.org/10.1038/ncomms6608, 2014.
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.:
A signature of persistent natural thermohaline circulation cycles in
observed climate, Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233, 2005.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Lawrence, K. T., Herbert, T. D., Brown, C. W., Raymo, M., and Haywood, A.
M.: High-amplitude variations in North Atlantic sea surface temperature
during the early Pliocene warm period, Paleoceanography, 24, PA2218,
https://doi.org/10.1029/2008PA001669, 2009.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locarini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M.
M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R.,
and Smolyar, I.: World Ocean Atlas 2018, Volume 1, Temperature, 52, http://www.nodc.noaa.gov/OC5/indprod.html (last access: 20 May 2021), 2018.
Macrander, A., Valdimarsson, H., and Jónsson, S.: Improved transport
estimate of the East Icelandic Current 2002–2012, J. Geophys.
Res.-Oceans, 119, 3407–3424, https://doi.org/10.1002/2013JC009517, 2014.
Marlowe, I. T., Brassell, S. C., Eglinton, G., and Green, J. C.: Long chain
unsaturated ketons and esters in living algae and marien sediments, Ketones, 6, 135–141, 1984.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydro-static,
quasi-hydrostatic, and non-hydrostatic ocean modeling, J.
Geophys. Res., 102, 5733–5752, 1997.
Matthiessen, J., Knies, J., Vogt, C., and Stein, R.: Pliocene
paleoceanography of the Arctic Ocean and subarctic seas, Philos. T. R.
Soc. A, 367, 21–48, 2009.
Mauritzen, C.: Production of dense overflow waters feeding the North
Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised
circulation scheme, Deep-Sea Res. Pt. I, 43, 769–837, 1996.
McClymont, E. L., Ford, H. L., Ho, S. L., Tindall, J. C., Haywood, A. M., Alonso-Garcia, M., Bailey, I., Berke, M. A., Littler, K., Patterson, M. O., Petrick, B., Peterse, F., Ravelo, A. C., Risebrobakken, B., De Schepper, S., Swann, G. E. A., Thirumalai, K., Tierney, J. E., van der Weijst, C., White, S., Abe-Ouchi, A., Baatsen, M. L. J., Brady, E. C., Chan, W.-L., Chandan, D., Feng, R., Guo, C., von der Heydt, A. S., Hunter, S., Li, X., Lohmann, G., Nisancioglu, K. H., Otto-Bliesner, B. L., Peltier, W. R., Stepanek, C., and Zhang, Z.: Lessons from a high-CO2 world: an ocean view from ∼3 million years ago, Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, 2020.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F.,
Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting
equilibrium climate sensitivity and transient climate response from the
CMIP6 Earth system models, Science Advances, 6, eaba1981,
https://doi.org/10.1126/sciadv.aba1981, 2020.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Met Office Hadley Centre: Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST), Met Office Hadley Centre [data set], https://www.metoffice.gov.uk/hadobs/hadisst/ (last access: May 2013), 2013.
MITgcm: Massachusetts Institute of Technology General Circulation Model, https://mitgcm.org (last access: August 2022), 2023.
Müller, P. J., Kirst, G., Ruhland, G., Vvon Storch, I., and
Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core tops from the eastern South Atlantic and the global ocean (60∘ N–60∘ S), Geochem. Cosmochem. Ac., 62, 1757–1772, 1998.
Nummelin, A., Li, C., and Hezel, P. J.: Connecting ocean heat transport
changes from the midlatitudes to the Arctic Ocean, Geophys. Res. Lett., 44, 1899–1908, https://doi.org/10.1002/2016GL071333, 2017.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Otto-Bliesner, B., Jahn, A., Feng, R., Brady, E. C., Hu, A., and
Löfverström, M.: Amplified North Atlantic warming in the late
Pliocene by changes in Arctic gateways, Geophys. Res. Lett., 44, 957–964,
https://doi.org/10.1002/2016GL071805, 2016.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs
time-series analysis, EOS T. AGU, 79, 379–379, 1996.
Panitz, S., Salzmann, U., Risebrobakken, B., De Schepper, S., Pound, J. M.,
Haywood, A., Dolan, A. M., and Lunt, D.: Orbital, tectonic and oceanographic
control of Pliocene climate and atmospheric circulation in Arctic Norway,
Global Planet. Change, 161, 183–193, 2018.
Poore, H. R., Samworth, R., White, N. J., Jones, S. M., and McCave, I. N.:
Neogene overflow of Northern Component Water at the Greenland-Scotland
Ridge, Geochem. Geophy. Geosy., 7, Q06010, https://doi.org/10.1029/2005GC001085, 2006.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in
long-chain ketone compositions for paleotemperature assessment, Nature, 330,
367–369, 1987.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Reverdin, G.: North Atlantic subpolar gyre surface variability (1895–2009),
J. Climate, 23, 4571–4584, 2010.
Risebrobakken, B., Andersson, C., De Schepper, S., and McClymont, E. L.:
Low-frequency Pliocene climate variability in the eastern Nordic Seas,
Paleoceanography, 31, 1154–1175, https://doi.org/10.1002/2015PA002918, 2016.
Rosell-Melé, A. and Prahl, F. G.: Seasonality of temperature estimates as inferred from sediment trap data, Quaternary Sci. Rev., 72, 126–136, 2013.
Rudels, B., Björck, G., Nilsson, J., Winsor, P., Lake, I., and Nohr, C.:
The interaction between waters from the Arctic Ocean and the Nordic Seas
north of Fram Strait and along the East Greenland Current: Results from the
Arctic Ocean-02 Oden expedition, J. Mar. Syst., 55, 1–30, 2005.
Ryan, W. B. F., Carbotte, S. M., Coplan, J., O'Hara, S., Melkonian, A.,
Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F.,
Bonczkowski, J., and Zemsky, R.: Global Multi-Resolution Topography (GMRT)
synthesis data set, Geochem. Gephys. Geosyst., 10, QQ03014, https://doi.org/10.1029/2008GC002332, 2009.
Seidov, D., Baranova, O. K., Biddle, M., Boyer, T. P., Johnson, D. R., Mishonov, A. V., Paver, C., and Zweng, M.: Greenland-Iceland-Norwegian Seas Regional Climatology (NCEI Accession 0112824), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5GT5K30, 2013.
Seidov, D., Baranova, O. K., Boyer, T. P., Cross, S. L., Mishonov, A. V., Parsons, A. R., Reagan, J. R., and Weathers, K. W.: Greenland-Iceland-Norwegian Seas Regional Climatology version 2, Regional Climatology Team, NOAA/NCEI, https://www.ncei.noaa.gov/products/greenland-iceland-and-norwegian-seas-regional-climatology (last access: 20 May 2021), 2018.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.
Smagorinsky, J.: General circulation experiments with the primitive
equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, 1963.
Smedsrud, L. H., Muilwijk, M., Brakstad, A., Madonna, E., Lauvset, S. K.,
Spensberger, C., Born, A., Eldevik, T., Drange, H., Jeansson, E., Li, C.,
Olsen, A., Skagseth, O., Slater, D. A., Straneo, F., Våge, K., and
Årthun, M.: Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice
Cover Over the Last Century, Rev. Geophys., 60, e2020RG000725,
https://doi.org/10.1029/2020RG000725, 2022.
Spall, M. A.: On the role of eddies and surface forcing in the heat
transport and overturning circulation in marginal seas, J. Climate, 24,
4844–4858, https://doi.org/10.1175/2011JCLI4130.1, 2011.
Spall, M. A.: Influences of precipitation on water mass trans-formation and
deep convection, J. Phys. Oceanogr., 42, 1684–1700,
https://doi.org/10.1175/JPO-D-11-0230.1, 2012.
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.:
Mass, Salt, and Heat Budgets and Wind Forcing, in: Descriptive Physical
Oceanography (Sixth Edition), chap. 5, edited by: Talley, L. D., Pickard, G. L.,
Emery, W. J., and Swift, J. H., Academic Press, 111–145,
https://doi.org/10.1016/C2009-1010-24322-24324, 2011.
Tierney, J. E. and Tingley, M. P.: BAYSLINE: A new calibration for the
alkenone paleothermometer, Paleoceanography and Paleoclimatology, 33,
281–301, https://210.1002/2017PA003201, 2018.
Våge, K., Pickart, R. S., Spall, M. A., Valdimarsson, H., Jónsson,
S., Torres, D. J., Østerhus, S., and Eldevik, T.: Significant role of the
North Icelandic Jet in the formation of Denmark Strait overflow water,
Nat. Geosci., 4, 723–727, https://doi.org/10.1038/NGEO1234, 2011.
Verhoeven, K., Louwye, S., and Eiríksson, J.: Plio-Pleistocene
landscape and vegetation reconstruction of the coastal area of the
Tjörnes Peninsula, Northern Iceland, Boreas, 42, 108–122, 2013.
WCRP: CMIP6, https://esgf-node.llnl.gov/search/cmip6/ (last access: 9 September 2020), 2020.
Wei, T., Yan, Q., Qi, W., Ding, M., and Wang, C.: Projections of Arctic sea
ice conditions and shipping routes in the twenty-first century using CMIP6
forcing scenarios, Environ. Res. Lett., 15, 104079,
https://doi.org/10.1088/1748-9326/abb2c8, 2020.
Weijer, W., Cheng, W., Garuba, O. A., Hu, A., and Nadiga, B. T.: CMIP6
models predict significant 21st century decline of the Atlantic meridional
overturning circulation, Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075, 2020.
Woodgate, R. A. and Aagaard, K.: Revising the Bering Strait freshwater flux
into the Arctic Ocean, Geophys. Res. Lett., 32, L02602,
https://doi.org/10.1029/2004GL021747, 2005.
Zanowski, H., Jahn, A., and Holand, M. M.: Arctic Ocean Freshwater in CMIP6
Ensembles: Declining Sea ice, Increasing Ocean Storage and Export, J.
Geophys. Res.-Oceans, 126, e2020JC016930, https://doi.org/10.1029/2020JC016930, 2021.
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
In the observational period, spatially coherent sea surface temperatures characterize the...