Articles | Volume 18, issue 4
https://doi.org/10.5194/cp-18-775-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-775-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamic boreal summer atmospheric circulation response as negative feedback to Greenland melt during the MIS-11 interglacial
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
Matthias Prange
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
Michael Schulz
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
Related authors
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, and Irina Rogozhina
Clim. Past, 20, 1559–1577, https://doi.org/10.5194/cp-20-1559-2024, https://doi.org/10.5194/cp-20-1559-2024, 2024
Short summary
Short summary
During the last glacial period, the Patagonian Ice Sheet grew along the southern Andes, leaving marks on the landscape showing its former extents and timing. We use paleoclimate and ice sheet models to replicate its glacial history. We find that errors in the model-based ice sheet are likely induced by imprecise reconstructions of air temperature due to poorly resolved Andean topography in global climate models, while a fitting regional climate history is only captured by local sediment records.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Takasumi Kurahashi-Nakamura, André Paul, Ute Merkel, and Michael Schulz
Clim. Past, 18, 1997–2019, https://doi.org/10.5194/cp-18-1997-2022, https://doi.org/10.5194/cp-18-1997-2022, 2022
Short summary
Short summary
With a comprehensive Earth-system model including the global carbon cycle, we simulated the climate state during the last glacial maximum. We demonstrated that the CO2 concentration in the atmosphere both in the modern (pre-industrial) age (~280 ppm) and in the glacial age (~190 ppm) can be reproduced by the model with a common configuration by giving reasonable model forcing and total ocean inventories of carbon and other biogeochemical matter for the respective ages.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina
The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, https://doi.org/10.5194/tc-15-459-2021, 2021
Short summary
Short summary
We combine a computer model with different climate records to simulate how Antarctica responded to warming during marine isotope substage 11c, which can help understand Antarctica's natural drivers of change. We found that the regional climate warming of Antarctica seen in ice cores was necessary for the model to match the recorded sea level rise. A collapse of its western ice sheet is possible if a modest warming is sustained for ca. 4000 years, contributing 6.7 to 8.2 m to sea level rise.
Cited articles
Alley, R. B., Andrews, J. T., Brigham-Grette, J., Clarke, G. K. C., Cuffey, K. M., Fitzpatrick, J. J., Funder, S., Marshall, S. J., Miller, G. H., Mitrovica, J. X., Muhs, D. R., Otto-Bliesner, B. L., Polyak, L., and White, J. W. C.: History of the Greenland Ice Sheet: paleoclimatic insights, Quaternary Sci. Rev., 29, 1728–1756,
https://doi.org/10.1016/j.quascirev.2010.02.007, 2010.
Andres, H. J. and Tarasov, L.: Towards understanding potential atmospheric contributions to abrupt climate changes: characterizing changes to the North Atlantic eddy-driven jet over the last deglaciation, Clim. Past, 15, 1621–1646, https://doi.org/10.5194/cp-15-1621-2019, 2019.
Berger, A. and Loutre, M.-F.: Climate 400 000 years ago, a key to the
future?, in: Earth's Climate and Orbital Eccentricity: The Marine Isotope
Stage 11 Question, American Geophysical Union (AGU), 17–26,
https://doi.org/10.1029/137GM02, 2003.
Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J., and
Lourens, L. J.: Response of the North African summer monsoon to precession
and obliquity forcings in the EC-Earth GCM, Clim. Dynam., 44, 279–297,
https://doi.org/10.1007/s00382-014-2260-z, 2015.
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020.
Chen, Q.-S., Bromwich, D. H., and Bai, L.: Precipitation over Greenland
retrieved by a dynamic method and its relation to cyclonic activity, J.
Climate, 10, 839–870, https://doi.org/10.1175/1520-0442(1997)010<0839:POGRBA>2.0.CO;2,
1997.
Crow, B. R., Prange, M., and Schulz, M.: Exploring dynamic shifts in North Atlantic climate using CESMv1.2 time slice simulations of MIS-11c, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.942092, 2022.
Decremer, D., Chung, C. E., Ekman, A. M. L., and Brandefelt, J.: Which
significance test performs the best in climate simulations?, Tellus A, 66, 23139, https://doi.org/10.3402/tellusa.v66.23139, 2014.
de Vernal, A. and Hillaire-Marcel, C.: Natural variability of Greenland
climate, vegetation, and ice volume during the past million years, Science,
320, 1622–1625, https://doi.org/10.1126/science.1153929, 2008.
Dickson, A. J., Beer, C. J., Dempsey, C., Maslin, M. A., Bendle, J. A.,
McClymont, E. L., and Pancost, R. D.: Oceanic forcing of the Marine Isotope
Stage 11 interglacial, Nat. Geosci., 2, 428–433,
https://doi.org/10.1038/ngeo527, 2009.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U.,
DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise
due to polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019, https://doi.org/10.1126/science.aaa4019, 2015.
Fischer, N. and Jungclaus, J. H.: Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model, Clim. Past, 6, 155–168, https://doi.org/10.5194/cp-6-155-2010, 2010.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System
Model Version 4, J. Climate, 24, 4973–4991,
https://doi.org/10.1175/2011JCLI4083.1, 2011.
Harvey, B. J., Cook, P., Shaffrey, L. C., and Schiemann, R.: The response of
the Northern Hemisphere storm tracks and jet streams to climate change in
the CMIP3, CMIP5, and CMIP6 climate models, J. Geophys. Res.-Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701, 2020.
Helmke, J. P., Bauch, H. A., Röhl, U., and Kandiano, E. S.: Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11, Clim. Past, 4, 181–190, https://doi.org/10.5194/cp-4-181-2008, 2008.
Herold, N., Yin, Q. Z., Karami, M. P., and Berger, A.: Modelling the
climatic diversity of the warm interglacials, Quaternary Sci. Rev., 56,
126–141, https://doi.org/10.1016/j.quascirev.2012.08.020, 2012.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: a framework for
collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
IPCC: Climate Change 2001: The Scientific Basis. Contribution of Working
Group I to the Third Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer,
M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
881 pp., 2001.
Kleinen, T., Hildebrandt, S., Prange, M., Rachmayani, R., Müller, S.,
Bezrukova, E., Brovkin, V., and Tarasov, P. E.: The climate and vegetation
of Marine Isotope Stage 11 – Model results and proxy-based reconstructions
at global and regional scale, Quatern. Int., 348, 247–265,
https://doi.org/10.1016/j.quaint.2013.12.028, 2014.
Kroon, D., Alexander, I., Little, M., Lourens, L. J., Matthewson, A.,
Robertson, A. H. F., and Sakamoto, T.: Oxygen isotope and sapropel
stratigraphy in the Eastern Mediterranean during the last 3.2 million years,
in: Ocean Drilling Program Scientific Results, 160, College Station, Texas,
181–190, https://doi.org/10.2973/odp.proc.sr.160.071.1998, 1998.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Le clec'h, S., Quiquet, A., Charbit, S., Dumas, C., Kageyama, M., and Ritz, C.: A rapidly converging initialisation method to simulate the present-day Greenland ice sheet using the GRISLI ice sheet model (version 1.3), Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, 2019.
Lee, S. and Kim, H.: The Dynamical Relationship between Subtropical and
Eddy-Driven Jets, J. Atmos. Sci., 60, 1490–1503,
https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2, 2003.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lourens, L. J.: Revised tuning of Ocean Drilling Program Site 964 and KC01B
(Mediterranean) and implications for the δ18O, tephra,
calcareous nannofossil, and geomagnetic reversal chronologies of the past
1.1 Myr, Paleoceanography, 19, PA3010, https://doi.org/10.1029/2003PA000997, 2004.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650 000–800 000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008.
Mantsis, D. F., Lintner, B. R., Broccoli, A. J., Erb, M. P., Clement, A. C.,
and Park, H.-S.: The response of large-scale circulation to
obliquity-induced changes in meridional heating gradients, J. Climate, 27,
5504–5516, https://doi.org/10.1175/JCLI-D-13-00526.1, 2014.
Mas e Braga, M., Bernales, J., Prange, M., Stroeven, A. P., and Rogozhina, I.: Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c, The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, 2021.
Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O.,
Falourd, S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Barnola, J.
M., Chappellaz, J., Krinner, G., Johnsen, S., Röthlisberger, R., Hansen,
J., Mikolajewicz, U., and Otto-Bliesner, B.: EPICA Dome C record of glacial
and interglacial intensities, Quaternary Sci. Rev., 29, 113–128,
https://doi.org/10.1016/j.quascirev.2009.09.030, 2010.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich,
V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T.
L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov,
P., Vogel, H., and Wagner, B.: 2.8 million years of Arctic climate change
from Lake El'gygytgyn, NE Russia, Science, 337, 315–320,
https://doi.org/10.1126/science.1222135, 2012.
Merz, N., Born, A., Raible, C. C., Fischer, H., and Stocker, T. F.: Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography, Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, 2014.
Merz, N., Raible, C. C., and Woollings, T.: North Atlantic eddy-driven jet
in interglacial and glacial winter climates, J. Climate, 28, 3977–3997,
https://doi.org/10.1175/JCLI-D-14-00525.1, 2015.
Merz, N., Born, A., Raible, C. C., and Stocker, T. F.: Warm Greenland during the last interglacial: the role of regional changes in sea ice cover, Clim. Past, 12, 2011–2031, https://doi.org/10.5194/cp-12-2011-2016, 2016.
Milker, Y., Rachmayani, R., Weinkauf, M. F. G., Prange, M., Raitzsch, M., Schulz, M., and Kučera, M.: Global and regional sea surface temperature trends during Marine Isotope Stage 11, Clim. Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, 2013.
Mohtadi, M., Prange, M., and Steinke, S.: Palaeoclimatic insights into
forcing and response of monsoon rainfall, Nature, 533, 191–199,
https://doi.org/10.1038/nature17450, 2016.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: complete bed topography and ocean
bathymetry mapping of Greenland from multibeam echo sounding combined with
mass conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Nakamura, N. and Oort, A. H.: Atmospheric heat budgets of the polar regions,
J. Geophys. Res.-Atmos., 93, 9510–9524,
https://doi.org/10.1029/JD093iD08p09510, 1988.
Nakamura, H. and Sampe, T.: Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter, Geophys. Res. Lett., 29, 8-1–8-4, https://doi.org/10.1029/2002GL015535, 2002.
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017.
Overland, J. E. and Turet, P.: Variability of the atmospheric energy flux
across 70∘ N computed from the GFDL data set, in: The Polar Oceans
and Their Role in Shaping the Global Environment, edited by: Johnnessen, O.
M., Muench, R. D., and Overland, J. E., American Geophysical Union,
Washington, D. C., https://doi.org/10.1029/GM085p0313, 1994.
Pante, G. and Knippertz, P.: Resolving Sahelian thunderstorms improves
mid-latitude weather forecasts, Nat. Commun., 10, 3487,
https://doi.org/10.1038/s41467-019-11081-4, 2019.
Rachmayani, R., Prange, M., and Schulz, M.: Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15, Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, 2016.
Rachmayani, R., Prange, M., Lunt, D. J., Stone, E. J., and Schulz, M.:
Sensitivity of the Greenland Ice Sheet to interglacial climate forcing: MIS 5e versus MIS 11, Paleoceanography, 32, 1089–1101,
https://doi.org/10.1002/2017PA003149, 2017.
Raymo, M. E. and Mitrovica, J. X.: Collapse of polar ice sheets during the
stage 11 interglacial, Nature, 483, 453–456,
https://doi.org/10.1038/nature10891, 2012.
Reyes, A. V., Carlson, A. E., Beard, B. L., Hatfield, R. G., Stoner, J. S.,
Winsor, K., Welke, B., and Ullman, D. J.: South Greenland ice-sheet collapse
during Marine Isotope Stage 11, Nature, 510, 525–528,
https://doi.org/10.1038/nature13456, 2014.
Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A., and Montoya, M.:
MIS-11 duration key to disappearance of the Greenland ice sheet, Nat.
Commun., 8, 16008, https://doi.org/10.1038/ncomms16008, 2017.
Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., and
Trenberth, K. E.: The large-scale energy budget of the Arctic, J. Geophys.
Res., 112, D11122, https://doi.org/10.1029/2006JD008230, 2007.
Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J.: Stable Carbon Cycle-Climate Relationship During the Late Pleistocene, Science, 310, 1313–1317, https://doi.org/10.1126/science.1120130, 2005.
Son, S.-W. and Lee, S.: The response of westerly jets to thermal driving in
a primitive equation model, J. Atmos. Sci., 62, 3741–3757,
https://doi.org/10.1175/JAS3571.1, 2005.
Stone, E. J., Lunt, D. J., Annan, J. D., and Hargreaves, J. C.: Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise, Clim. Past, 9, 621–639, https://doi.org/10.5194/cp-9-621-2013, 2013.
Thomson, D. J.: Spectrum estimation and harmonic analysis, P. IEEE, 70,
1055–1096, https://doi.org/10.1109/PROC.1982.12433, 1982.
Varma, V., Prange, M., and Schulz, M.: Transient simulations of the present and the last interglacial climate using the Community Climate System Model version 3: effects of orbital acceleration, Geosci. Model Dev., 9, 3859–3873, https://doi.org/10.5194/gmd-9-3859-2016, 2016.
Wang, L., Deng, A., and Huang, R.: Wintertime internal climate variability
over Eurasia in the CESM large ensemble, Clim. Dynam., 52, 6735–6748,
https://doi.org/10.1007/s00382-018-4542-3, 2019.
Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B.,
Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D.,
Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan,
R., Armitage, S., de Hoog, C.-J., Alfimov, V., Christl, M., Beer, J.,
Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J.,
Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., and Collins, M.
J.: Ancient biomolecules from deep ice cores reveal a forested southern
Greenland, Science, 317, 111–114, https://doi.org/10.1126/science.1141758,
2007.
Wu, C.-H. and Tsai, P.-C.: Impact of orbitally-driven seasonal insolation
changes on Afro-Asian summer monsoons through the Holocene, Commun. Earth
Environ., 2, 4, https://doi.org/10.1038/s43247-020-00073-8, 2021.
Yin, Q. Z. and Berger, A.: Individual contribution of insolation and
CO2 to the interglacial climates of the past 800 000 years, Clim. Dynam., 38, 709–724, https://doi.org/10.1007/s00382-011-1013-5, 2012.
Yin, Q. Z., Wu, Z. P., Berger, A., Goosse, H., and Hodell, D.: Insolation
triggered abrupt weakening of Atlantic circulation at the end of
interglacials, Science, 373, 1035–1040,
https://doi.org/10.1126/science.abg1737, 2021.
Yuan, X., Kaplan, M. R., and Cane, M. A.: The interconnected global climate system – a review of tropical-polar teleconnections, J. Climate, 31, 5765–5792, https://doi.org/10.1175/JCLI-D-16-0637.1, 2018.
Short summary
To better understand the climate conditions which lead to extensive melting of the Greenland ice sheet, we used climate models to reconstruct the climate conditions of the warmest period of the last 800 000 years, which was centered around 410 000 years ago. Surprisingly, we found that atmospheric circulation changes may have acted to reduce the melt of the ice sheet rather than enhance it, despite the extensive warmth of the time.
To better understand the climate conditions which lead to extensive melting of the Greenland ice...