Articles | Volume 18, issue 4
https://doi.org/10.5194/cp-18-713-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-713-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secular and orbital-scale variability of equatorial Indian Ocean summer monsoon winds during the late Miocene
Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, 13545, Aix-en-Provence, France
Emmeline Gray
Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, 13545, Aix-en-Provence, France
now at: School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, UK
Wolfgang Kuhnt
Institute of Geosciences, University of Kiel, 24118 Kiel, Germany
Ann E. Holbourn
Institute of Geosciences, University of Kiel, 24118 Kiel, Germany
Julia Lübbers
Institute of Geosciences, University of Kiel, 24118 Kiel, Germany
Katharine Grant
Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
Kazuyo Tachikawa
Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, 13545, Aix-en-Provence, France
Gianluca Marino
Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
Centro de Investigación Mariña, Universidade de Vigo, GEOMA, Palaeoclimatology Lab, Vigo, 36310, Spain
Eelco J. Rohling
Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
Anta-Clarisse Sarr
Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, 13545, Aix-en-Provence, France
Nils Andersen
Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, University of Kiel, 24118 Kiel, Germany
Related authors
Hongrui Zhang, Heather Stoll, Clara Bolton, Xiaobo Jin, and Chuanlian Liu
Biogeosciences, 15, 4759–4775, https://doi.org/10.5194/bg-15-4759-2018, https://doi.org/10.5194/bg-15-4759-2018, 2018
Short summary
Short summary
The sinking speeds of coccoliths are relevant for laboratory methods to separate coccoliths for geochemical analysis. However, in the absence of estimates of coccolith settling velocity, previous implementations have depended mainly on time-consuming method development by trial and error. In this study, the sinking velocities of cocooliths were carefully measured for the first time. We also provide an estimation of coccolith sinking velocity by shape, which will make coccolith separation easier.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Luc Beaufort and Anta-Clarisse Sarr
Clim. Past, 20, 1283–1301, https://doi.org/10.5194/cp-20-1283-2024, https://doi.org/10.5194/cp-20-1283-2024, 2024
Short summary
Short summary
At present, under low eccentricity, the tropical ocean experiences a limited seasonality. Based on eight climate simulations of sea surface temperature and primary production, we show that, during high-eccentricity times, significant seasons existed in the tropics due to annual changes in the Earth–Sun distance. Those tropical seasons are slowly shifting in the calendar year to be distinct from classical seasons. Their past dynamics should have influenced phenomena like ENSO and monsoons.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Peter D. Clift, Christian Betzler, Steven C. Clemens, Beth Christensen, Gregor P. Eberli, Christian France-Lanord, Stephen Gallagher, Ann Holbourn, Wolfgang Kuhnt, Richard W. Murray, Yair Rosenthal, Ryuji Tada, and Shiming Wan
Sci. Dril., 31, 1–29, https://doi.org/10.5194/sd-31-1-2022, https://doi.org/10.5194/sd-31-1-2022, 2022
Short summary
Short summary
An integrated campaign of drilling around Asia and Australia was conducted from 2013 to 2016 to reconstruct the monsoon climate. The results provide relatively continuous records spanning the last 24 myr. Asia has shown a steady drying since the late Miocene, while Australia has become wetter. The monsoons are affected by the tectonics of Asia and surrounding seas, as well as orbital forcing, resulting in diachronous evolution of continental climate, ocean currents, and the marine biosphere.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Julien Schirrmacher, Mara Weinelt, Thomas Blanz, Nils Andersen, Emília Salgueiro, and Ralph R. Schneider
Clim. Past, 15, 617–634, https://doi.org/10.5194/cp-15-617-2019, https://doi.org/10.5194/cp-15-617-2019, 2019
Hongrui Zhang, Heather Stoll, Clara Bolton, Xiaobo Jin, and Chuanlian Liu
Biogeosciences, 15, 4759–4775, https://doi.org/10.5194/bg-15-4759-2018, https://doi.org/10.5194/bg-15-4759-2018, 2018
Short summary
Short summary
The sinking speeds of coccoliths are relevant for laboratory methods to separate coccoliths for geochemical analysis. However, in the absence of estimates of coccolith settling velocity, previous implementations have depended mainly on time-consuming method development by trial and error. In this study, the sinking velocities of cocooliths were carefully measured for the first time. We also provide an estimation of coccolith sinking velocity by shape, which will make coccolith separation easier.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
K. Tachikawa, A. Timmermann, L. Vidal, C. Sonzogni, and O. E. Timm
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-1869-2013, https://doi.org/10.5194/cpd-9-1869-2013, 2013
Revised manuscript has not been submitted
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Milankovitch
Distinct seasonal changes and precession forcing of surface and subsurface temperatures in the mid-latitudinal North Atlantic during the onset of the Late Pliocene
Orbitally forced environmental changes during the accumulation of a Pliensbachian (Lower Jurassic) black shale in northern Iberia
A 300 000-year record of cold-water coral mound build-up at the East Melilla Coral Province (SE Alboran Sea, western Mediterranean)
Last interglacial ocean changes in the Bahamas: climate teleconnections between low and high latitudes
Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series
The East Asian winter monsoon variability in response to precession during the past 150 000 yr
Paleo Agulhas rings enter the subtropical gyre during the penultimate deglaciation
A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept
Xiaolei Pang, Antje H. L. Voelker, Sihua Lu, and Xuan Ding
Clim. Past, 20, 2103–2116, https://doi.org/10.5194/cp-20-2103-2024, https://doi.org/10.5194/cp-20-2103-2024, 2024
Short summary
Short summary
Our research discovered significant seasonal temperature variations in the North Atlantic's mid-latitudes during the early Late Pliocene. This highlights the necessity of using multiple methods to get a full picture of past climates, thus avoiding a biased understanding of the climate system. Moreover, our study reveals that the precession signal, which previously dominated surface temperature records, disappeared with the increased influence of the ice sheets in the Northern Hemisphere.
Naroa Martinez-Braceras, Aitor Payros, Jaume Dinarès-Turell, Idoia Rosales, Javier Arostegi, and Roi Silva-Casal
Clim. Past, 20, 1659–1686, https://doi.org/10.5194/cp-20-1659-2024, https://doi.org/10.5194/cp-20-1659-2024, 2024
Short summary
Short summary
Although significant progress in Early Jurassic cyclostratigraphy has been made in the last few decades, fewer studies have focused on the climatic and environmental impact of orbital cycles on the sedimentary record. This study presents an original orbitally modulated depositional model, which provides new insight into the formation of orbitally modulated organic-rich calcareous hemipelagic rhythmites accumulated in early Pliensbachian times in the northern Iberian palaeomargin.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Anastasia Zhuravleva and Henning A. Bauch
Clim. Past, 14, 1361–1375, https://doi.org/10.5194/cp-14-1361-2018, https://doi.org/10.5194/cp-14-1361-2018, 2018
Short summary
Short summary
New foraminiferal data from the Bahama region are used to investigate the mechanisms regulating subtropical climate. Our results suggest that the sensitivity of the low-latitude climate increased at times of enhanced sea-surface freshening in the subpolar North Atlantic. This has further implications for future climate development, given the ongoing melting of the Greenland ice sheet.
Mathieu Martinez, Sergey Kotov, David De Vleeschouwer, Damien Pas, and Heiko Pälike
Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, https://doi.org/10.5194/cp-12-1765-2016, 2016
Short summary
Short summary
Identification of Milankovitch cycles within the sedimentary record depends on spectral analyses, but these can be biased because there are always slight uncertainties in the sample position within a sedimentary column. Here, we simulate uncertainties in the sample position and show that a tight control on the inter-sample distance together with a density of 6–12 samples per precession cycle are needed to accurately reconstruct the contribution of the orbital forcing on past climate changes.
M. Yamamoto, H. Sai, M.-T. Chen, and M. Zhao
Clim. Past, 9, 2777–2788, https://doi.org/10.5194/cp-9-2777-2013, https://doi.org/10.5194/cp-9-2777-2013, 2013
P. Scussolini, E. van Sebille, and J. V. Durgadoo
Clim. Past, 9, 2631–2639, https://doi.org/10.5194/cp-9-2631-2013, https://doi.org/10.5194/cp-9-2631-2013, 2013
J. Frigola, M. Canals, I. Cacho, A. Moreno, F. J. Sierro, J. A. Flores, S. Berné, G. Jouet, B. Dennielou, G. Herrera, C. Pasqual, J. O. Grimalt, M. Galavazi, and R. Schneider
Clim. Past, 8, 1067–1077, https://doi.org/10.5194/cp-8-1067-2012, https://doi.org/10.5194/cp-8-1067-2012, 2012
L. Beaufort, S. van der Kaars, F. C. Bassinot, and V. Moron
Clim. Past, 6, 695–706, https://doi.org/10.5194/cp-6-695-2010, https://doi.org/10.5194/cp-6-695-2010, 2010
Cited articles
Acosta, R. and Huber, M.: Competing topographic mechanisms for the summer
Indo-Asian monsoon, Geophys. Res. Lett., 47, e2019GL085112, https://doi.org/10.1029/2019GL085112, 2020.
Ali, S., Hathorne, E., and Frank, M.: Persistent provenance of South Asian
Monsoon induced silicate weathering over the past 27 million years,
Paleoceanography and Paleoclimatology, 36, e2020PA003909. https://doi.org/10.1029/2020PA003909, 2021.
An, Z., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian
monsoons and phased uplift of the Himalaya–Tibetan plateau since Late
Miocene times, Nature, 411, 62–66, 2001.
An, Z., Clemens, S. C., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W. L.,
Luo, J., Wang, S., and Xu, H.: Glacial-interglacial Indian summer monsoon
dynamics, Science, 333, 719–723, 2011.
Ao, H., Roberts, A. P., Dekkers, M. J., Liu, X., Rohling, E. J., Shi, Z.,
An, Z., and Zhao, X.: Late Miocene–Pliocene Asian monsoon intensification
linked to Antarctic ice-sheet growth, Earth Planet. Sc. Lett., 444, 75–87, 2016.
Averyt, K. B. and Paytan, A.: A comparison of multiple proxies for export
production in the equatorial Pacific, Paleoceanography, 19, PA4003, https://doi.org/10.1029/2004PA001005, 2004.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997.
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based
ocean productivity and phytoplankton physiology from space, Global
Biogeochem. Cy., 19, GB1006, https://doi.org/10.1029/2004GB002299, 2005.
Betzler, C., Eberli, G. P., Kroon, D., Wright, J. D., Swart, P. K., Nath, B.
N., Alvarez-Zarikian, C. A., Alonso-García, M., Bialik, O. M., and
Blättler, C. L.: The abrupt onset of the modern South Asian Monsoon
winds, Scientific reports, 6, 29838, https://doi.org/10.1038/srep29838, 2016.
Betzler, C., Eberli, G., Lüdmann, T., Reolid, J., Kroon, D., Reijmer,
J., Swart, P., Wright, J., Young, J., and Alvarez-Zarikian, C.: Refinement
of Miocene sea level and monsoon events from the sedimentary archive of the
Maldives (Indian Ocean), Progress in Earth and Planetary Science, 5, 1–18,
2018.
Bialik, O. M., Auer, G., Ogawa, N. O., Kroon, D., Waldmann, N. D., and
Ohkouchi, N.: Monsoons, upwelling, and the deoxygenation of the northwestern
Indian Ocean in response to middle to late Miocene global climatic shifts,
Paleoceanography and Paleoclimatology, 35, e2019PA003762. https://doi.org/10.1029/2019PA003762, 2020.
Bickert, T., Haug, G., and Tiedemann, R.: Late Neogene benthic stable
isotope record of ODP Site 999: Implications for Caribbean paleoceanography,
organic carbon burial and the Messinian Salinity Crisis, Paleoceanography,
19, PA1023, https://doi.org/10.1029/2002PA000799, 2004.
Bishop, J. K.: The barite-opal-organic carbon association in oceanic
particulate matter, Nature, 332, 341–343, 1988.
Bolton, C. T., Chang, L., Clemens, S. C., Kodama, K., Ikehara, M.,
Medina-Elizalde, M., Paterson, G. A., Roberts, A. P., Rohling, E. J., and
Yamamoto, Y.: A 500,000 year record of Indian summer monsoon dynamics
recorded by eastern equatorial Indian Ocean upper water-column structure,
Quaternary Sci. Rev., 77, 167–180, https://doi.org/10.1016/j.quascirev.2013.07.031, 2013.
Bolton, C. T., Gray, E., Kuhnt, W., Holbourn, A., Lübbers, J., Grant, K. M., Tachikawa, K., Marino, G., Rohling, E. J., Sarr, A.-C., and Andersen, N.: Late Miocene benthic stable isotope data, age model, and X-Ray Fluorescence data from IODP Site U1443, equatorial Indian Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935166, 2021.
Boos, W. R. and Kuang, Z.: Dominant control of the South Asian monsoon by
orographic insulation versus plateau heating, Nature, 463, 218–222, 2010.
Bordoni, S. and Schneider, T.: Monsoons as eddy-mediated regime transitions
of the tropical overturning circulation, Nat. Geosci., 1, 515–519, 2008.
Bosmans, J., Erb, M., Dolan, A., Drijfhout, S., Tuenter, E., Hilgen, F.,
Edge, D., Pope, J. O., and Lourens, L.: Response of the Asian summer
monsoons to idealized precession and obliquity forcing in a set of GCMs,
Quaternary Sci. Rev., 188, 121–135, 2018.
Bosmans, J. H. C., Hilgen, F. J., Tuenter, E., and Lourens, L. J.: Obliquity forcing of low-latitude climate, Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, 2015.
Bretschneider, L., Hathorne, E. C., Bolton, C. T., Gebregiorgis, D., Giosan,
L., Gray, E., Huang, H., Holbourn, A., Kuhnt, W., and Frank, M.: Enhanced
late Miocene chemical weathering and altered precipitation patterns in the
watersheds of the Bay of Bengal recorded by detrital clay radiogenic
isotopes, Paleoceanography and Paleoclimatology, 36, e2021PA004252, https://doi.org/10.1029/2021PA004252, 2021.
Bukry, D.: Coccolith and silicoflagellate stratigraphy, eastern Indian
Ocean, Deep Sea Drilling Project Leg 22, in: Initial Reports of the Deep Sea
Drilling Project, edited by: Pimm, A. C., Washington, https://doi.org/10.2973/dsdp.proc.22.127.1974, 1974.
Caley, T., Malaizé, B., Zaragosi, S., Rossignol, L., Bourget, J.,
Eynaud, F., Martinez, P., Giraudeau, J., Charlier, K., and
Ellouz-Zimmermann, N.: New Arabian Sea records help decipher orbital timing
of Indo-Asian monsoon, Earth Planet. Sc. Lett., 308, 433–444,
https://doi.org/10.1016/j.epsl.2011.06.019, 2011.
Cao, Z., Siebert, C., Hathorne, E. C., Dai, M., and Frank, M.: Constraining
the oceanic barium cycle with stable barium isotopes, Earth Planet. Sc. Lett., 434, 1–9, 2016.
Clemens, S. C. and Prell, W. L.: Late Pleistocene variability of Arabian Sea
summer monsoon winds and continental aridity: Eolian records from the
lithogenic component of deep-sea sediments, Paleoceanography, 5, 109–145,
1990.
Clemens, S. C. and Prell, W. L.: A 350,000 year summer-monsoon multi-proxy
stack from the Owen Ridge, Northern Arabian Sea, Mar. Geol., 201, 35–51,
https://doi.org/10.1016/S0025-3227(03)00207-X, 2003.
Clemens, S. C., Prell, W., Murray, D., Shimmield, G., and Weedon, G.:
Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, https://doi.org/10.1038/353720a0, 1991.
Clemens, S. C., Prell, W. L., and Sun, Y.: Orbital-scale timing and
mechanisms driving Late Pleistocene Indo-Asian summer monsoons:
Reinterpreting cave speleothem δ18O, Paleoceanography, 25, PA4207, https://doi.org/10.1029/2010PA001926, 2010.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E., Huang, Y.,
Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G., Martinez,
P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M., Romero, O. E.,
Sagar, N., Taladay, K., Taylor, S. N., Thirumalai, K., Uramoto, G., Y. Usui,
Wang, J., Yamamoto, M., and Zhou, L.: Site U1443, in: Indian Monsoon
Rainfall. Proceedings of the International Ocean Discovery Program, edited
by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353
Scientists, College Station, TX (International Ocean Discovery Program),
https://doi.org/10.14379/iodp.proc.353.103.2016, 2016.
Clemens, S. C., Holbourn, A., Kubota, Y., Lee, K., Liu, Z., Chen, G.,
Nelson, A., and Fox-Kemper, B.: Precession-band variance missing from East
Asian monsoon runoff, Nat. Commun., 9, 1–12, 2018.
Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N.,
Nilsson-Kerr, K., Rosenthal, Y., Anand, P., and McGrath, S. M.: Remote and
local drivers of Pleistocene South Asian summer monsoon precipitation: A
test for future predictions, Science Advances, 7, eabg3848, https://doi.org/10.1126/sciadv.abg3848, 2021.
Clift, P. D. and Webb, A. A. G.: A history of the Asian monsoon and its
interactions with solid Earth tectonics in Cenozoic South Asia, Geological
Society, London, Special Publications, 483, 631–652, 2019.
Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., and
Calves, G.: Correlation of Himalayan exhumation rates and Asian monsoon
intensity, Nat. Geosci., 1, 875–880, 2008.
Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of
barite and the barium cycle in the open ocean, Earth Planet. Sc. Lett., 49, 528–550, 1980.
Delaney, M. L. and Filippelli, G. M.: An apparent contradiction in the role
of phosphorus in Cenozoic chemical mass balances for the world ocean,
Paleoceanography, 9, 513–527, 1994.
De Vleeschouwer, D., Drury, A. J., Vahlenkamp, M., Rochholz, F., Liebrand,
D., and Pälike, H.: High-latitude biomes and rock weathering mediate
climate–carbon cycle feedbacks on eccentricity timescales, Nat. Commun., 11, 1–10, 2020.
Dickens, G. R. and Owen, R. M.: The latest Miocene–early Pliocene biogenic
bloom: a revised Indian Ocean perspective, Mar. Geol., 161, 75–91, 1999.
Diester-Haass, L., Billups, K., and Emeis, K. C.: In search of the late
Miocene–early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean
Drilling Program Sites 982, 925, and 1088), Paleoceanography, 20, PA4001, https://doi.org/10.1029/2005PA001139, 2005.
Diester-Haass, L., Billups, K., and Emeis, K. C.: Late Miocene carbon
isotope records and marine biological productivity: Was there a (dusty)
link?, Paleoceanography, 21, PA4216, https://doi.org/10.1029/2006PA001267, 2006.
Ding, Z., Huang, G., Liu, F., Wu, R., and Wang, P.: Responses of global
monsoon and seasonal cycle of precipitation to precession and obliquity
forcing, Clim. Dynam., 56, 3733–3747, 2021.
Drury, A. J., John, C. M., and Shevenell, A. E.: Evaluating climatic
response to external radiative forcing during the late Miocene to early
Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and
North Atlantic (ODP 982) locations, Paleoceanography, 31, 167–184, 2016.
Drury, A. J., Westerhold, T., Frederichs, T., Tian, J., Wilkens, R.,
Channell, J. E., Evans, H., John, C. M., Lyle, M., and Röhl, U.: Late
Miocene climate and time scale reconciliation: Accurate orbital calibration
from a deep-sea perspective, Earth Planet. Sc. Lett., 475, 254–266, 2017.
Drury, A. J., Lee, G., Gray, W., Lyle, M., Westerhold, T., Shevenell, A. E.,
and John, C.: Deciphering the state of the late Miocene to early Pliocene
equatorial Pacific, Paleoceanography and Paleoclimatology, 33, 246–263,
2018.
Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M., Bell, D. B., Kroon, D., Pälike, H., and Lourens, L. J.: Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma), Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, 2021.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A
geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181, 1992.
Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., and Murray, R. W.: A
comparison between excess barium and barite as indicators of carbon export,
Paleoceanography, 18, 1021, https://doi.org/10.1029/2002PA000793 2003.
ERD, NOAA, NMFS, and SWFSC: Primary Productivity, Aqua MODIS, NPP, Global, 2003-present, EXPERIMENTAL (Monthly Composite), erdMH1ppmday, ERDDAP, https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1ppmday.html, last access: 28 September 2020.
Farnsworth, A., Lunt, D. J., Robinson, S. A., Valdes, P. J., Roberts, W. H.,
Clift, P. D., Markwick, P., Su, T., Wrobel, N., and Bragg, F.: Past East
Asian monsoon evolution controlled by paleogeography, not CO2, Science
Advances, 5, eaax1697, https://doi.org/10.1126/sciadv.aax1697, 2019.
Farrell, J. W., Raffi, I., Janecek, T. R., Murray, D. W., Levitan, M.,
Dadey, K. A., Emeis, K.-C., Lyle, M., Flores, J.-A., and Hovan, S.: Late
Neogene sedimentation patterns in the eastern equatorial Pacific Ocean, in:
Proc. ODProgram, edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Scientific Results, 138, 717–756, 1995.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition:
East Antarctic ice sheet development, deep ocean circulation and global
carbon cycling, Palaeogeogr. Palaeocl., 108, 537–555, 1994.
Fox, B. R., D'Andrea, W., Wilson, G., Lee, D., and Wartho, J.-A.:
Interaction of polar and tropical influences in the mid-latitudes of the
Southern Hemisphere during the Mi-1 deglaciation, Global Planet. Change, 155, 109–120, 2017.
Francois, R., Honjo, S., Manganini, S. J., and Ravizza, G. E.: Biogenic
barium fluxes to the deep sea: Implications for paleoproductivity
reconstruction, Global Biogeochem. Cy., 9, 289–303, 1995.
Gadgil, S.: The Indian monsoon and its variability, Annu. Rev. Earth Pl. Sc., 31, 429–467, 2003.
Gebregiorgis, D., Hathorne, E. C., Giosan, L., Clemens, S., Nürnberg,
D., and Frank, M.: Southern Hemisphere forcing of South Asian monsoon
precipitation over the past ∼1 million years, Nat.
Commun., 9, 4702, https://doi.org/10.1038/s41467-018-07076-2, 2018.
Geen, R., Lambert, F., and Vallis, G.: Regime change behavior during Asian
monsoon onset, J. Climate, 31, 3327–3348, 2018.
Gingele, F. and Dahmke, A.: Discrete barite particles and barium as tracers
of paleoproductivity in South Atlantic sediments, Paleoceanography, 9,
151–168, 1994.
Goldberg, E. D. and Arrhenius, G.: Chemistry of Pacific pelagic sediments,
Geochim. Cosmochim. Ac., 13, 153–212, 1958.
Gonneea, M. E. and Paytan, A.: Phase associations of barium in marine
sediments, Mar. Chem., 100, 124–135, 2006.
Goswami, B., Krishnamurthy, V., and Annmalai, H.: A broad-scale circulation
index for the interannual variability of the Indian summer monsoon,
Q. J. Roy. Meteor. Soc., 125, 611–633, 1999.
Gouhier, T. C., Grinsted, A., and Simko, V.: R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses, Version 0.20.17, GitHub, https://github.com/tgouhier/biwavelet (last access: August 2020), 2018.
Gradstein, F. M., Ogg, J. G., Schmitz, M. B., and Ogg, G. M.: The geologic
time scale 2012, Elsevier, ISBN: 978-0-44-459390-0, 2012.
Grant, K. M. and Dickens, G. R.: Coupled productivity and carbon isotope
records in the southwest Pacific Ocean during the late Miocene–early
Pliocene biogenic bloom, Palaeogeogr. Palaeocl., 187, 61–82, 2002.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Guo, Z., Ruddiman, W. F., Hao, Q., Wu, H., Qiao, Y., Zhu, R. X., Peng, S.,
Wei, J., Yuan, B., and Liu, T.: Onset of Asian desertification by 22 Myr ago
inferred from loess deposits in China, Nature, 416, 159–163, 2002.
Gupta, A. K., Singh, R. K., Joseph, S., and Thomas, E.: Indian Ocean
high-productivity event (10–8 Ma): Linked to global cooling or to the
initiation of the Indian monsoons?, Geology, 32, 753–756, 2004.
Gupta, A. K., Yuvaraja, A., Prakasam, M., Clemens, S. C., and Velu, A.:
Evolution of the South Asian monsoon wind system since the late Middle
Miocene, Palaeogeogr. Palaeocl., 438, 160–167, 2015.
Herbert, T. D.: A long marine history of carbon cycle modulation by
orbital-climatic changes, P. Natl. Acad. Sci. USA, 94, 8362–8369, 1997.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847, https://doi.org/10.1038/ngeo2813,
2016.
Hermoyian, C. S. and Owen, R. M.: Late Miocene-early Pliocene biogenic
bloom: Evidence from low-productivity regions of the Indian and Atlantic
Oceans, Paleoceanography, 16, 95–100, 2001.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A., and Andersen, N.:
Orbitally-paced climate evolution during the middle Miocene “Monterey”
carbon-isotope excursion, Earth Planet. Sc. Lett., 261, 534–550,
2007.
Holbourn, A., Kuhnt, W., Clemens, S. C., Kochhann, K. G., Jöhnck, J.,
Lübbers, J., and Andersen, N.: Late Miocene climate cooling and
intensification of southeast Asian winter monsoon, Nat. Commun., 9,
1584, https://doi.org/10.1038/s41467-018-03950-1, 2018.
Holbourn, A., Kuhnt, W., Clemens, S. C., and Heslop, D.: A ∼12 Myr
Miocene record of East Asian Monsoon variability from the South China Sea,
Paleoceanography and Paleoclimatology, 36, e2021PA004267,
https://doi.org/10.1029/2021PA004267, 2021.
Hovan, S. A. and Rea, D. K.: The Cenozoic record of continental mineral
deposition on Broken and Ninetyeast Ridges, Indian Ocean: southern African
aridity and sediment delivery from the Himalayas, Paleoceanography, 7,
833–860, 1992.
Howell, P., Pisias, N., Ballance, J. Baughman, J., and Ochs, L.: ARAND Time-Series Analysis Software, Brown University, Providence, RI, GitHub,
https://github.com/jesstierney/arand (last access: 27 November 2018), 2006.
Huang, Y., Clemens, S. C., Liu, W., Wang, Y., and Prell, W. L.: Large-scale
hydrological change drove the late Miocene C4 plant expansion in the
Himalayan foreland and Arabian Peninsula, Geology, 35, 531–534, https://doi.org/10.1130/G23666A.1, 2007.
Jalihal, C., Bosmans, J. H. C., Srinivasan, J., and Chakraborty, A.: The response of tropical precipitation to Earth's precession: the role of energy fluxes and vertical stability, Clim. Past, 15, 449–462, https://doi.org/10.5194/cp-15-449-2019, 2019.
Jensen, T. G.: Cross-equatorial pathways of salt and tracers from the
northern Indian Ocean: Modelling results, Deep-Sea Res. Pt. II, 50, 2111–2127, 2003.
Jia, G., Peng, P. A., Zhao, Q., and Jian, Z.: Changes in terrestrial
ecosystem since 30 Ma in East Asia: Stable isotope evidence from black
carbon in the South China Sea, Geology, 31, 1093–1096, 2003.
Jöhnck, J., Kuhnt, W., Holbourn, A., and Andersen, N.: Variability of
the Indian Monsoon in the Andaman Sea across the Miocene-Pliocene
transition, Paleoceanography and Paleoclimatology, 35, e2020PA003923, https://doi.org/10.1029/2020PA003923, 2020.
Jöhnck, J., Holbourn, A. E., Kuhnt, W., and Andersen, N.: Oxygen isotope
offsets in deep-water benthic foraminifera, J. Foramin. Res., 51, 225–244, 2021.
Jyothibabu, R., Vinayachandran, P., Madhu, N., Robin, R., Karnan, C.,
Jagadeesan, L., and Anjusha, A.: Phytoplankton size structure in the
southern Bay of Bengal modified by the Summer Monsoon Current and associated
eddies: Implications on the vertical biogenic flux, J. Marine Syst., 143, 98–119, 2015.
Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R. L., Zhang,
H., Li, X., Yi, L., Ning, Y., and Cai, Y.: Indian monsoon variability on
millennial-orbital timescales, Scientific Reports, 6, 24374, https://doi.org/10.1038/srep24374, 2016.
Keerthi, M., Lengaigne, M., Vialard, J., de Boyer Montégut, C., and
Muraleedharan, P.: Interannual variability of the Tropical Indian Ocean
mixed layer depth, Clim. Dynam., 40, 743–759, 2013.
Keigwin, L.: Late Cenozoic stable isotope stratigraphy and paleoceanography
of DSDP sites from the east equatorial and central North Pacific Ocean,
Earth Planet. Sc. Lett., 45, 361–382, 1979.
Keigwin, L. and Shackleton, N.: Uppermost Miocene carbon isotope stratigraphy of a piston core in the equatorial Pacific, Nature, 284, 613–614, 1980.
Kitoh, A., Yukimoto, S., Noda, A., and Motoi, T.: Simulated changes in the
Asian summer monsoon at times of increased atmospheric CO2, J. Meteorol. Soc. Jpn., Ser. II, 75, 1019–1031, 1997.
Koné, V., Aumont, O., Lévy, M., and Resplandy, L.: Physical and
biogeochemical controls of the phytoplankton seasonal cycle in the Indian
Ocean: A modeling study, in: Indian Ocean Biogeochemical Processes and Ecological Variability, edited by: Wiggert, J. D., Hood, Raleigh, R., Naqvi, S. W. A., Brink, K. H., Smith, S. L., Geophysical Monograph Series, 185, 147–166, https://doi.org/10.1029/2008GM000700, 2009.
Kroon, D., Steens, T., and Troelstra, S. R.: 13. Onset of Monsoonal Related Upwelling in the Western Arabian Sea as Revealed by Planktonic Foraminifers, in Proc. ODP, College Station, TX (Ocean Drilling Program), edited by: Emeis, K.-C., Meyers, P. A., Niitsuma, M., and Prell, W. L., Scientific Results, 117, 257–263, https://doi.org/10.2973/odp.proc.sr.117.1991, 1991.
Kuhnt, W., Holbourn, A. E., Jöhnck, J., and Lübbers, J.: Miocene to
Pleistocene Palaeoceanography of the Andaman Region: Evolution of the Indian
Monsoon on a Warmer-Than-Present Earth, in: The Andaman Islands and
Adjoining Offshore: Geology, Tectonics and Palaeoclimate, Society of Earth Scientists Series, Springer, 261–288, https://doi.org/10.1007/978-3-030-39843-9, 2020.
Kutzbach, J. E.: Monsoon climate of the early Holocene: climate experiment
with the earth's orbital parameters for 9000 years ago, Science, 214, 59–61,
1981.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, 2004.
Le, J. and Shackleton, N. J.: Carbonate dissolution fluctuations in the
western equatorial Pacific during the late Quaternary, Paleoceanography, 7,
21–42, 1992.
Lee, J., Kim, S., Lee, J. I., Cho, H. G., Phillips, S. C., and Khim, B.-K.:
Monsoon-influenced variation of clay mineral compositions and detrital Nd-Sr
isotopes in the western Andaman Sea (IODP Site U1447) since the late
Miocene, Palaeogeogr. Palaeocl., 538, 109339, https://doi.org/10.1016/j.palaeo.2019.109339, 2020.
Lévy, M., Shankar, D., André, J. M., Shenoi, S., Durand, F., and de
Boyer Montégut, C.: Basin-wide seasonal evolution of the Indian Ocean's
phytoplankton blooms, J. Geophys. Res., 112, C12014, https://doi.org/10.1029/2007JC004090, 2007.
Li, M., Hinnov, L., and Kump, L.: Acycle: Time-series analysis software for
paleoclimate research and education, Comput. Geosci., 127, 12–22, https://doi.org/10.1016/j.cageo.2019.02.011, 2019.
Licht, A., Van Cappelle, M., Abels, H., Ladant, J.-B., Trabucho-Alexandre,
J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., and
Lécuyer, C.: Asian monsoons in a late Eocene greenhouse world, Nature,
513, 501–506, 2014.
Longhurst, A.: Seasonal cycles of pelagic production and consumption,
Prog. Oceanogr., 36, 77–167, 1995.
Lourens, L. J., Antonarakou, A., Hilgen, F., Van Hoof, A. A. M.,
Vergnaud-Grazzini, C., and Zachariasse, W. J.: Evaluation of the
Plio-Pleistocene astronomical timescale, Paleoceanography, 11, 391–413, https://doi.org/10.1029/96pa01125, 1996.
Lourens, L. J., Wehausen, R., and Brumsack, H. J.: Geological constraints on
tidal dissipation and dynamical ellipticity of the Earth over the past three
million years, Nature, 409, 1029–1033, 2001.
Lübbers, J., Kuhnt, W., Holbourn, A. E., Bolton, C. T., Gray, E., Usui,
Y., Kochhann, K. G., Beil, S., and Andersen, N.: The middle to late Miocene
“Carbonate Crash” in the equatorial Indian Ocean, Paleoceanography and
Paleoclimatology, 34, 813–832, 2019.
Lutsko, N. J., Marshall, J., and Green, B.: Modulation of monsoon
circulations by cross-equatorial ocean heat transport, J. Climate,
32, 3471–3485, 2019.
Lyle, M. and Baldauf, J.: Biogenic sediment regimes in the Neogene
equatorial Pacific, IODP Site U1338: Burial, production, and diatom
community, Palaeogeogr. Palaeocl., 433, 106–128, 2015.
Ma, W., Tian, J., Li, Q., and Wang, P.: Simulation of long eccentricity
(400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum:
Weathering and nutrient response to orbital change, Geophys. Res. Lett., 38, L10701, https://doi.org/10.1029/2011GL047680, 2011.
Martínez-Ruiz, F., Paytan, A., Gonzalez-Muñoz, M., Jroundi, F.,
Abad, M. d. M., Lam, P. J., Bishop, J., Horner, T., Morton, P. L., and
Kastner, M.: Barite formation in the ocean: Origin of amorphous and
crystalline precipitates, Chem. Geol., 511, 441–451, 2019.
McCreary, J., Murtugudde, R., Vialard, J., Vinayachandran, P., Wiggert, J.
D., Hood, R. R., Shankar, D., and Shetye, S.: Biophysical processes in the
Indian Ocean, in: Indian Ocean biogeochemical processes and ecological variability, edited by: McCreary, J. P., Murtugudde, R., Vialard, J., Vinayachandran, P. N., Wiggert, J. D., Hood, R. R., Shankar, D., and Shetye, S., Geophysical Monograph Series, 185, 9–32, https://doi.org/10.1029/2008GM000768, 2009.
McLennan, S. M.: Relationships between the trace element composition of
sedimentary rocks and upper continental crust, Geochem. Geophy. Geosy., 2, 1021, https://doi.org/10.1029/2000GC000109, 2001.
McNeill, L. C., Dugan, B., Backman, J., Pickering, K. T., Pouderoux, H. F.,
Henstock, T. J., Petronotis, K. E., Carter, A., Chemale Jr., F., and
Milliken, K. L.: Understanding Himalayan erosion and the significance of the
Nicobar Fan, Earth Planet. Sc. Lett., 475, 134–142, 2017.
Meyers, S. R.: Astrochron: An R Package for Astrochronology [code], https://cran.r-project.org/package=astrochron (last access: July 2015), 2014.
Molnar, P., Boos, W. R., and Battisti, D. S.: Orographic controls on climate
and paleoclimate of Asia: thermal and mechanical roles for the Tibetan
Plateau, Annu. Rev. Earth Pl. Sc., 38, 77–102, 2010.
Müller, D. W., Hodell, D. A., and Ciesielski, P. F.: 25. Late Miocene to
earliest Pliocene (9.8–4.5 Ma) paleoceanography of the subantarctic
southeast Atlantic: stable isotopic, sedimentologic, and microfossil
evidence, in: Proc. ODP, College Station, TX (Ocean Drilling Program),
edited by: Ciesielski, P. F., Kristoffersen, Y., Clement, B., and Moore, T. C., Scientific Results, 114, 459–474,1991.
Murray, R., Knowlton, C., Leinen, M., Mix, A. C., and Polsky, C.: Export
production and carbonate dissolution in the central equatorial Pacific Ocean
over the past 1 Myr, Paleoceanography, 15, 570–592, 2000.
Nigrini, C.: Composition and biostratigraphy of radiolarian assemblages from
an area of upwelling (northwestern Arabian Sea, Leg 117), in: Proc. ODP, College Station, TX (Ocean Drilling Program), edited by: Emeis, K.-C., Meyers, P. A., Niitsuma, M., and Prell, W. L., Scientific Results, 117, 89–126, 1991.
Nomura, R.: Paleogene to Neogene deep-sea paleoceanography in the eastern
Indian Ocean: benthic foraminifera from ODP Sites 747, 757 and 758,
Micropaleontology, 41, 251–290, 1995.
Paillard, D.: The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle, Clim. Past, 13, 1259–1267, https://doi.org/10.5194/cp-13-1259-2017, 2017.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,
Klaus, A., Acton, G., Anderson, L., and Backman, J.: A Cenozoic record of
the equatorial Pacific carbonate compensation depth, Nature, 488, 609–614,
2012.
Paytan, A. and Griffith, E. M.: Marine barite: Recorder of variations in
ocean export productivity, Deep-Sea Res. Pt. II, 54, 687–705, 2007.
Paytan, A. and Kastner, M.: Benthic Ba fluxes in the central Equatorial
Pacific, implications for the oceanic Ba cycle, Earth Planet. Sc. Lett., 142, 439–450, 1996.
Paytan, A., Kastner, M., Martin, E., Macdougall, J., and Herbert, T.: Marine
barite as a monitor of seawater strontium isotope composition, Nature, 366,
445–449, 1993.
Paytan, A., Kastner, M., and Chavez, F.: Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite, Science, 274, 1355–1357, 1996.
Pickering, K. T., Carter, A., Andò, S., Garzanti, E., Limonta, M.,
Vezzoli, G., and Milliken, K. L.: Deciphering relationships between the
Nicobar and Bengal submarine fans, Indian Ocean, Earth Planet. Sc. Lett., 544, 116329, https://doi.org/10.1016/j.epsl.2020.116329, 2020a.
Pickering, K. T., Pouderoux, H., McNeill, L. C., Backman, J., Chemale, F.,
Kutterolf, S., Milliken, K. L., Mukoyoshi, H., Henstock, T. J., and Stevens,
D. E.: Sedimentology, stratigraphy and architecture of the Nicobar Fan
(Bengal–Nicobar Fan System), Indian Ocean: Results from International Ocean
Discovery Program Expedition 362, Sedimentology, 67, 2248–2281, 2020b.
Pierce, J., Weissel, J., Taylor, E., Dehn, J., Driscoll, N., Farrell, J., Fourtanier, E., Frey, F., Qamson, P. D., Gee, J. S., Gibson, I. L., Janecek, T., Klootwijk, C., Lawrence, J. R., Littke, R., Newman, J. S., Nomura, R., Owen, R. M., Pospichal, J. J., Rea, D. K., Resiwati, P., Saunders, A. D., Smit, J., Smith, G. M., Tamaki, K., Weis, D., and Wilkinson, C.: Proceedings of the Ocean Drilling Program, Initial Reports 121, 1000 pp., 1989.
Pimm, A.: Sedimentology and history of the northeastern Indian Ocean from
late Cretaceous to Recent, in: Initial Reports of the Deep Sea Drilling
Project, edited by: von der Borch, C. C., Sclater, J. G., Gartner Jr., S., Hekinian, R., Johnson, D. A., McGowran, B., Pimm, A. C., Thompson, R. W., Veevers, J. J., and Waterman, L. S., U.S. Government Printing Office, Washington, XXII, 717–803, https://doi.org/10.2973/dsdp.proc.22.139.1974, 1974.
Prasanna Kumar, S., Muraleedharan, P., Prasad, T., Gauns, M., Ramaiah, N.,
De Souza, S., Sardesai, S., and Madhupratap, M.: Why is the Bay of Bengal
less productive during summer monsoon compared to the Arabian Sea?,
Geophys. Res. Lett., 29, 88-81–88-84, 2002.
Prell, W. L. and Kutzbach, J. E.: Monsoon variability over the past 150,000
years, J. Geophys. Res.-Atmos., 92, 8411–8425, 1987.
Prell, W. L. and Kutzbach, J. E.: Sensitivity of the Indian monsoon to
forcing parameters and implications for its evolution, Nature, 360, 647–652,
1992.
Privé, N. C. and Plumb, R. A.: Monsoon dynamics with interactive
forcing. Part I: Axisymmetric studies, J. Atmos. Sci., 64, 1417–1430, 2007a.
Privé, N. C. and Plumb, R. A.: Monsoon dynamics with interactive
forcing. Part II: Impact of eddies and asymmetric geometries, J. Atmos. Sci., 64, 1431–1442, 2007b.
Rae, J. W., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M., and
Whiteford, R. D.: Atmospheric CO2 over the Past 66 Million Years from Marine Archives, Annu. Rev. Earth Pl. Sc., 49, 609–641, 2021.
Ramaswamy, V.: Lithogenic Fluxes to the Northern Indian Ocean, Monsoon
biogeochemistry, University of Hamburg, Germany, 1993.
Rial, J. A. and Anaclerio, C.: Understanding nonlinear responses of the
climate system to orbital forcing, Quaternary Sci. Rev., 19, 1709–1722, 2000.
Rickaby, R., Bard, E., Sonzogni, C., Rostek, F., Beaufort, L., Barker, S.,
Rees, G., and Schrag, D.: Coccolith chemistry reveals secular variations in
the global ocean carbon cycle?, Earth Planet. Sc. Lett., 253, 83–95, 2007.
Rixen, T., Gaye, B., Emeis, K.-C., and Ramaswamy, V.: The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean, Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, 2019.
Robinson, M. M., Bartol, M., Bolton, C. T., Ding, X., Gariboldi, K., Romero,
O. E., and Expeditions 353 Scientists: Biostratigraphic Summary, in: Proceedings of the International Ocean Discovery Program Volume 353, https://doi.org/10.14379/iodp.proc.353.109.2016, 2016.
Rogalla, U. and Andruleit, H.: Precessional forcing of coccolithophore
assemblages in the northern Arabian Sea: Implications for monsoonal dynamics
during the last 200,000 years, Mar. Geol., 217, 31–48, 2005.
Rostek, F., Bard, E., Beaufort, L., Sonzogni, C., and Ganssen, G.: Sea
surface temperature and productivity records for the past 240 kyr in the
Arabian Sea, Deep-Sea Res. Pt. II, 44, 1461–1480, 1997.
Schmitz, B.: Barium, equatorial high productivity, and the northward
wandering of the Indian continent, Paleoceanography, 2, 63–77, 1987.
Schott, F. A. and McCreary Jr., J. P.: The monsoon circulation of the Indian
Ocean, Prog. Oceanogr., 51, 1–123, 2001.
Schott, F. A., Xie, S. P., and McCreary Jr., J. P.: Indian Ocean circulation
and climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245, 2009.
Sengupta, D., Bharath Raj, G., Ravichandran, M., Sree Lekha, J., and Papa,
F.: Near-surface salinity and stratification in the north Bay of Bengal from
moored observations, Geophys. Res. Lett., 43, 4448–4456, 2016.
Shackleton, N. J. and Hall, M. A.: The Late Miocene stable isotope record,
Site 926, in: Proc. ODP, College Station, TX (Ocean Drilling Program), edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., Scientific Results, 154, 367–373, 1997.
Shackleton, N. J., Hall, M., and Pate, D.: 15. Pliocene stable isotope
stratigraphy of Site 846, in: Proc. ODP, College Station, TX (Ocean Drilling Program), edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Proceedings of the Ocean Drilling Program, Scientific Results, 138, 337–355, 1995.
Shimmield, G. B. and Mowbray, S. R.: The inorganic geochemical record of the
northwest Arabian Sea: a history of productivity variation over the last 400
ky from Sites 722 and 724, in: Proc. ODP, College Station, TX (Ocean Drilling Program), edited by: Emeis, K.-C., Meyers, P. A., Niitsuma, M., and Prell, W. L., Proceedings of the Ocean Drilling Program, Scientific Results, 117, 409–429, 1991.
Shipboard Scientific Party: Site 758, in: Proceedings of ODP, College Station, TX, edited by: Peirce, J., Weissel, J., Taylor, E., and Shipboard Scientists, Proceedings of the Ocean Drilling Program, Initial Reports, 121, 359–453, 1989.
Si, W. and Rosenthal, Y.: Reduced continental weathering and marine
calcification linked to late Neogene decline in atmospheric CO2, Nat.
Geosci., 12, 833–838, 2019.
Singh, A. D., Jung, S. J., Darling, K., Ganeshram, R., Ivanochko, T., and
Kroon, D.: Productivity collapses in the Arabian Sea during glacial cold
phases, Paleoceanography, 26, PA3210, https://doi.org/10.1029/2009PA001923, 2011.
Singh, R. K. and Gupta, A.: Miocene history of Indian monsoon: A review of
marine records, in: Indian Miocene: A Geodynamic and chronologic framework for palaeobiota, sedimentary environments and palaeoclimates, edited by: Tiwari, R. P., Special Publication of the Palaeontological Society of India, 5, 101–109, 2014.
Smart, C. W., Thomas, E., and Ramsay, A. T.: Middle–late Miocene benthic
foraminifera in a western equatorial Indian Ocean depth transect:
paleoceanographic implications, Palaeogeogr. Palaeocl., 247, 402–420, 2007.
Spicer, R., Yang, J., Herman, A., Kodrul, T., Aleksandrova, G., Maslova, N.,
Spicer, T., Ding, L., Xu, Q., and Shukla, A.: Paleogene monsoons across
India and South China: Drivers of biotic change, Gondwana Res., 49, 350–363, 2017.
Steinthorsdottir, M., Coxall, H., de Boer, A., Huber, M., Barbolini, N.,
Bradshaw, C., Burls, N., Feakins, S., Gasson, E., and Henderiks, J.: The
Miocene: the Future of the Past, Paleoceanography and Paleoclimatology,
36, e2020PA004037, https://doi.org/10.1029/2020PA004037, 2021.
Stow, D. A., Amano, K., Batson, B., Brass, G. W., Corrigan, J., Raman, C.,
Tiercelin, J.-J., Townsend, M., Wijayananda, N., and Cochran, J.: Sediment
facies and processes on the distal Bengal Fan, Leg 116, in: Proc. ODP, College Station, TX (Ocean Drilling Program), edited by: Cochran, J. R., Stow, D. A. V., and Expedition 116 Scientists, Proceeding of the Ocean Drilling Program, Scientific Results, 116, 377–396, 1990.
Sun, J. and Huang, X.: Half-precessional cycles recorded in Chinese loess:
response to low-latitude insolation forcing during the Last Interglaciation,
Quaternary Sci. Rev., 25, 1065–1072, 2006.
Sun, X. and Wang, P.: How old is the Asian monsoon system? – Palaeobotanical
records from China, Palaeogeogr. Palaeocl., 222, 181–222, 2005.
Tabor, C. R., Otto-Bliesner, B. L., Brady, E. C., Nusbaumer, J., Zhu, J.,
Erb, M. P., Wong, T. E., Liu, Z., and Noone, D.: Interpreting
precession-driven δ18O variability in the South Asian monsoon
region, J. Geophys. Res.-Atmos., 123, 5927–5946, 2018.
Tauxe, L. and Feakins, S.: A re-assessment of the chronostratigraphy of late
Miocene C3–C4 transitions, Paleoceanography and Paleoclimatology, 35,
e2020PA003857, https://doi.org/10.1029/2020PA003857, 2020.
Thomas, E. K., Clemens, S. C., Sun, Y., Prell, W. L., Huang, Y., Gao, L.,
Loomis, S., Chen, G., and Liu, Z.: Heterodynes dominate precipitation
isotopes in the East Asian monsoon region, reflecting interaction of
multiple climate factors, Earth Planet. Sc. Lett., 455, 196–206, 2016.
Tripathi, S., Tiwari, M., Lee, J., Khim, B.-K., Expedition, I., Pandey, D.
K., Clift, P. D., Kulhanek, D. K., Andò, S., and Bendle, J. A.: First
evidence of denitrification vis-à-vis monsoon in the Arabian Sea since
Late Miocene, Scientific Reports, 7, 43056, https://doi.org/10.1038/srep43056, 2017.
Unger, D. and Jennerjahn, T.: Impact of regional Indian Ocean characteristics on the biogeochemical variability of settling particles, in: Indian Ocean Biogeochemical Processes and Ecological Variability, Geophysical Monograph Series, 185, 257–280, https://doi.org/10.1029/2008GM000703, 2009.
Unger, D., Ittekkot, V., Schäfer, P., Tiemann, J., and Reschke, S.:
Seasonality and interannual variability of particle fluxes to the deep Bay
of Bengal: influence of riverine input and oceanographic processes, Deep-Sea
Res. Pt. II, 50, 897–923, 2003.
Van Andel, T. H., Heath, G. R., and Moore Jr., T. C.: Cenozoic History and
Paleoceanography of the Central Equatorial Pacific Ocean: A Regional
Synthesis of Deep Sea Drilling Project Data, The Geological Society of
America, https://doi.org/https://doi.org/10.1130/MEM143-p1, 1975.
Vidya, P. J., Prasanna Kumar, S., Gauns, M., Verenkar, A., Unger, D., and Ramaswamy, V.: Influence of physical and biological processes on the seasonal cycle of biogenic flux in the equatorial Indian Ocean, Biogeosciences, 10, 7493–7507, https://doi.org/10.5194/bg-10-7493-2013, 2013.
Vinayachandran, P., Chauhan, P., Mohan, M., and Nayak, S.: Biological
response of the sea around Sri Lanka to summer monsoon, Geophys. Res. Lett., 31, L01302, https://doi.org/10.1029/2003GL018533, 2004.
Wan, S., Li, A., Clift, P. D., and Stuut, J.-B. W.: Development of the East
Asian monsoon: mineralogical and sedimentologic records in the northern
South China Sea since 20 Ma, Palaeogeogr. Palaeocl., 254, 561–582, 2007.
Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z.,
Kershaw, P., and Sarnthein, M.: Evolution and variability of the Asian
monsoon system: state of the art and outstanding issues, Quaternary Sci.
Rev., 24, 595–629, 2005.
Wang, P., Tian, J., and Lourens, L. J.: Obscuring of long eccentricity
cyclicity in Pleistocene oceanic carbon isotope records, Earth Planet. Sc. Lett., 290, 319–330, https://doi.org/10.1016/j.epsl.2009.12.028, 2010.
Webber, B. G., Matthews, A. J., Vinayachandran, P., Neema, C.,
Sanchez-Franks, A., Vijith, V., Amol, P., and Baranowski, D. B.: The
dynamics of the Southwest Monsoon current in 2016 from high-resolution in
situ observations and models, J. Phys. Oceanogr., 48, 2259–2282, 2018.
Webster, P. J.: The elementary monsoon, in: Monsoons, edited by: Fein, J. S. and Stephens, P. L., Wiley, New York, 3–32, 1987a.
Webster, P. J.: The variable and interactive monsoon, in: Monsoons, edited by: Fein, J. S. and Stephens, P. L., John Wiley, New York, 269–330, 1987b.
Webster, P. J. and Yang, S.: Monsoon and ENSO: Selectively interactive
systems, Q. J. Roy. Meteor. Soc., 118, 877–926, 1992.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., and
Florindo, F.: An astronomically dated record of Earth's climate and its
predictability over the last 66 million years, Science, 369, 1383–1387,
2020.
Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., and
Bickert, T.: Revised Miocene splice, astronomical tuning and calcareous
plankton biochronology of ODP Site 926 between 5 and 14.4 Ma,
Palaeogeogr. Palaeocl., 369, 430–451, 2013.
Zeeden, C., Hilgen, F. J., Hüsing, S. K., and Lourens, L. L.: The
Miocene astronomical time scale 9–12 Ma: New constraints on tidal dissipation and their implications for paleoclimatic investigations, Paleoceanography, 29, 296–307, 2014.
Zeeden, C., Meyers, S. R., Lourens, L. J., and Hilgen, F. J.: Testing
astronomically tuned age models, Paleoceanography, 30, 369–383, 2015.
Zhisheng, A., Clemens, S. C., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell,
W. L., Luo, J., Wang, S., and Xu, H.: Glacial-interglacial Indian summer
monsoon dynamics, Science, 333, 719–723, 2011.
Zhuang, G., Pagani, M., and Zhang, Y. G.: Monsoonal upwelling in the western
Arabian Sea since the middle Miocene, Geology, 45, 655–658, 2017.
Ziegler, M., Lourens, L. J., Tuenter, E., Hilgen, F., Reichart, G. J., and
Weber, N.: Precession phasing offset between Indian summer monsoon and
Arabian Sea productivity linked to changes in Atlantic overturning
circulation, Paleoceanography, 25, PA3213, https://doi.org/10.1029/2009PA001884, 2010.
Zweng, M., Reagan, J., Antonov, J., Locarnini, R., Mishonov, A., Boyer, T.,
Garcia, H., Baranova, O., Johnson, D., and Seidov, D.: World Ocean Atlas
2013, Volume 2: Salinity, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., 2013.
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
The timing of the initiation and evolution of the South Asian monsoon in the geological past is...