Articles | Volume 18, issue 3
https://doi.org/10.5194/cp-18-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parallel between the isotopic composition of coccolith calcite and carbon levels across Termination II: developing a new paleo-CO2 probe
Camille Godbillot
CORRESPONDING AUTHOR
Institut des Sciences de la Terre de Paris (UMR 7193 ISTeP), CNRS,
Sorbonne Université, 75005 Paris, France
Fabrice Minoletti
Institut des Sciences de la Terre de Paris (UMR 7193 ISTeP), CNRS,
Sorbonne Université, 75005 Paris, France
Franck Bassinot
Laboratoire des Sciences de l'Environnement et du Climat (UMR 8212
LSCE), CEA, CNRS, Université Versailles Saint Quentin, 91191, Gif sur Yvette, France
Michaël Hermoso
Laboratoire d'Océanologie et de Géosciences (UMR 8187 LOG),
Université du Littoral Côte d'Opale, CNRS, Université de Lille, 62930 Wimereux, France
Related authors
No articles found.
Medhavi Srivastava, Clara T. Bolton, Luc Beaufort, Franck Bassinot, and Katarína Holcová
J. Micropalaeontol., 44, 555–571, https://doi.org/10.5194/jm-44-555-2025, https://doi.org/10.5194/jm-44-555-2025, 2025
Short summary
Short summary
The Bay of Bengal is a unique region influenced by the Asian monsoon. We present a record of past ocean productivity and carbonate flux based on the fossil remains of calcifying algae over the last 279 000 years from a core in the northern Bay of Bengal. We used AI microscopy to count and measure plankton fossils and identify species. Results show that coccolith export, including of the species Florisphaera profunda, is highest when the monsoon is weak and the water column is more mixed.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
SOIL, 11, 467–488, https://doi.org/10.5194/soil-11-467-2025, https://doi.org/10.5194/soil-11-467-2025, 2025
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need for careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Goulwen Le Guevel, Fabrice Minoletti, Carla Geisen, Gwendoline Duong, Virginia Rojas, and Michaël Hermoso
Biogeosciences, 22, 2287–2308, https://doi.org/10.5194/bg-22-2287-2025, https://doi.org/10.5194/bg-22-2287-2025, 2025
Short summary
Short summary
This study explores the impact of environmental conditions on the chemistry of coccoliths, calcite minerals produced by marine algae, to better understand past climate changes. By cultivating different species of coccolithophores under various CO2 and pH levels, we have shown that the isotopic composition of certain species varies with CO2 concentration and quantified these variations.
Ruifang Ma, Sophie Sépulcre, Laetitia Licari, Frédéric Haurine, Franck Bassinot, Zhaojie Yu, and Christophe Colin
Clim. Past, 18, 1757–1774, https://doi.org/10.5194/cp-18-1757-2022, https://doi.org/10.5194/cp-18-1757-2022, 2022
Short summary
Short summary
We provide high-resolution Cd / Ca records of benthic foraminifera on two cores from the northern Indian Ocean since the last deglaciation. We reconstructed intermediate Cdw records based on Cd / Ca. Combined with benthic foraminiferal assemblages, we show that intermediate Cdw during the last deglaciation was mainly influenced by the ventilation of intermediate–bottom water masses. Thereafter during the Holocene surface productivity is the main forcing factor related to monsoon precipitation.
Cited articles
Aloisi, G.: Covariation of metabolic rates and cell size in coccolithophores, Biogeosciences, 12, 4665–4692, https://doi.org/10.5194/bg-12-4665-2015, 2015.
Bach, L. T., MacKinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D.
C., Brownlee, C., and Riebesell, U.: Dissecting the impact of CO2 and pH on
the mechanisms of photosynthesis and calcification in the coccolithophore
Emiliania huxleyi, New Phytol., 199, 121–134,
https://doi.org/10.1111/nph.12225, 2013.
Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Pälike, H., Mackensen, A., and Pancost, R. D.: Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels, Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, 2019.
Bassinot, F. and Labeyrie, L.: IMAGES – MD 101 à bord du Marion-Dufresne
du 29 mai au 11 juillet 1995. A coring cruise of the R/V Marion Dufresne in
the North Atlantic Ocean and Norwegian Sea, Les Publications de l'Institut français pour la recherche et la technologie polaires. Les Rapports des campagnes à la mer, 96–1, 221, 1996.
Beaufort, L., Probert, I., De Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino,
D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B.,
Rickaby, R. E. M., and De Vargas, C.: Sensitivity of coccolithophores to
carbonate chemistry and ocean acidification, Nature, 476, 80–83,
https://doi.org/10.1038/nature10295, 2011.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
https://doi.org/10.1029/98PA00070, 1998.
Bemis, B. E., Spero, H. J., Lea, D. W., and Bijma, J.: Temperature influence
on the carbon isotopic composition of Globigerina bulloides and Orbulina
universa (planktonic foraminifera), Mar. Micropaleontol., 38, 213–228,
https://doi.org/10.1016/S0377-8398(00)00006-2, 2000.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.
F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett.,
42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Berner, R. A.: Atmospheric Carbon Dioxide Levels Over Phanerozoic Time,
Science, 249, 1382–1386,
https://doi.org/10.1126/science.249.4975.1382, 1990.
Blanc, P.-L. and Bé, A. W. H.: Oxygen-18 Enrichment of Planktonic
Foraminifera Due to Gametogenic Calcification Below the Euphotic Zone,
Science, 213, 1247–1250,
https://doi.org/10.1126/science.213.4513.1247, 1981.
Bolton, C. T. and Stoll, H. M.: Late Miocene threshold response of marine
algae to carbon dioxide limitation, Nature, 500, 558–562,
https://doi.org/10.1038/nature12448, 2013.
Bolton, C. T., Stoll, H. M., and Mendez-Vicente, A.: Vital effects in
coccolith calcite: Cenozoic climate-pCO2 drove the diversity of carbon
acquisition strategies in coccolithophores?, Paleoceanography, 27, 1–16,
https://doi.org/10.1029/2012PA002339, 2012.
Broecker, W.: CO2: Earth's Climate Driver, Geochem. Perspect., 7,
117–196, https://doi.org/10.7185/geochempersp.7.2, 2018.
Broecker, W. S.: Glacial to interglacial changes in ocean chemistry, Prog.
Oceanogr., 11, 151–197, https://doi.org/10.1016/0079-6611(82)90007-6, 1982.
Brownlee, C. and Taylor, A.: Calcification in coccolithophores: A cellular perspective, in: Coccolithophores, Springer Berlin Heidelberg, Berlin, Heidelberg, 31–49, https://doi.org/10.1007/978-3-662-06278-4_2, 2004.
Burkhardt, S., Riebesell, U., and Zondervan, I.: Effects of growth rate, CO2
concentration, and cell size on the stable carbon isotope fractionation in
marine phytoplankton, Geochim. Cosmochim. Ac., 63, 3729–3741,
https://doi.org/10.1016/S0016-7037(99)00217-3, 1999.
Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.:
Transient simulation of the last glacial inception. Part I: Glacial
inception as a bifurcation in the climate system, Clim. Dynam., 24, 545–561,
https://doi.org/10.1007/s00382-005-0007-6, 2005.
Calvo, E., Villanueva, J., Grimalt, J. O., Boelaert, A., and Labeyrie, L.:
New insights into the glacial latitudinal temperature gradients in the North
Atlantic. Results from U37K′ sea surface temperatures and
terrigenous inputs, Earth Planet. Sc. Lett., 188, 509–519,
https://doi.org/10.1016/S0012-821X(01)00316-8, 2001.
Calvo, E., Grimalt, J., and Jansen, E.: High resolution U37K sea surface
temperature reconstruction in the Norwegian Sea during the Holocene, Quaternary Sci. Rev., 21, 1385–1394, https://doi.org/10.1016/S0277-3791(01)00096-8,
2002.
Candelier, Y., Minoletti, F., Probert, I., and Hermoso, M.: Temperature
dependence of oxygen isotope fractionation in coccolith calcite: A culture
and core top calibration of the genus Calcidiscus, Geochim. Cosmochim. Ac.,
100, 264–281, https://doi.org/10.1016/j.gca.2012.09.040, 2013.
Cavaleiro, C., Voelker, A. H. L., Stoll, H., Baumann, K.-H., Kulhanek, D.
K., Naafs, B. D. A., Stein, R., Grützner, J., Ventura, C., and Kucera,
M.: Insolation forcing of coccolithophore productivity in the North Atlantic
during the Middle Pleistocene, Quaternary Sci. Rev., 191, 318–336,
https://doi.org/10.1016/j.quascirev.2018.05.027, 2018.
Conte, M. H., Sicre, M. A., Rühlemann, C., Weber, J. C., Schulte, S.,
Schulz-Bull, D., and Blanz, T.: Global temperature calibration of the
alkenone unsaturation index (U ) in surface waters and comparison with
surface sediments, Geochem. Geophy. Geosy., 7, Q02005,
https://doi.org/10.1029/2005GC001054, 2006.
Deaney, E. L., Barker, S., and Van De Flierdt, T.: Timing and nature of AMOC
recovery across Termination 2 and magnitude of deglacial CO2 change, Nat.
Commun., 8, 14595, https://doi.org/10.1038/ncomms14595, 2017.
de Vargas, C., Aubry, M. P., Probert, I., and Young, J.: Origin and Evolution of Coccolithophores: From Coastal Hunters to Oceanic Farmers, in: Evolution of Primary Producers in the Sea, Elsevier, 251–285,
https://doi.org/10.1016/B978-012370518-1/50013-8, 2007.
de Vernal, A., Eynaud, F., Henry, M., Hillaire-Marcel, C., Londeix, L.,
Mangin, S., Matthiessen, J., Marret, F., Radi, T., Rochon, A., Solignac, S.,
and Turon, J. L.: Reconstruction of sea-surface conditions at middle to high
latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM)
based on dinoflagellate cyst assemblages, Quaternary Sci. Rev., 24, 897–924,
https://doi.org/10.1016/j.quascirev.2004.06.014, 2005.
Drysdale, R. N., Zanchetta, G., Hellstrom, J. C., Fallick, A. E., and Zhao,
J. X.: Stalagmite evidence for the onset of the Last Interglacial in
southern Europe at 129±1 ka, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2005GL024658, 2005.
Duchamp-Alphonse, S., Siani, G., Michel, E., Beaufort, L., Gally, Y., and
Jaccard, S. L.: Enhanced ocean-atmosphere carbon partitioning via the
carbonate counter pump during the last deglacial, Nat. Commun., 9, 2396,
https://doi.org/10.1038/s41467-018-04625-7, 2018.
Dudley, W. C., Blackwelder, P., Brand, L., and Duplessy, J. C.: Stable
isotopic composition of coccoliths, Mar. Micropaleontol., 10, 1–8,
https://doi.org/10.1016/0377-8398(86)90021-6, 1986.
Foster, G. L.: Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea
over the last 130 kyr: A boron isotope and B/Ca study of planktic
foraminifera, Earth Planet. Sc. Lett., 271, 254–266,
https://doi.org/10.1016/j.epsl.2008.04.015, 2008.
Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., and Orr, J.: seacarb: Seawater carbonate chemistry with R. R package version 3.3.0, https://cran.r-project.org/web/packages/seacarb/index.html (last access: 2 March 2022), 2011.
Govin, A., Capron, E., Tzedakis, P. C., Verheyden, S., Ghaleb, B.,
Hillaire-Marcel, C., St-Onge, G., Stoner, J. S., Bassinot, F., Bazin, L.,
Blunier, T., Combourieu-Nebout, N., El Ouahabi, A., Genty, D., Gersonde, R.,
Jimenez-Amat, P., Landais, A., Martrat, B., Masson-Delmotte, V., Parrenin,
F., Seidenkrantz, M. S., Veres, D., Waelbroeck, C., and Zahn, R.: Sequence
of events from the onset to the demise of the Last Interglacial: Evaluating
strengths and limitations of chronologies used in climatic archives, Quaternary Sci. Rev., 129, 1–36, https://doi.org/10.1016/j.quascirev.2015.09.018,
2015.
Gray, W. R. and Evans, D.: Nonthermal Influences on Mg/Ca in Planktonic
Foraminifera: A Review of Culture Studies and Application to the Last
Glacial Maximum, Paleoceanography and Paleoclimatology, 34, 306–315,
https://doi.org/10.1029/2018PA003517, 2019.
Hein, M. and Sand-Jensen, K.: CO2 increases oceanic primary production,
Nature, 388, 526–527, https://doi.org/10.1038/41457, 1997.
Henderiks, J.: Coccolithophore size rules – Reconstructing ancient cell
geometry and cellular calcite quota from fossil coccoliths, Mar.
Micropaleontol., 67, 143–154,
https://doi.org/10.1016/j.marmicro.2008.01.005, 2008.
Herbert, T. D.: Alkenone Paleotemperature Determinations, in: Treatise on
Geochemistry, 6–9, 391–432,
https://doi.org/10.1016/B0-08-043751-6/06115-6, 2003.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847,
https://doi.org/10.1038/ngeo2813, 2016.
Hermoso, M.: Coccolith-Derived Isotopic Proxies in Palaeoceanography: Where
Geologists Need Biologists, Cryptogamie Algol., 35, 323–351,
https://doi.org/10.7872/crya.v35.iss4.2014.323, 2014.
Hermoso, M.: Isotopic record of Pleistocene glacial/interglacial cycles in
pelagic carbonates: Revisiting historical data from the Caribbean Sea, Quaternary Sci. Rev., 137, 69–78, https://doi.org/10.1016/j.quascirev.2016.02.003,
2016.
Hermoso, M., Candelier, Y., Browning, T. J., and Minoletti, F.:
Environmental control of the isotopic composition of subfossil coccolith
calcite: Are laboratory culture data transferable to the natural
environment?, 7, 35–42, https://doi.org/10.1016/j.grj.2015.05.002, 2015.
Hermoso, M., Minoletti, F., Aloisi, G., Bonifacie, M., McClelland, H. L. O.,
Labourdette, N., Renforth, P., Chaduteau, C., and Rickaby, R. E. M.: An
explanation for the 18O excess in Noelaerhabdaceae coccolith calcite,
Geochim. Cosmochim. Ac., 189, 132–142,
https://doi.org/10.1016/j.gca.2016.06.016, 2016a.
Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C., and Rickaby, R. E. M.: Vanishing coccolith vital effects with alleviated carbon limitation, Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, 2016b.
Hermoso, M., Godbillot, C., and Minoletti, F.: Enhancing Our
Palaeoceanographic Toolbox Using Paired Foraminiferal and Coccolith Calcite
Measurements From Pelagic Sequences, Front. Earth Sci., 8, 1–5,
https://doi.org/10.3389/feart.2020.00038, 2020a.
Hermoso, M., McClelland, H.-L. O., Hirst, J. S., Minoletti, F., Bonifacie,
M., and Rickaby, R. E. M.: Towards the use of the coccolith vital effects in
palaeoceanography: A field investigation during the middle Miocene in the SW
Pacific Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 38, 103262,
https://doi.org/10.1016/j.dsr.2020.103262, 2020b.
Huete-Ortega, M., Cermeño, P., Calvo-Díaz, A., and Marañón,
E.: Isometric size-scaling of metabolic rate and the size abundance
distribution of phytoplankton, P. Roy. Soc. B.-Biol. Sci., 279, 1815–1823,
https://doi.org/10.1098/rspb.2011.2257, 2012.
Jasper, J. P., Hayes, J. M., Mix, A. C., and Prahl, F. G.: Photosynthetic
fractionation of 13C and concentrations of dissolved CO2 in the central
equatorial Pacific during the last 255,000 years, Paleoceanography, 9,
781–798, https://doi.org/10.1029/94PA02116, 1994.
Jiménez-Amat, P. and Zahn, R.: Offset timing of climate oscillations
during the last two glacial-interglacial transitions connected with
large-scale freshwater perturbation, Paleoceanography, 30, 768–788,
https://doi.org/10.1002/2014PA002710, 2015.
Jin, X., Liu, C., Zhang, H., Zhou, C., Jiang, X., Wu, Z., and Xu, J.:
Evolutionary driven of Gephyrocapsa coccolith isotopic vital effects over
the past 400 ka, Earth Planet. Sc. Lett., 503, 236–247,
https://doi.org/10.1016/j.epsl.2018.09.010, 2018.
Kahn, M. I. and Williams, D. F.: Oxygen and carbon isotopic composition of
living planktonic foraminifera from the northeast Pacific Ocean,
Palaeogeogr. Palaeocl., 33, 47–69,
https://doi.org/10.1016/0031-0182(81)90032-8, 1981.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Lévy, M., Lehahn, Y., André, J. M., Mémery, L., Loisel, H., and
Heifetz, E.: Production regimes in the northeast Atlantic: A study based on
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll and ocean
general circulation model mixed layer depth, J. Geophys. Res.-Oceans, 110,
1–16, https://doi.org/10.1029/2004JC002771, 2005.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20,
1–17, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Stern, J. V: Regional and global benthic δ18O
stacks for the last glacial cycle, Paleoceanography, 31, 1368–1394,
https://doi.org/10.1002/2016PA003002, 2016.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1:
Temperature, edited by: Levitus, S. and Mishonov, A. V., 40 pp., 2013.
Lohbeck, K. T., Riebesell, U., and Reusch, T. B. H.: Adaptive evolution of a
key phytoplankton species to ocean acidification, Nat. Geosci., 5, 346–351,
https://doi.org/10.1038/ngeo1441, 2012.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium, Mar. Chem., 70, 105–119,
https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Martínez-Botí, M. A., Marino, G., Foster, G. L., Ziveri, P.,
Henehan, M. J., Rae, J. W. B., Mortyn, P. G., and Vance, D.: Boron isotope
evidence for oceanic carbon dioxide leakage during the last deglaciation,
Nature, 518, 219–222, https://doi.org/10.1038/nature14155, 2015.
McClelland, H. L. O., Bruggeman, J., Hermoso, M., and Rickaby, R. E. M.: The
origin of carbon isotope vital effects in coccolith calcite, Nat. Commun.,
8, 1–16, https://doi.org/10.1038/ncomms14511, 2017.
Minoletti, F., Hermoso, M., and Gressier, V.: Separation of sedimentary
micron-sized particles for palaeoceanography and calcareous nannoplankton
biogeochemistry, Nat. Protoc., 4, 14–24,
https://doi.org/10.1038/nprot.2008.200, 2009.
Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E. M.,
Poulton, A. J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S.,
Gutowska, M. A., Lee, R., Riebesell, U., Young, J., and Ridgwell, A.: Why
marine phytoplankton calcify, Science Advances, 2, e1501822,
https://doi.org/10.1126/sciadv.1501822, 2016.
Naafs, B. D. A., Stein, R., Hefter, J., Khélifi, N., De Schepper, S.,
and Haug, G. H.: Late Pliocene changes in the North Atlantic Current, Earth Planet. Sc. Lett., 298, 434–442,
https://doi.org/10.1016/j.epsl.2010.08.023, 2010.
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., and Zumbrunn, R.: Ice
core sample measurements give atmospheric CO2 content during the past 40,000 yr, Nature, 295, 220–223, https://doi.org/10.1038/295220a0, 1982.
Nimer, N., Brownlee, C., and Merrett, M.: Carbon dioxide availability,
intracellular pH and growth rate of the coccolithophore Emiliania huxleyi,
Mar. Ecol. Prog. Ser., 109, 257–262, https://doi.org/10.3354/meps109257,
1994.
Nimer, N. A., Iglesias-Rodriguez, M. D., and Merrett, M. J.: Bicarbonate
utilization by marine phytoplankton species, J. Phycol., 33, 625–631,
https://doi.org/10.1111/j.0022-3646.1997.00625.x, 1997.
Omta, A. W., Van Voorn, G. A. K., Rickaby, R. E. M., and Follows, M. J.: On
the potential role of marine calcifiers in glacial-interglacial dynamics,
Global Biogeochem. Cy., 27, 692–704, https://doi.org/10.1002/gbc.20060,
2013.
Pagani, M.: Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy, in: Treatise on Geochemistry, vol. 12, Elsevier, 361–378, https://doi.org/10.1016/B978-0-08-095975-7.01027-5, 2014.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, Eos, Transactions American Geophysical Union, 77, 379–379,
https://doi.org/10.1029/96EO00259, 1996.
Pearson, P. N.: Oxygen isotopes in foraminifera: Overview and historical
review, The Paleontological Society Papers, 18, 1–38,
https://doi.org/10.1017/S1089332600002539, 2012.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420,000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, https://doi.org/10.1038/20859, 1999.
Pflaumann, U., Sarnthein, M., Chapman, M., D'Abreu, L., Funnell, B., Huels,
M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S.,
Vautravers, M., Vogelsang, E., and Weinelt, M.: Glacial North Atlantic:
Sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanography, 18, 10.1-10.21, https://doi.org/10.1029/2002PA000774, 2003.
Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K. L., and
Wakeham, S. G.: Effect of phytoplankton cell geometry on carbon isotopic
fractionation, Geochim. Cosmochim. Ac., 62, 69–77,
https://doi.org/10.1016/S0016-7037(97)00333-5, 1998.
Rae, J. W. B., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M., and
Whiteford, R. D. M.: Atmospheric CO2 over the Past 66 Million Years from
Marine Archives, Annu. Rev. Earth Pl. Sc., 49, 609–641,
https://doi.org/10.1146/annurev-earth-082420-063026, 2021.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017.
Reinfelder, J. R.: Carbon Concentrating Mechanisms in Eukaryotic Marine
Phytoplankton, Ann. Rev. Mar. Sci., 3, 291–315,
https://doi.org/10.1146/annurev-marine-120709-142720, 2011.
Rickaby, R. E. M., Henderiks, J., and Young, J. N.: Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species, Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, 2010.
Schlitzer, R.: Ocean Data View, ODV [code], http://odv.awi.de (last access: 2 March 2022), 2018.
Sanyal, A., Hemming, N. G., Hanson, G. N., and Broecker, W. S.: Evidence for
a higher pH in the glacial ocean from boron isotopes in foraminifera,
Nature, 373, 234–236, https://doi.org/10.1038/373234a0, 1995.
Schwab, C., Kinkel, H., Weinelt, M., and Repschläger, J.:
Coccolithophore paleoproductivity and ecology response to deglacial and
Holocene changes in the Azores Current System, Paleoceanography, 27,
PA3210, https://doi.org/10.1029/2012PA002281, 2012.
Shao, J., Stott, L. D., Gray, W. R., Greenop, R., Pecher, I., Neil, H. L.,
Coffin, R. B., Davy, B., and Rae, J. W. B.: Atmosphere-Ocean CO2 Exchange
Across the Last Deglaciation From the Boron Isotope Proxy, Paleoceanography and Paleoclimatology, 34, 1650–1670, https://doi.org/10.1029/2018PA003498,
2019.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Skinner, L. C., Primeau, F., Freeman, E., De La Fuente, M., Goodwin, P. A.,
Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A. E.:
Radiocarbon constraints on the glacial ocean circulation and its impact on
atmospheric CO2, Nat. Commun., 8, 1–10,
https://doi.org/10.1038/ncomms16010, 2017.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Stein, R., Hefter, J., Grützner, J., Voelker, A., and Naafs, B. D. A.:
Variability of surface water characteristics and Heinrich-like events in the
Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from
IODP Site U1313 (MIS 16–9), Paleoceanography, 24, PA2203,
https://doi.org/10.1029/2008PA001639, 2009.
Stoll, H. M., Guitian, J., Hernandez, I., Mejia, L. M., Phelps, S.,
Rosenthal, Y., Zhang, H., and Ziveri, P.: Upregulation of phytoplankton
carbon concentrating mechanisms during low CO2 glacial periods and
implications for the phytoplankton pCO2 proxy, Quaternary Sci. Rev., 208, 1–20,
https://doi.org/10.1016/j.quascirev.2019.01.012, 2019.
Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements performed during 1957–2010 (LDEO Database Version 2010) (NCEI Accession 0160492), NOAA National Centers for Environmental Information [data set], https://cdiac.ess-dive.lbl.gov/ftp/oceans/LDEO_Database/Version_2010/ (last access: 2 March 2022), 2011.
Tremblin, M., Hermoso, M., and Minoletti, F.: Equatorial heat accumulation
as a long-term trigger of permanent Antarctic ice sheets during the
Cenozoic, P. Natl. Acad. Sci. USA, 113, 11782–11787,
https://doi.org/10.1073/pnas.1608100113, 2016.
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom,
J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B.,
Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.:
Enhanced climate instability in the North Atlantic and southern Europe
during the Last Interglacial, Nat. Commun., 9, 4235, https://doi.org/10.1038/s41467-018-06683-3, 2018.
Villanueva, J., Grimalt, J. O., Cortijo, E., Vidal, L., and Labeyrie, L.:
Assessment of sea surface temperature variations in the central North
Atlantic using the alkenone unsaturation index (U ), Geochim. Cosmochim. Ac., 62, 2421–2427,
https://doi.org/10.1016/S0016-7037(98)00180-X, 1998.
Villanueva, J., Calvo, E., Pelejero, C., Grimalt, J. O., Boelaert, A., and
Labeyrie, L.: A latitudinal productivity band in the Central North Atlantic
over the last 270 kyr: An alkelone perspective, Paleoceanography, 16,
617–626, https://doi.org/10.1029/2000PA000543, 2001.
Volkman, J. K., Eglinton, G., Corner, E. D. S., and Sargent, J. R.: Novel
unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine
sediments and a coccolithophore Emiliania huxleyi, Phys. Chem. Earth, 12,
219–227, https://doi.org/10.1016/0079-1946(79)90106-X, 1980.
Winter, A., Rost, B., Hilbrecht, H., and Elbrächter, M.: Vertical and
horizontal distribution of coccolithophores in the Caribbean Sea, Geo-Mar. Lett., 22, 150–161, https://doi.org/10.1007/s00367-002-0108-8, 2002.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater: equilibrium, kinetics,
isotopes, Elsevier Oceanography Book Series, Amsterdam, The Netherlands, 65, 346 pp., ISBN 0-44450946-1, 2001.
Zhang, X., Knorr, G., Lohmann, G., and Barker, S.: Abrupt North Atlantic
circulation changes in response to gradual CO2 forcing in a glacial climate
state, Nat. Geosci., 10, 518–523, https://doi.org/10.1038/ngeo2974, 2017.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R.: A
40-million-year history of atmospheric CO2, Philos. T. R. Soc. A, 371, 20130096, https://doi.org/10.1098/rsta.2013.0096,
2013.
Ziveri, P., Stoll, H., Probert, I., Klaas, C., Geisen, M., Ganssen, G., and
Young, J.: Stable isotope “vital effects” in coccolith calcite, Earth Planet. Sc. Lett., 210, 137–149,
https://doi.org/10.1016/S0012-821X(03)00101-8, 2003.
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of...