Articles | Volume 18, issue 3
https://doi.org/10.5194/cp-18-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parallel between the isotopic composition of coccolith calcite and carbon levels across Termination II: developing a new paleo-CO2 probe
Camille Godbillot
CORRESPONDING AUTHOR
Institut des Sciences de la Terre de Paris (UMR 7193 ISTeP), CNRS,
Sorbonne Université, 75005 Paris, France
Fabrice Minoletti
Institut des Sciences de la Terre de Paris (UMR 7193 ISTeP), CNRS,
Sorbonne Université, 75005 Paris, France
Franck Bassinot
Laboratoire des Sciences de l'Environnement et du Climat (UMR 8212
LSCE), CEA, CNRS, Université Versailles Saint Quentin, 91191, Gif sur Yvette, France
Michaël Hermoso
Laboratoire d'Océanologie et de Géosciences (UMR 8187 LOG),
Université du Littoral Côte d'Opale, CNRS, Université de Lille, 62930 Wimereux, France
Related authors
Vincent Mouchi, Camille Godbillot, Vianney Forest, Alexey Ulianov, Franck Lartaud, Marc de Rafélis, Laurent Emmanuel, and Eric P. Verrecchia
Biogeosciences, 17, 2205–2217, https://doi.org/10.5194/bg-17-2205-2020, https://doi.org/10.5194/bg-17-2205-2020, 2020
Short summary
Short summary
Rare earth elements (REEs) in coastal seawater are included in bivalve shells during growth, and a regional fingerprint can be defined for provenance and environmental monitoring studies. We present a large dataset of REE abundances from oysters from six locations in France. The cupped oyster can be discriminated from one locality to another, but this is not the case for the flat oyster. Therefore, provenance studies using bivalve shells based on REEs are not adapted for the flat oyster.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1875, https://doi.org/10.5194/egusphere-2024-1875, 2024
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need of careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Goulwen Le Guevel, Fabrice Minoletti, Carla Geisen, Gwendoline Duong, Virginia Rojas, and Michaël Hermoso
EGUsphere, https://doi.org/10.5194/egusphere-2024-1890, https://doi.org/10.5194/egusphere-2024-1890, 2024
Short summary
Short summary
This study explores the impact of environmental conditions on the chemistry of coccoliths, calcite minerals produced by marine algae, to better understand past climate changes. By cultivating different species of coccolithophores under various CO2 and pH levels, we have shown that the isotopic composition of certain species varies with CO2 concentration and quantified these variations.
Ruifang Ma, Sophie Sépulcre, Laetitia Licari, Frédéric Haurine, Franck Bassinot, Zhaojie Yu, and Christophe Colin
Clim. Past, 18, 1757–1774, https://doi.org/10.5194/cp-18-1757-2022, https://doi.org/10.5194/cp-18-1757-2022, 2022
Short summary
Short summary
We provide high-resolution Cd / Ca records of benthic foraminifera on two cores from the northern Indian Ocean since the last deglaciation. We reconstructed intermediate Cdw records based on Cd / Ca. Combined with benthic foraminiferal assemblages, we show that intermediate Cdw during the last deglaciation was mainly influenced by the ventilation of intermediate–bottom water masses. Thereafter during the Holocene surface productivity is the main forcing factor related to monsoon precipitation.
Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin
Clim. Past, 16, 1969–1986, https://doi.org/10.5194/cp-16-1969-2020, https://doi.org/10.5194/cp-16-1969-2020, 2020
Short summary
Short summary
We provide a high-resolution primary productivity (PP) record of the northeastern Bay of Bengal over the last 26 000 years. Combined with climate model outputs, we show that PP over the glacial period is controlled by river input nutrients under low sea level conditions and after the Last Glacial Maximum is controlled by upper seawater salinity stratification related to monsoon precipitation. During the deglaciation the Atlantic meridional overturning circulation is the main forcing factor.
Vincent Mouchi, Camille Godbillot, Vianney Forest, Alexey Ulianov, Franck Lartaud, Marc de Rafélis, Laurent Emmanuel, and Eric P. Verrecchia
Biogeosciences, 17, 2205–2217, https://doi.org/10.5194/bg-17-2205-2020, https://doi.org/10.5194/bg-17-2205-2020, 2020
Short summary
Short summary
Rare earth elements (REEs) in coastal seawater are included in bivalve shells during growth, and a regional fingerprint can be defined for provenance and environmental monitoring studies. We present a large dataset of REE abundances from oysters from six locations in France. The cupped oyster can be discriminated from one locality to another, but this is not the case for the flat oyster. Therefore, provenance studies using bivalve shells based on REEs are not adapted for the flat oyster.
Michaël Hermoso and Marceau Lecasble
Biogeosciences, 15, 6761–6772, https://doi.org/10.5194/bg-15-6761-2018, https://doi.org/10.5194/bg-15-6761-2018, 2018
Short summary
Short summary
This work examines the effect of salinity changes on the biogeochemistry of the coccolithophores with a palaeoproxy perspective. Although substantial changes in growth rate are observed between cells grown under various salinities, these physiological changes have no significant impact on the oxygen isotope composition of their biominerals. Thus, established coccolith δ18O / temperature calibrations are not complicated by salinity. By contrast, it does influence coccolith δ13C values.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
M. Hermoso, D. Delsate, F. Baudin, L. Le Callonnec, F. Minoletti, M. Renard, and A. Faber
Solid Earth, 5, 793–804, https://doi.org/10.5194/se-5-793-2014, https://doi.org/10.5194/se-5-793-2014, 2014
M. Hermoso, F. Minoletti, and P. Pellenard
Clim. Past, 9, 2703–2712, https://doi.org/10.5194/cp-9-2703-2013, https://doi.org/10.5194/cp-9-2703-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pleistocene
Monsoon-driven changes in aeolian and fluvial sediment input to the central Red Sea recorded throughout the last 200 000 years
Orbital CO2 reconstruction using boron isotopes during the late Pleistocene, an assessment of accuracy
Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment
A 600 kyr reconstruction of deep Arctic seawater δ18O from benthic foraminiferal δ18O and ostracode Mg ∕ Ca paleothermometry
Antarctic sea ice over the past 130 000 years – Part 1: a review of what proxy records tell us
Reorganization of Atlantic Waters at sub-polar latitudes linked to deep-water overflow in both glacial and interglacial climate states
A global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP)
Contrasting late-glacial paleoceanographic evolution between the upper and lower continental slope of the western South Atlantic
Modal shift in North Atlantic seasonality during the last deglaciation
Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data
Sensitivity to species selection indicates the effect of nuisance variables on marine microfossil transfer functions
Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels
Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core
A Late Quaternary climate record based on long-chain diol proxies from the Chilean margin
Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera
Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies
Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading
Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives
Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (∼88 ka)
Hydrographic changes in the Agulhas Recirculation Region during the late Quaternary
Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and II
Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Taehee Lee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence
Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, https://doi.org/10.5194/cp-19-1993-2023, 2023
Short summary
Short summary
Understanding of past climate change depends, in part, on how accurately we can estimate the ages of events recorded in geologic archives. Here we present a new software package, called BIGMACS, to improve age estimates for paleoclimate data from ocean sediment cores. BIGMACS creates multiproxy age estimates that reduce age uncertainty by probabilistically combining information from direct age estimates, such as radiocarbon dates, and the alignment of regional paleoclimate time series.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Dakota E. Holmes, Tali L. Babila, Ulysses Ninnemann, Gordon Bromley, Shane Tyrrell, Greig A. Paterson, Michelle J. Curran, and Audrey Morley
Clim. Past, 18, 989–1009, https://doi.org/10.5194/cp-18-989-2022, https://doi.org/10.5194/cp-18-989-2022, 2022
Short summary
Short summary
Our proxy-based observations of the glacial inception following MIS 11 advance our mechanistic understanding of (and elucidates antecedent conditions that can lead to) high-magnitude climate instability during low- and intermediate-ice boundary conditions. We find that irrespective of the magnitude of climate variability or boundary conditions, the reorganization between Polar Water and Atlantic Water at subpolar latitudes appears to influence deep-water flow in the Nordic Seas.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Patrick A. Rafter, Juan-Carlos Herguera, and John R. Southon
Clim. Past, 14, 1977–1989, https://doi.org/10.5194/cp-14-1977-2018, https://doi.org/10.5194/cp-14-1977-2018, 2018
Short summary
Short summary
Carbon’s radioactive isotope (radiocarbon) is a useful tool for oceanographers investigating carbon cycling in the modern ocean and ice age oceans (using foraminifera microfossils). Here we used sediment cores with excellent age constraints and abundant foraminifera microfossils to examine interspecies radiocarbon differences. All species demonstrate the same extreme radiocarbon depletion, and we argue that these observations represent important changes in seawater carbon chemistry.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam
Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, https://doi.org/10.5194/cp-10-745-2014, 2014
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Cited articles
Aloisi, G.: Covariation of metabolic rates and cell size in coccolithophores, Biogeosciences, 12, 4665–4692, https://doi.org/10.5194/bg-12-4665-2015, 2015.
Bach, L. T., MacKinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D.
C., Brownlee, C., and Riebesell, U.: Dissecting the impact of CO2 and pH on
the mechanisms of photosynthesis and calcification in the coccolithophore
Emiliania huxleyi, New Phytol., 199, 121–134,
https://doi.org/10.1111/nph.12225, 2013.
Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Pälike, H., Mackensen, A., and Pancost, R. D.: Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels, Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, 2019.
Bassinot, F. and Labeyrie, L.: IMAGES – MD 101 à bord du Marion-Dufresne
du 29 mai au 11 juillet 1995. A coring cruise of the R/V Marion Dufresne in
the North Atlantic Ocean and Norwegian Sea, Les Publications de l'Institut français pour la recherche et la technologie polaires. Les Rapports des campagnes à la mer, 96–1, 221, 1996.
Beaufort, L., Probert, I., De Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino,
D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B.,
Rickaby, R. E. M., and De Vargas, C.: Sensitivity of coccolithophores to
carbonate chemistry and ocean acidification, Nature, 476, 80–83,
https://doi.org/10.1038/nature10295, 2011.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
https://doi.org/10.1029/98PA00070, 1998.
Bemis, B. E., Spero, H. J., Lea, D. W., and Bijma, J.: Temperature influence
on the carbon isotopic composition of Globigerina bulloides and Orbulina
universa (planktonic foraminifera), Mar. Micropaleontol., 38, 213–228,
https://doi.org/10.1016/S0377-8398(00)00006-2, 2000.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.
F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett.,
42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Berner, R. A.: Atmospheric Carbon Dioxide Levels Over Phanerozoic Time,
Science, 249, 1382–1386,
https://doi.org/10.1126/science.249.4975.1382, 1990.
Blanc, P.-L. and Bé, A. W. H.: Oxygen-18 Enrichment of Planktonic
Foraminifera Due to Gametogenic Calcification Below the Euphotic Zone,
Science, 213, 1247–1250,
https://doi.org/10.1126/science.213.4513.1247, 1981.
Bolton, C. T. and Stoll, H. M.: Late Miocene threshold response of marine
algae to carbon dioxide limitation, Nature, 500, 558–562,
https://doi.org/10.1038/nature12448, 2013.
Bolton, C. T., Stoll, H. M., and Mendez-Vicente, A.: Vital effects in
coccolith calcite: Cenozoic climate-pCO2 drove the diversity of carbon
acquisition strategies in coccolithophores?, Paleoceanography, 27, 1–16,
https://doi.org/10.1029/2012PA002339, 2012.
Broecker, W.: CO2: Earth's Climate Driver, Geochem. Perspect., 7,
117–196, https://doi.org/10.7185/geochempersp.7.2, 2018.
Broecker, W. S.: Glacial to interglacial changes in ocean chemistry, Prog.
Oceanogr., 11, 151–197, https://doi.org/10.1016/0079-6611(82)90007-6, 1982.
Brownlee, C. and Taylor, A.: Calcification in coccolithophores: A cellular perspective, in: Coccolithophores, Springer Berlin Heidelberg, Berlin, Heidelberg, 31–49, https://doi.org/10.1007/978-3-662-06278-4_2, 2004.
Burkhardt, S., Riebesell, U., and Zondervan, I.: Effects of growth rate, CO2
concentration, and cell size on the stable carbon isotope fractionation in
marine phytoplankton, Geochim. Cosmochim. Ac., 63, 3729–3741,
https://doi.org/10.1016/S0016-7037(99)00217-3, 1999.
Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.:
Transient simulation of the last glacial inception. Part I: Glacial
inception as a bifurcation in the climate system, Clim. Dynam., 24, 545–561,
https://doi.org/10.1007/s00382-005-0007-6, 2005.
Calvo, E., Villanueva, J., Grimalt, J. O., Boelaert, A., and Labeyrie, L.:
New insights into the glacial latitudinal temperature gradients in the North
Atlantic. Results from U37K′ sea surface temperatures and
terrigenous inputs, Earth Planet. Sc. Lett., 188, 509–519,
https://doi.org/10.1016/S0012-821X(01)00316-8, 2001.
Calvo, E., Grimalt, J., and Jansen, E.: High resolution U37K sea surface
temperature reconstruction in the Norwegian Sea during the Holocene, Quaternary Sci. Rev., 21, 1385–1394, https://doi.org/10.1016/S0277-3791(01)00096-8,
2002.
Candelier, Y., Minoletti, F., Probert, I., and Hermoso, M.: Temperature
dependence of oxygen isotope fractionation in coccolith calcite: A culture
and core top calibration of the genus Calcidiscus, Geochim. Cosmochim. Ac.,
100, 264–281, https://doi.org/10.1016/j.gca.2012.09.040, 2013.
Cavaleiro, C., Voelker, A. H. L., Stoll, H., Baumann, K.-H., Kulhanek, D.
K., Naafs, B. D. A., Stein, R., Grützner, J., Ventura, C., and Kucera,
M.: Insolation forcing of coccolithophore productivity in the North Atlantic
during the Middle Pleistocene, Quaternary Sci. Rev., 191, 318–336,
https://doi.org/10.1016/j.quascirev.2018.05.027, 2018.
Conte, M. H., Sicre, M. A., Rühlemann, C., Weber, J. C., Schulte, S.,
Schulz-Bull, D., and Blanz, T.: Global temperature calibration of the
alkenone unsaturation index (U ) in surface waters and comparison with
surface sediments, Geochem. Geophy. Geosy., 7, Q02005,
https://doi.org/10.1029/2005GC001054, 2006.
Deaney, E. L., Barker, S., and Van De Flierdt, T.: Timing and nature of AMOC
recovery across Termination 2 and magnitude of deglacial CO2 change, Nat.
Commun., 8, 14595, https://doi.org/10.1038/ncomms14595, 2017.
de Vargas, C., Aubry, M. P., Probert, I., and Young, J.: Origin and Evolution of Coccolithophores: From Coastal Hunters to Oceanic Farmers, in: Evolution of Primary Producers in the Sea, Elsevier, 251–285,
https://doi.org/10.1016/B978-012370518-1/50013-8, 2007.
de Vernal, A., Eynaud, F., Henry, M., Hillaire-Marcel, C., Londeix, L.,
Mangin, S., Matthiessen, J., Marret, F., Radi, T., Rochon, A., Solignac, S.,
and Turon, J. L.: Reconstruction of sea-surface conditions at middle to high
latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM)
based on dinoflagellate cyst assemblages, Quaternary Sci. Rev., 24, 897–924,
https://doi.org/10.1016/j.quascirev.2004.06.014, 2005.
Drysdale, R. N., Zanchetta, G., Hellstrom, J. C., Fallick, A. E., and Zhao,
J. X.: Stalagmite evidence for the onset of the Last Interglacial in
southern Europe at 129±1 ka, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2005GL024658, 2005.
Duchamp-Alphonse, S., Siani, G., Michel, E., Beaufort, L., Gally, Y., and
Jaccard, S. L.: Enhanced ocean-atmosphere carbon partitioning via the
carbonate counter pump during the last deglacial, Nat. Commun., 9, 2396,
https://doi.org/10.1038/s41467-018-04625-7, 2018.
Dudley, W. C., Blackwelder, P., Brand, L., and Duplessy, J. C.: Stable
isotopic composition of coccoliths, Mar. Micropaleontol., 10, 1–8,
https://doi.org/10.1016/0377-8398(86)90021-6, 1986.
Foster, G. L.: Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea
over the last 130 kyr: A boron isotope and B/Ca study of planktic
foraminifera, Earth Planet. Sc. Lett., 271, 254–266,
https://doi.org/10.1016/j.epsl.2008.04.015, 2008.
Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., and Orr, J.: seacarb: Seawater carbonate chemistry with R. R package version 3.3.0, https://cran.r-project.org/web/packages/seacarb/index.html (last access: 2 March 2022), 2011.
Govin, A., Capron, E., Tzedakis, P. C., Verheyden, S., Ghaleb, B.,
Hillaire-Marcel, C., St-Onge, G., Stoner, J. S., Bassinot, F., Bazin, L.,
Blunier, T., Combourieu-Nebout, N., El Ouahabi, A., Genty, D., Gersonde, R.,
Jimenez-Amat, P., Landais, A., Martrat, B., Masson-Delmotte, V., Parrenin,
F., Seidenkrantz, M. S., Veres, D., Waelbroeck, C., and Zahn, R.: Sequence
of events from the onset to the demise of the Last Interglacial: Evaluating
strengths and limitations of chronologies used in climatic archives, Quaternary Sci. Rev., 129, 1–36, https://doi.org/10.1016/j.quascirev.2015.09.018,
2015.
Gray, W. R. and Evans, D.: Nonthermal Influences on Mg/Ca in Planktonic
Foraminifera: A Review of Culture Studies and Application to the Last
Glacial Maximum, Paleoceanography and Paleoclimatology, 34, 306–315,
https://doi.org/10.1029/2018PA003517, 2019.
Hein, M. and Sand-Jensen, K.: CO2 increases oceanic primary production,
Nature, 388, 526–527, https://doi.org/10.1038/41457, 1997.
Henderiks, J.: Coccolithophore size rules – Reconstructing ancient cell
geometry and cellular calcite quota from fossil coccoliths, Mar.
Micropaleontol., 67, 143–154,
https://doi.org/10.1016/j.marmicro.2008.01.005, 2008.
Herbert, T. D.: Alkenone Paleotemperature Determinations, in: Treatise on
Geochemistry, 6–9, 391–432,
https://doi.org/10.1016/B0-08-043751-6/06115-6, 2003.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847,
https://doi.org/10.1038/ngeo2813, 2016.
Hermoso, M.: Coccolith-Derived Isotopic Proxies in Palaeoceanography: Where
Geologists Need Biologists, Cryptogamie Algol., 35, 323–351,
https://doi.org/10.7872/crya.v35.iss4.2014.323, 2014.
Hermoso, M.: Isotopic record of Pleistocene glacial/interglacial cycles in
pelagic carbonates: Revisiting historical data from the Caribbean Sea, Quaternary Sci. Rev., 137, 69–78, https://doi.org/10.1016/j.quascirev.2016.02.003,
2016.
Hermoso, M., Candelier, Y., Browning, T. J., and Minoletti, F.:
Environmental control of the isotopic composition of subfossil coccolith
calcite: Are laboratory culture data transferable to the natural
environment?, 7, 35–42, https://doi.org/10.1016/j.grj.2015.05.002, 2015.
Hermoso, M., Minoletti, F., Aloisi, G., Bonifacie, M., McClelland, H. L. O.,
Labourdette, N., Renforth, P., Chaduteau, C., and Rickaby, R. E. M.: An
explanation for the 18O excess in Noelaerhabdaceae coccolith calcite,
Geochim. Cosmochim. Ac., 189, 132–142,
https://doi.org/10.1016/j.gca.2016.06.016, 2016a.
Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C., and Rickaby, R. E. M.: Vanishing coccolith vital effects with alleviated carbon limitation, Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, 2016b.
Hermoso, M., Godbillot, C., and Minoletti, F.: Enhancing Our
Palaeoceanographic Toolbox Using Paired Foraminiferal and Coccolith Calcite
Measurements From Pelagic Sequences, Front. Earth Sci., 8, 1–5,
https://doi.org/10.3389/feart.2020.00038, 2020a.
Hermoso, M., McClelland, H.-L. O., Hirst, J. S., Minoletti, F., Bonifacie,
M., and Rickaby, R. E. M.: Towards the use of the coccolith vital effects in
palaeoceanography: A field investigation during the middle Miocene in the SW
Pacific Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 38, 103262,
https://doi.org/10.1016/j.dsr.2020.103262, 2020b.
Huete-Ortega, M., Cermeño, P., Calvo-Díaz, A., and Marañón,
E.: Isometric size-scaling of metabolic rate and the size abundance
distribution of phytoplankton, P. Roy. Soc. B.-Biol. Sci., 279, 1815–1823,
https://doi.org/10.1098/rspb.2011.2257, 2012.
Jasper, J. P., Hayes, J. M., Mix, A. C., and Prahl, F. G.: Photosynthetic
fractionation of 13C and concentrations of dissolved CO2 in the central
equatorial Pacific during the last 255,000 years, Paleoceanography, 9,
781–798, https://doi.org/10.1029/94PA02116, 1994.
Jiménez-Amat, P. and Zahn, R.: Offset timing of climate oscillations
during the last two glacial-interglacial transitions connected with
large-scale freshwater perturbation, Paleoceanography, 30, 768–788,
https://doi.org/10.1002/2014PA002710, 2015.
Jin, X., Liu, C., Zhang, H., Zhou, C., Jiang, X., Wu, Z., and Xu, J.:
Evolutionary driven of Gephyrocapsa coccolith isotopic vital effects over
the past 400 ka, Earth Planet. Sc. Lett., 503, 236–247,
https://doi.org/10.1016/j.epsl.2018.09.010, 2018.
Kahn, M. I. and Williams, D. F.: Oxygen and carbon isotopic composition of
living planktonic foraminifera from the northeast Pacific Ocean,
Palaeogeogr. Palaeocl., 33, 47–69,
https://doi.org/10.1016/0031-0182(81)90032-8, 1981.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Lévy, M., Lehahn, Y., André, J. M., Mémery, L., Loisel, H., and
Heifetz, E.: Production regimes in the northeast Atlantic: A study based on
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll and ocean
general circulation model mixed layer depth, J. Geophys. Res.-Oceans, 110,
1–16, https://doi.org/10.1029/2004JC002771, 2005.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20,
1–17, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Stern, J. V: Regional and global benthic δ18O
stacks for the last glacial cycle, Paleoceanography, 31, 1368–1394,
https://doi.org/10.1002/2016PA003002, 2016.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1:
Temperature, edited by: Levitus, S. and Mishonov, A. V., 40 pp., 2013.
Lohbeck, K. T., Riebesell, U., and Reusch, T. B. H.: Adaptive evolution of a
key phytoplankton species to ocean acidification, Nat. Geosci., 5, 346–351,
https://doi.org/10.1038/ngeo1441, 2012.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium, Mar. Chem., 70, 105–119,
https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Martínez-Botí, M. A., Marino, G., Foster, G. L., Ziveri, P.,
Henehan, M. J., Rae, J. W. B., Mortyn, P. G., and Vance, D.: Boron isotope
evidence for oceanic carbon dioxide leakage during the last deglaciation,
Nature, 518, 219–222, https://doi.org/10.1038/nature14155, 2015.
McClelland, H. L. O., Bruggeman, J., Hermoso, M., and Rickaby, R. E. M.: The
origin of carbon isotope vital effects in coccolith calcite, Nat. Commun.,
8, 1–16, https://doi.org/10.1038/ncomms14511, 2017.
Minoletti, F., Hermoso, M., and Gressier, V.: Separation of sedimentary
micron-sized particles for palaeoceanography and calcareous nannoplankton
biogeochemistry, Nat. Protoc., 4, 14–24,
https://doi.org/10.1038/nprot.2008.200, 2009.
Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E. M.,
Poulton, A. J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S.,
Gutowska, M. A., Lee, R., Riebesell, U., Young, J., and Ridgwell, A.: Why
marine phytoplankton calcify, Science Advances, 2, e1501822,
https://doi.org/10.1126/sciadv.1501822, 2016.
Naafs, B. D. A., Stein, R., Hefter, J., Khélifi, N., De Schepper, S.,
and Haug, G. H.: Late Pliocene changes in the North Atlantic Current, Earth Planet. Sc. Lett., 298, 434–442,
https://doi.org/10.1016/j.epsl.2010.08.023, 2010.
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., and Zumbrunn, R.: Ice
core sample measurements give atmospheric CO2 content during the past 40,000 yr, Nature, 295, 220–223, https://doi.org/10.1038/295220a0, 1982.
Nimer, N., Brownlee, C., and Merrett, M.: Carbon dioxide availability,
intracellular pH and growth rate of the coccolithophore Emiliania huxleyi,
Mar. Ecol. Prog. Ser., 109, 257–262, https://doi.org/10.3354/meps109257,
1994.
Nimer, N. A., Iglesias-Rodriguez, M. D., and Merrett, M. J.: Bicarbonate
utilization by marine phytoplankton species, J. Phycol., 33, 625–631,
https://doi.org/10.1111/j.0022-3646.1997.00625.x, 1997.
Omta, A. W., Van Voorn, G. A. K., Rickaby, R. E. M., and Follows, M. J.: On
the potential role of marine calcifiers in glacial-interglacial dynamics,
Global Biogeochem. Cy., 27, 692–704, https://doi.org/10.1002/gbc.20060,
2013.
Pagani, M.: Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy, in: Treatise on Geochemistry, vol. 12, Elsevier, 361–378, https://doi.org/10.1016/B978-0-08-095975-7.01027-5, 2014.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, Eos, Transactions American Geophysical Union, 77, 379–379,
https://doi.org/10.1029/96EO00259, 1996.
Pearson, P. N.: Oxygen isotopes in foraminifera: Overview and historical
review, The Paleontological Society Papers, 18, 1–38,
https://doi.org/10.1017/S1089332600002539, 2012.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420,000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, https://doi.org/10.1038/20859, 1999.
Pflaumann, U., Sarnthein, M., Chapman, M., D'Abreu, L., Funnell, B., Huels,
M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S.,
Vautravers, M., Vogelsang, E., and Weinelt, M.: Glacial North Atlantic:
Sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanography, 18, 10.1-10.21, https://doi.org/10.1029/2002PA000774, 2003.
Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K. L., and
Wakeham, S. G.: Effect of phytoplankton cell geometry on carbon isotopic
fractionation, Geochim. Cosmochim. Ac., 62, 69–77,
https://doi.org/10.1016/S0016-7037(97)00333-5, 1998.
Rae, J. W. B., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M., and
Whiteford, R. D. M.: Atmospheric CO2 over the Past 66 Million Years from
Marine Archives, Annu. Rev. Earth Pl. Sc., 49, 609–641,
https://doi.org/10.1146/annurev-earth-082420-063026, 2021.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017.
Reinfelder, J. R.: Carbon Concentrating Mechanisms in Eukaryotic Marine
Phytoplankton, Ann. Rev. Mar. Sci., 3, 291–315,
https://doi.org/10.1146/annurev-marine-120709-142720, 2011.
Rickaby, R. E. M., Henderiks, J., and Young, J. N.: Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species, Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, 2010.
Schlitzer, R.: Ocean Data View, ODV [code], http://odv.awi.de (last access: 2 March 2022), 2018.
Sanyal, A., Hemming, N. G., Hanson, G. N., and Broecker, W. S.: Evidence for
a higher pH in the glacial ocean from boron isotopes in foraminifera,
Nature, 373, 234–236, https://doi.org/10.1038/373234a0, 1995.
Schwab, C., Kinkel, H., Weinelt, M., and Repschläger, J.:
Coccolithophore paleoproductivity and ecology response to deglacial and
Holocene changes in the Azores Current System, Paleoceanography, 27,
PA3210, https://doi.org/10.1029/2012PA002281, 2012.
Shao, J., Stott, L. D., Gray, W. R., Greenop, R., Pecher, I., Neil, H. L.,
Coffin, R. B., Davy, B., and Rae, J. W. B.: Atmosphere-Ocean CO2 Exchange
Across the Last Deglaciation From the Boron Isotope Proxy, Paleoceanography and Paleoclimatology, 34, 1650–1670, https://doi.org/10.1029/2018PA003498,
2019.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Skinner, L. C., Primeau, F., Freeman, E., De La Fuente, M., Goodwin, P. A.,
Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A. E.:
Radiocarbon constraints on the glacial ocean circulation and its impact on
atmospheric CO2, Nat. Commun., 8, 1–10,
https://doi.org/10.1038/ncomms16010, 2017.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Stein, R., Hefter, J., Grützner, J., Voelker, A., and Naafs, B. D. A.:
Variability of surface water characteristics and Heinrich-like events in the
Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from
IODP Site U1313 (MIS 16–9), Paleoceanography, 24, PA2203,
https://doi.org/10.1029/2008PA001639, 2009.
Stoll, H. M., Guitian, J., Hernandez, I., Mejia, L. M., Phelps, S.,
Rosenthal, Y., Zhang, H., and Ziveri, P.: Upregulation of phytoplankton
carbon concentrating mechanisms during low CO2 glacial periods and
implications for the phytoplankton pCO2 proxy, Quaternary Sci. Rev., 208, 1–20,
https://doi.org/10.1016/j.quascirev.2019.01.012, 2019.
Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements performed during 1957–2010 (LDEO Database Version 2010) (NCEI Accession 0160492), NOAA National Centers for Environmental Information [data set], https://cdiac.ess-dive.lbl.gov/ftp/oceans/LDEO_Database/Version_2010/ (last access: 2 March 2022), 2011.
Tremblin, M., Hermoso, M., and Minoletti, F.: Equatorial heat accumulation
as a long-term trigger of permanent Antarctic ice sheets during the
Cenozoic, P. Natl. Acad. Sci. USA, 113, 11782–11787,
https://doi.org/10.1073/pnas.1608100113, 2016.
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom,
J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B.,
Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.:
Enhanced climate instability in the North Atlantic and southern Europe
during the Last Interglacial, Nat. Commun., 9, 4235, https://doi.org/10.1038/s41467-018-06683-3, 2018.
Villanueva, J., Grimalt, J. O., Cortijo, E., Vidal, L., and Labeyrie, L.:
Assessment of sea surface temperature variations in the central North
Atlantic using the alkenone unsaturation index (U ), Geochim. Cosmochim. Ac., 62, 2421–2427,
https://doi.org/10.1016/S0016-7037(98)00180-X, 1998.
Villanueva, J., Calvo, E., Pelejero, C., Grimalt, J. O., Boelaert, A., and
Labeyrie, L.: A latitudinal productivity band in the Central North Atlantic
over the last 270 kyr: An alkelone perspective, Paleoceanography, 16,
617–626, https://doi.org/10.1029/2000PA000543, 2001.
Volkman, J. K., Eglinton, G., Corner, E. D. S., and Sargent, J. R.: Novel
unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine
sediments and a coccolithophore Emiliania huxleyi, Phys. Chem. Earth, 12,
219–227, https://doi.org/10.1016/0079-1946(79)90106-X, 1980.
Winter, A., Rost, B., Hilbrecht, H., and Elbrächter, M.: Vertical and
horizontal distribution of coccolithophores in the Caribbean Sea, Geo-Mar. Lett., 22, 150–161, https://doi.org/10.1007/s00367-002-0108-8, 2002.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater: equilibrium, kinetics,
isotopes, Elsevier Oceanography Book Series, Amsterdam, The Netherlands, 65, 346 pp., ISBN 0-44450946-1, 2001.
Zhang, X., Knorr, G., Lohmann, G., and Barker, S.: Abrupt North Atlantic
circulation changes in response to gradual CO2 forcing in a glacial climate
state, Nat. Geosci., 10, 518–523, https://doi.org/10.1038/ngeo2974, 2017.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R.: A
40-million-year history of atmospheric CO2, Philos. T. R. Soc. A, 371, 20130096, https://doi.org/10.1098/rsta.2013.0096,
2013.
Ziveri, P., Stoll, H., Probert, I., Klaas, C., Geisen, M., Ganssen, G., and
Young, J.: Stable isotope “vital effects” in coccolith calcite, Earth Planet. Sc. Lett., 210, 137–149,
https://doi.org/10.1016/S0012-821X(03)00101-8, 2003.
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of...