Articles | Volume 18, issue 3
https://doi.org/10.5194/cp-18-435-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-435-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Clumped isotope evidence for Early Jurassic extreme polar warmth and high climate sensitivity
Thomas Letulle
CORRESPONDING AUTHOR
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne, France
Guillaume Suan
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne, France
Mathieu Daëron
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette CEDEX, France
Mikhail Rogov
Laboratory of Phanerozoic Stratigraphy, Geological Institute of Russian Academy of Sciences, 119017 Moscow, Russia
Christophe Lécuyer
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne, France
Arnauld Vinçon-Laugier
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne, France
Bruno Reynard
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne, France
Gilles Montagnac
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne, France
Oleg Lutikov
Laboratory of Phanerozoic Stratigraphy, Geological Institute of Russian Academy of Sciences, 119017 Moscow, Russia
Jan Schlögl
Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina G, 842 15 Bratislava, Slovak Republik
Related authors
Thomas Letulle, Danièle Gaspard, Mathieu Daëron, Florent Arnaud-Godet, Arnauld Vinçon-Laugier, Guillaume Suan, and Christophe Lécuyer
Biogeosciences, 20, 1381–1403, https://doi.org/10.5194/bg-20-1381-2023, https://doi.org/10.5194/bg-20-1381-2023, 2023
Short summary
Short summary
This paper studies the chemistry of modern marine shells called brachiopods. We investigate the relationship of the chemistry of these shells with sea temperatures to test and develop tools for estimating sea temperatures in the distant past. Our results confirm that two of the investigated chemical markers could be useful thermometers despite some second-order variability independent of temperature. The other chemical markers investigated, however, should not be used as a thermometer.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Bruno Reynard and Xin Zhong
Solid Earth, 14, 591–602, https://doi.org/10.5194/se-14-591-2023, https://doi.org/10.5194/se-14-591-2023, 2023
Short summary
Short summary
Rocks are brought to great depths and back to the Earth's surface by the tectonic processes that shape mountain ranges. Tiny mineral inclusions can record how deep rocks went. Quartz, a common mineral inclusion, was put in the laboratory at conditions that mimic those encountered at depths to about 100 km. A laser-based spectroscopy (Raman) was calibrated to read pressure from quartz inclusions in rocks and to unravel their deep travel.
Thomas Letulle, Danièle Gaspard, Mathieu Daëron, Florent Arnaud-Godet, Arnauld Vinçon-Laugier, Guillaume Suan, and Christophe Lécuyer
Biogeosciences, 20, 1381–1403, https://doi.org/10.5194/bg-20-1381-2023, https://doi.org/10.5194/bg-20-1381-2023, 2023
Short summary
Short summary
This paper studies the chemistry of modern marine shells called brachiopods. We investigate the relationship of the chemistry of these shells with sea temperatures to test and develop tools for estimating sea temperatures in the distant past. Our results confirm that two of the investigated chemical markers could be useful thermometers despite some second-order variability independent of temperature. The other chemical markers investigated, however, should not be used as a thermometer.
Bruno Reynard, Clémentine Fellah, and Catherine McCammon
Eur. J. Mineral., 34, 645–656, https://doi.org/10.5194/ejm-34-645-2022, https://doi.org/10.5194/ejm-34-645-2022, 2022
Short summary
Short summary
Serpentines, magnesian clay-like minerals formed in subduction zones, contain iron in either ferrous or ferric form. The oxidation state of the iron form controls the composition of fluids that form when they are destabilized by heating. Results obtained here with Mössbauer spectroscopy are compared with X-ray spectroscopy and shown to be more reliable for serpentines and magnesium-rich chlorites. Fluids released by serpentines in subduction may be less oxidized than previously thought.
Nicolas Séon, Romain Amiot, Guillaume Suan, Christophe Lécuyer, François Fourel, Fabien Demaret, Arnauld Vinçon-Laugier, Sylvain Charbonnier, and Peggy Vincent
Biogeosciences, 19, 2671–2681, https://doi.org/10.5194/bg-19-2671-2022, https://doi.org/10.5194/bg-19-2671-2022, 2022
Short summary
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
Christoph Lécuyer, François Atrops, François Fourel, Jean-Pierre Flandrois, Gilles Pinay, and Philippe Davy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-132, https://doi.org/10.5194/hess-2022-132, 2022
Manuscript not accepted for further review
Short summary
Short summary
Located in the French Southern Alps, the Cerveyrette valley constitutes a watershed of about 100 km2. Cyclicality in the stable isotope compositions of the river waters recorded over two years allowed us to estimate a time lag of three to four months between precipitations and their sampling at the discharge point of the watershed. We thus show that the transfer time from mountain-accumulated snow toward the low-altitude areas is a sensitive variable responding to the current climate warming.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pre-Cenozoic
Clumped-isotope-derived climate trends leading up to the end-Cretaceous mass extinction in northwestern Europe
Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation
Climate variability and ocean fertility during the Aptian Stage
Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean
Heidi E. O'Hora, Sierra V. Petersen, Johan Vellekoop, Matthew M. Jones, and Serena R. Scholz
Clim. Past, 18, 1963–1982, https://doi.org/10.5194/cp-18-1963-2022, https://doi.org/10.5194/cp-18-1963-2022, 2022
Short summary
Short summary
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide into the atmosphere to warm the climate globally above an already warm background state. We reconstruct late Cretaceous seawater temperatures much warmer than today using the chemistry of fossil oysters from the modern-day Netherlands and Belgium. Covariations in temperature and water chemistry indicate changing ocean circulation patterns, potentially related to fluctuating sea level in this region.
Holly L. Taylor, Isaac J. Kell Duivestein, Juraj Farkas, Martin Dietzel, and Anthony Dosseto
Clim. Past, 15, 635–646, https://doi.org/10.5194/cp-15-635-2019, https://doi.org/10.5194/cp-15-635-2019, 2019
Short summary
Short summary
Approximately 600 million years ago, major environmental changes set the course for the emergence of animal life. Lithium (Li) isotopes in calcium carbonates can be used as a proxy to understand changes in the palaeo-environment. We conducted experiments that allow us to use Li isotopes in dolostones to extend our understanding of palaeo-environmental changes deeper into the geological record, where other calcium carbonates archives are not present.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
H. C. Jenkyns, L. Schouten-Huibers, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 8, 215–226, https://doi.org/10.5194/cp-8-215-2012, https://doi.org/10.5194/cp-8-215-2012, 2012
Cited articles
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost, A. B., Huntington, K. W., Bernasconi, S. M., and Bergmann, K. D.: A unified clumped isotope thermometer calibration (0.5–1100 ∘C) using carbonate-based standardization, Geophys. Res. Lett., 38, e2020GL092069, https://doi.org/10.1029/2020GL092069, 2021.
Baghli, H., Mattioli, E., Spangenberg, J. E., Bensalah, M., Arnaud-Godet, F., Pittet, B., and Suan, G.: Early Jurassic climatic trends in the south-Tethyan margin, Gondwana Res., 77, 67–81, https://doi.org/10.1016/j.gr.2019.06.016, 2020.
Barrick, R. E., Fischer, A. G., and Showers, W. J.: Oxygen isotopes from turtle bone; applications for terrestrial paleoclimates?, PALAIOS, 14, 186–191, https://doi.org/10.2307/3515374, 1999.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and Ziegler, M.: Reducing Uncertainties in Carbonate Clumped Isotope Analysis Through Consistent Carbonate-Based Standardization, Geochem. Geophy. Geosy.,
19, 2895–2914, https://doi.org/10.1029/2017GC007385, 2018.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler, A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M., Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., Elliott, B., Fetrow, A. C., Fiebig, J., Goldberg, S., Hermoso, M., Huntington, K. W., Hyland, E., Ingalls, M., Jaggi, M., John, C. M., Jost, A. B., Katz, S., Kelson, J., Kluge, T., Kocken, I. J., Laskar, A., Leutert, T. J., Liang, D., Lucarelli, J., Mackey, T. J., Mangenot, X., Meinicke, N., Modestou, S. E., Müller, I. A., Murray, S., Neary, A., Packard, N., Passey, B. H., Pelletier, E., Petersen, S., Piasecki, A., Schauer, A., Snell, K. E., Swart, P. K., Tripati, A., Upadhyay, D., Vennemann, T., Winkelstern, I., Yarian, D., Yoshida, N., Zhang, N., and Ziegler, M.:
InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards,
Geochem. Geophy. Geosy., 22, e2020GC009588, https://doi.org/10.1029/2020GC009588, 2021.
Billon-Bruyat, J.-P., Lécuyer, C., Martineau, F., and Mazin, J.-M.:
Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: implications for the ecology of fish, turtles, and crocodilians,
Palaeogeogr. Palaeocl.,
216, 359–375, https://doi.org/10.1016/j.palaeo.2004.11.011, 2005.
Blaise, T., Barbarand, J., Kars, M., Ploquin, F., Aubourg, C., Brigaud, B., Cathelineau, M., El Albani, A., Gautheron, C., Izart, A., Janots, D., Michels, R., Pagel, M., Pozzi, J.-P., Boiron, M.-C., and Landrein, P.:
Reconstruction of low temperature (< 100 ∘C) burial in sedimentary basins: A comparison of geothermometer in the intracontinental Paris Basin,
Mar. Petrol. Geol.,
53, 71–87, https://doi.org/10.1016/j.marpetgeo.2013.08.019, 2014.
Bougeault, C., Pellenard, P., Deconinck, J.-F., Hesselbo, S. P., Dommergues, J.-L., Bruneau, L., Cocquerez, T., Laffont, R., Huret, E., and Thibault, N.:
Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe),
Glob. Planet. Change,
149, 139–152, https://doi.org/10.1016/j.gloplacha.2017.01.005, 2017.
Brigaud, B., Bonifacie, M., Pagel, M., Blaise, T., Calmels, D., Haurine, F., and Landrein, P.:
Past hot fluid flows in limestones detected by Δ47–(U-Pb) and not recorded by other geothermometers,
Geology,
48, 851–856, https://doi.org/10.1130/G47358.1, 2020.
Buick, D. P. and Ivany, L. C.:
100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica,
Geology,
32, 921–924, https://doi.org/10.1130/G20796.1, 2004.
Cavalheiro, L., Wagner, T., Steinig, S., Bottini, C., Dummann, W., Esegbue, O., Gambacorta, G., Giraldo-Gómez, V., Farnsworth, A., Flögel, S., Hofmann, P., Lunt, D. J., Rethemeyer, J., Torricelli, S., and Erba, E.:
Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event,
Nat. Commun.,
12, 5411, https://doi.org/10.1038/s41467-021-25706-0, 2021.
Chen, S., Ryb, U., Piasecki, A. M., Lloyd, M. K., Baker, M. B., and Eiler, J. M.:
Mechanism of solid-state clumped isotope reordering in carbonate minerals from aragonite heating experiments,
Geochim. Cosmochim. Ac.,
258, 156–173, https://doi.org/10.1016/j.gca.2019.05.018, 2019.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.:
The ICS International Chronostratigraphic Chart,
Episodes,
36, 199–204, https://doi.org/10.18814/epiiugs/2013/v36i3/002, 2013.
Coplen, T. B.:
Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory,
Geochim. Cosmochim. Ac.,
71, 3948–3957, https://doi.org/10.1016/j.gca.2007.05.028, 2007.
Coulson, A. B., Kohn, M. J., and Barrick, R. E.:
Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway,
Nat. Geosci.,
4, 852–855, https://doi.org/10.1038/ngeo1312, 2011.
Craig, N.:
Growth of the bivalve Nucula annulata in nutrient-enriched environments,
Mar. Ecol. Prog. Ser.,
104, 77–90, https://doi.org/10.3354/meps104077, 1994.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.:
Synchronous tropical and polar temperature evolution in the Eocene,
Nature,
559, 382–386, https://doi.org/10.1038/s41586-018-0272-2, 2018.
Daëron, M.:
Full Propagation of Analytical Uncertainties in Δ47 Measurements,
Geochem. Geophy. Geosy.,
22, https://doi.org/10.1029/2020GC009592, 2021.
Daëron, M., Blamart, D., Peral, M., and Affek, H. P.:
Absolute isotopic abundance ratios and the accuracy of Δ47 measurements,
Chem. Geol.,
442, 83–96, https://doi.org/10.1016/j.chemgeo.2016.08.014, 2016.
de Winter, N. J., Müller, I. A., Kocken, I. J., Thibault, N., Ullmann, C. V., Farnsworth, A., Lunt, D. J., Claeys, P., and Ziegler, M.:
Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate,
Commun. Earth Environ.,
2, 121, https://doi.org/10.1038/s43247-021-00193-9, 2021.
Dera, G. and Donnadieu, Y.:
Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event,
Paleoceanography,
27, PA2211, https://doi.org/10.1029/2012PA002283, 2012.
Dera, G., Pucéat, E., Pellenard, P., Neige, P., Delsate, D., Joachimski, M. M., Reisberg, L., and Martinez, M.:
Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites,
Earth Planet. Sc. Lett.,
286, 198–207, https://doi.org/10.1016/j.epsl.2009.06.027, 2009.
Dera, G., Brigaud, B., Monna, F., Laffont, R., Pucéat, E., Deconinck, J.-F., Pellenard, P., Joachimski, M. M., and Durlet, C.:
Climatic ups and downs in a disturbed Jurassic world,
Geology,
39, 215–218, https://doi.org/10.1130/G31579.1, 2011.
Disnar, J. R., Le Strat, P., Farjanel, G., and Fikri, A.:
Sédimentation de la matière organique dans le nord-est du Bassin de Paris: conséquences sur le dépôt des argilites carbonées du Toarcien inférieur (Organic matter sedimentation in the northeast of the Paris Basin: consequences on the deposition of the lower toarcian black shales),
Chem. Geol.,
131, 15–35, https://doi.org/10.1016/0009-2541(96)00021-6, 1996.
Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W. P., Sluijs, A., Schouten, S., and Pagani, M.:
Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures,
P. Natl. Acad. Sci. USA,
111, 6582–6587, https://doi.org/10.1073/pnas.1321441111, 2014.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.:
Revised carbonate-water isotopic temperature scale,
Geol. Soc. Am. Bull.,
64, 1315, https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2, 1953.
Erez, J. and Luz, B.:
Experimental paleotemperature equation for planktonic foraminifera,
Geochim. Cosmochim. Ac.,
47, 1025–1031, https://doi.org/10.1016/0016-7037(83)90232-6, 1983.
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., Valdes, P. J., and Affek, H. P.:
Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry,
P. Natl. Acad. Sci. USA,
115, 1174–1179, https://doi.org/10.1073/pnas.1714744115, 2018.
Fernandez, A., Korte, C., Ullmann, C. V., Looser, N., Wohlwend, S., and Bernasconi, S. M.:
Reconstructing the magnitude of Early Toarcian (Jurassic) warming using the reordered clumped isotope compositions of belemnites,
Geochim. Cosmochim. Ac.,
293, 308–327, https://doi.org/10.1016/j.gca.2020.10.005, 2021.
Frieling, J., Iakovleva, A. I., Reichart, G.-J., Aleksandrova, G. N., Gnibidenko, Z. N., Schouten, S., and Sluijs, A.:
Paleocene–Eocene warming and biotic response in the epicontinental West Siberian Sea,
Geology,
42, 767–770, https://doi.org/10.1130/G35724.1, 2014.
Grossman, E. L. and Ku, T.-L.:
Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects,
Chem. Geol.,
59, 59–74, https://doi.org/10.1016/0168-9622(86)90057-6, 1986.
Hemingway, J. D. and Henkes, G. A.:
A disordered kinetic model for clumped isotope bond reordering in carbonates,
Earth Planet. Sc. Lett.,
566, 116962, https://doi.org/10.1016/j.epsl.2021.116962, 2021.
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérez-Huerta, A., and Yancey, T. E.:
Temperature limits for preservation of primary calcite clumped isotope paleotemperatures,
Geochim. Cosmochim. Ac.,
139, 362–382, https://doi.org/10.1016/j.gca.2014.04.040, 2014.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Jenkyns, H. C. and Clayton, C. J.:
Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic,
Sedimentology,
33, 87–106, https://doi.org/10.1111/j.1365-3091.1986.tb00746.x, 1986.
Jenkyns, H. C., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J. S.: Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean, Clim. Past, 8, 215–226, https://doi.org/10.5194/cp-8-215-2012, 2012.
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D.:
Warm, not super-hot, temperatures in the early Eocene subtropics,
Geology,
39, 771–774, https://doi.org/10.1130/G32054.1, 2011.
Kerimov, V. Yu., Shcherbina, Yu. V., and Ivanov, A. A.:
Formation conditions and evolution of oil and gas source strata of the Laptev sea shelf ore and gas province,
Izvestiya Vysshikh Uchebnykh Zavedeniy. Geologiya i Razvedka,
3, 46–59, https://doi.org/10.32454/0016-7762-2020-63-3-46-59, 2020.
Killam, D. E. and Clapham, M. E.:
Identifying the ticks of bivalve shell clocks: seasonal growth in relation to temperature and food supply,
PALAIOS,
33, 228–236, https://doi.org/10.2110/palo.2017.072, 2018.
Kim, S.-T. and O'Neil, J. R.:
Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates,
Geochim. Cosmochim. Ac.,
61, 3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kim, S.-T., Mucci, A., and Taylor, B. E.:
Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 ∘C: Revisited,
Chem. Geol.,
246, 135–146, https://doi.org/10.1016/j.chemgeo.2007.08.005, 2007.
Krencker, F. N., Bodin, S., Hoffmann, R., Suan, G., Mattioli, E., Kabiri, L., Föllmi, K. B., and Immenhauser, A.:
The middle Toarcian cold snap: Trigger of mass extinction and carbonate factory demise,
Glob. Planet. Change,
15, 64–78, https://doi.org/10.1016/j.gloplacha.2014.03.008, 2014.
Laugié, M., Donnadieu, Y., Ladant, J.-B., Green, J. A. M., Bopp, L., and Raisson, F.: Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath, Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, 2020.
Li, X., Wang, J., Rasbury, T., Zhou, M., Wei, Z., and Zhang, C.: Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China, Clim. Past, 16, 2055–2074, https://doi.org/10.5194/cp-16-2055-2020, 2020.
Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A., Winguth, A., Loptson, C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes, P., and Winguth, C.: A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP, Clim. Past, 8, 1717–1736, https://doi.org/10.5194/cp-8-1717-2012, 2012.
Markwick, P. J.:
Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate,
Palaeogeogr. Palaeocl.,
137, 205–271, https://doi.org/10.1016/S0031-0182(97)00108-9, 1998.
McElwain, J. C., Wade-Murphy, J., and Hesselbo, S. P.:
Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals,
Nature,
435, 479–482, https://doi.org/10.1038/nature03618, 2005.
Meyer, K. W., Petersen, S. V., Lohmann, K. C., and Winkelstern, I. Z.:
Climate of the Late Cretaceous North American Gulf and Atlantic Coasts,
Cretaceous Res.,
89, 160–173, https://doi.org/10.1016/j.cretres.2018.03.017, 2018.
Nikitenko, B. L. and Mickey, M. B.:
Foraminifera and ostracodes across the Pliensbachian-Toarcian boundary in the Arctic Realm (stratigraphy, palaeobiogeography and biofacies),
Geological Society, London, Special Publications,
230, 137–174, https://doi.org/10.1144/GSL.SP.2004.230.01.08, 2004.
Nikitenko, B. L., Shurygin, B. N., Knyazev, V. G., Meledina, S. V., Dzyuba, O. S., Lebedeva, N. K., Peshchevitskaya, E. B., Glinskikh, L. A., Goryacheva, A. A., and Khafaeva, S. N.:
Jurassic and Cretaceous stratigraphy of the Anabar area (Arctic Siberia, Laptev Sea coast) and the Boreal zonal standard,
Russ. Geol. Geophys.+,
54, 808–837, https://doi.org/10.1016/j.rgg.2013.07.005, 2013.
Nooitgedacht, C. W., van der Lubbe, H. J. L., Ziegler, M., and Staudigel, P. T.: Internal water facilitates thermal resetting of clumped isotopes in biogenic aragonite, Geochem. Geophy. Geosy., 22, e2021GC009730, https://doi.org/10.1029/2021GC009730, 2021.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.:
Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes,
Earth-Sci. Rev.,
172, 224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
O'Connor, L. K., Robinson, S. A., Naafs, B. D. A., Jenkyns, H. C., Henson, S., Clarke, M., and Pancost, R. D.:
Late Cretaceous Temperature Evolution of the Southern High Latitudes: A TEX86 Perspective, Paleoceanography and Paleoclimatology, 34, 436–454, https://doi.org/10.1029/2018PA003546, 2019.
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Damste, J. S. S., and Dickens, G. R.:
Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum,
Nature,
442, 671–675, https://doi.org/10.1038/nature05043, 2006.
Peck, L. S., Colman, J. G., and Murray, A. W. A.:
Growth and tissue mass cycles in the infaunal bivalve Yoldia eightsi at Signy Island, Antarctica,
Polar Biol.,
23, 420–428, https://doi.org/10.1007/s003000050463, 2000.
Petersen, S. V., Dutton, A., and Lohmann, K. C.:
End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change,
Nat. Commun.,
7, 12079, https://doi.org/10.1038/ncomms12079, 2016a.
Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W., Carpenter, S. J., Erickson, J. M., Matsunaga, K. K. S., Smith, S. Y., and Sheldon, N. D.:
Temperature and salinity of the Late Cretaceous Western Interior Seaway,
Geology,
44, 903–906, https://doi.org/10.1130/G38311.1, 2016b.
Pouech, J., Amiot, R., Lécuyer, C., Mazin, J.-M., Martineau, F., and Fourel, F.:
Oxygen isotope composition of vertebrate phosphates from Cherves-de-Cognac (Berriasian, France): Environmental and ecological significance,
Palaeogeogr. Palaeocl.,
410, 290–299, https://doi.org/10.1016/j.palaeo.2014.05.036, 2014.
Price, G. D., Bajnai, D., and Fiebig, J.:
Carbonate clumped isotope evidence for latitudinal seawater temperature gradients and the oxygen isotope composition of Early Cretaceous seas,
Palaeogeogr. Palaeocl.,
552, 109777, https://doi.org/10.1016/j.palaeo.2020.109777, 2020.
Robinson, S. A., Ruhl, M., Astley, D. L., Naafs, B. D. A., Farnsworth, A. J., Bown, P. R., Jenkyns, H. C., Lunt, D. J., O'Brien, C., Pancost, R. D., and Markwick, P. J.:
Early Jurassic North Atlantic sea-surface temperatures from TEX86 palaeothermometry,
Sedimentology,
64, 215–230, https://doi.org/10.1111/sed.12321, 2017.
Roche, D. M., Donnadieu, Y., Pucéat, E., and Paillard, D.:
Effect of changes in δ18O content of the surface ocean on estimated sea surface temperatures in past warm climate,
Paleoceanography,
21, PA2023, https://doi.org/10.1029/2005PA001220, 2006.
Rogov, M. A., Zverkov, N. G., Zakharov, V. A., and Arkhangelsky, M. S.:
Marine Reptiles and Climates of the Jurassic and Cretaceous of Siberia,
Stratigr. Geol. Correl.,
27, 398–423, https://doi.org/10.1134/S0869593819040051, 2019.
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.:
Relation Between Long-Term Trends of Oxygen-18 Isotope Composition of Precipitation and Climate,
Science,
258, 981–985, https://doi.org/10.1126/science.258.5084.981, 1992.
Ruebsam, W., Reolid, M., Sabatino, N., Masetti, D., and Schwark, L.:
Molecular paleothermometry of the early Toarcian climate perturbation,
Glob. Planet. Change,
195, 103351, https://doi.org/10.1016/j.gloplacha.2020.103351, 2020.
Schöne, B. R.:
The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells,
Geo-Mar. Lett.,
28, 269–285, https://doi.org/10.1007/s00367-008-0114-6, 2008.
Shackleton, N. J. and Kennett, J. P.:
Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277,279, and 281,
Initial Reports of Deep Sea Drilling,
29, 743–756, 1975.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J. S. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and the Expedition 302 Scientists:
Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum,
Nature,
441, 610–613, https://doi.org/10.1038/nature04668, 2006.
Sluijs, A., Frieling, J., Inglis, G. N., Nierop, K. G. J., Peterse, F., Sangiorgi, F., and Schouten, S.: Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge, Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, 2020.
Stolper, D. A. and Eiler, J. M.:
The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples,
Am. J. Sci.,
315, 363–411, https://doi.org/10.2475/05.2015.01, 2015.
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L. V., Philippe, M., Reggiani, L., and Martineau, F.:
Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes, Earth Planet. Sc. Lett., 290, 448–458, https://doi.org/10.1016/j.epsl.2009.12.047, 2010.
Suan, G., Nikitenko, B. L., Rogov, M. A., Baudin, F., Spangenberg, J. E., Knyazev, V. G., Glinskikh, L. A., Goryacheva, A. A., Adatte, T., Riding, J. B., Föllmi, K. B., Pittet, B., Mattioli, E., and Lécuyer, C.:
Polar record of Early Jurassic massive carbon injection,
Earth Planet. Sc. Lett.,
312, 102–113, https://doi.org/10.1016/j.epsl.2011.09.050, 2011.
Suan, G., Popescu, S.-M., Suc, J.-P., Schnyder, J., Fauquette, S., Baudin, F., Yoon, D., Piepjohn, K., Sobolev, N. N., and Labrousse, L.:
Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene,
Geology,
45, 539–542, https://doi.org/10.1130/G38547.1, 2017.
Thierry, J.: Middle Toarcian map. 8, in: Altlas Peri-Tethys Palaeogeographical Maps, edited by: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F., Cadet, J. P, Crasquin, S., and Sandulescu, M., CCGM/CGMW, Paris, 61–70, 2000.
Thuy, B., Gale, A. S., and Reich, M.:
A new echinoderm Lagerstätte from the Pliensbachian (Early Jurassic) of the French Ardennes,
Swiss J. Palaeontol.,
130, 173–185, https://doi.org/10.1007/s13358-010-0015-y, 2011.
Tindall, J., Flecker, R., Valdes, P., Schmidt, D. N., Markwick, P., and Harris, J.:
Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: Implications for reconstructing early Eocene climate,
Earth Planet. Sc. Lett.,
292, 265–273, https://doi.org/10.1016/j.epsl.2009.12.049, 2010.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A., and Cocks, L. R. M.:
Phanerozoic polar wander, palaeogeography and dynamics,
Earth-Sci. Rev.,
114, 325–368, https://doi.org/10.1016/j.earscirev.2012.06.007, 2012.
Ullmann, C. V., Boyle, R., Duarte, L. V., Hesselbo, S. P., Kasemann, S. A., Klein, T., Lenton, T. M., Piazza, V., and Aberhan, M.:
Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods,
Sci. Rep.-UK,
10, 6549, https://doi.org/10.1038/s41598-020-63487-6, 2020.
van Baal, R. R., Janssen, R., van der Lubbe, H. J. L., Schulp, A. S., Jagt, J. W. M., and Vonhof, H. B.:
Oxygen and carbon stable isotope records of marine vertebrates from the type Maastrichtian, The Netherlands and northeast Belgium (Late Cretaceous),
Palaeogeogr. Palaeocl.,
392, 71–78, https://doi.org/10.1016/j.palaeo.2013.08.020, 2013.
van Dijk, J., Fernandez, A., Bernasconi, S. M., Caves Rugenstein, J. K., Passey, S. R., and White, T.:
Spatial pattern of super-greenhouse warmth controlled by elevated specific humidity,
Nat. Geosci.,
13, 739–744, https://doi.org/10.1038/s41561-020-00648-2, 2020.
van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.:
A Paleolatitude Calculator for Paleoclimate Studies,
PLoS ONE, 10,
e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Vickers, M. L., Bajnai, D., Price, G. D., Linckens, J., and Fiebig, J.:
Southern high-latitude warmth during the Jurassic–Cretaceous: New evidence from clumped isotope thermometry, Geology, 47, 724–728, https://doi.org/10.1130/G46263.1, 2019.
Vickers, M. L., Fernandez, A., Hesselbo, S. P., Price, G. D., Bernasconi, S. M., Lode, S., Ullmann, C. V., Thibault, N., Hougaard, I. W., and Korte, C.:
Unravelling Middle to Late Jurassic palaeoceanographic and palaeoclimatic signals in the Hebrides Basin using belemnite clumped isotope thermometry,
Earth Planet. Sc. Lett., 546, 116401, https://doi.org/10.1016/j.epsl.2020.116401, 2020.
Vickers, M. L., Bernasconi, S. M., Ullmann, C. V., Lode, S., Looser, N., Morales, L. G., Price, G. D., Wilby, P. R., Hougård, I. W., Hesselbo, S. P., and Korte, C.:
Marine temperatures underestimated for past greenhouse climate,
Sci. Rep.-UK,
11, 19109, https://doi.org/10.1038/s41598-021-98528-1, 2021.
Vihtakari, M., Renaud, P. E., Clarke, L. J., Whitehouse, M. J., Hop, H., Carroll, M. L., and Ambrose, W. G.:
Decoding the oxygen isotope signal for seasonal growth patterns in Arctic bivalves,
Palaeogeogr. Palaeocl.,
446, 263–283, https://doi.org/10.1016/j.palaeo.2016.01.008, 2016.
Waterlot, G., Bonte, A., and Destombes, J.-P.:
Carte géologique de la France à 1:50 000, [68],
Renwez, France, 1960.
Wierzbowski, H., Bajnai, D., Wacker, U., Rogov, M. A., Fiebig, J., and Tesakova, E. M.:
Clumped isotope record of salinity variations in the Subboreal Province at the Middle–Late Jurassic transition,
Glob. Planet. Change,
167, 172–189, https://doi.org/10.1016/j.gloplacha.2018.05.014, 2018.
Zakharov, V. A. and Shurygin, B. N.:
Biogeography, facies and stratigraphy of the Middle Jurassic of Soviet Arctic (by bivalve molluscs),
Transactions of the Institute of Geology and Geophysics, Siberian Branch of the Academy of Science of USSR,
352, 1–206, 1978.
Zardus, J. D.:
Protobranch bivalves,
Ad. Mar. Biol.,
42, 1–65, https://doi.org/10.1016/S0065-2881(02)42012-3, 2002.
Zhou, J., Poulsen, C. J., Pollard, D., and White, T. S.: Simulation of modern and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model: Modern, mid-Cretaceous seawater δ18O, Paleoceanography, 23, PA3223, https://doi.org/10.1029/2008PA001596, 2008.
Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., and Noone, D. C.:
Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction,
Earth Planet. Sc. Lett.,
537, 116164, https://doi.org/10.1016/j.epsl.2020.116164, 2020.
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine...