Articles | Volume 18, issue 2
https://doi.org/10.5194/cp-18-293-2022
https://doi.org/10.5194/cp-18-293-2022
Research article
 | 
15 Feb 2022
Research article |  | 15 Feb 2022

Late Pleistocene glacial chronologies and paleoclimate in the northern Rocky Mountains

Brendon J. Quirk, Elizabeth Huss, Benjamin J. C. Laabs​​​​​​​, Eric Leonard, Joseph Licciardi, Mitchell A. Plummer, and Marc W. Caffee

Related authors

The protocataclasite dilemma: in situ 36Cl and REE-Y lessons from an impure limestone fault scarp at Sparta, Greece
Bradley W. Goodfellow, Marc W. Caffee, Greg Chmiel, Ruben Fritzon, Alasdair Skelton, and Arjen P. Stroeven
Solid Earth, 15, 1343–1363, https://doi.org/10.5194/se-15-1343-2024,https://doi.org/10.5194/se-15-1343-2024, 2024
Short summary
Late Quaternary glacial maxima in southern Patagonia: insights from the Lago Argentino glacier lobe
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024,https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Global analysis of in situ cosmogenic 26Al/10Be ratios in fluvial sediments indicates widespread sediment storage and burial during transport
Christopher Halsted, Paul Bierman, Alexandru Codilean, Lee Corbett, and Marc Caffee
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-22,https://doi.org/10.5194/gchron-2024-22, 2024
Revised manuscript under review for GChron
Short summary
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024,https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
In situ Cosmogenic 10Be and 26Al in Deglacial Sediment Reveals Interglacial Exposure, Burial, and Limited Erosion Under the Quebec-Labrador Ice Dome
Peyton M. Cavnar, Paul R. Bierman, Jeremy D. Shakun, Lee B. Corbett, Danielle LeBlanc, Gillian L. Galford, and Marc Caffee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2233,https://doi.org/10.5194/egusphere-2024-2233, 2024
Short summary

Related subject area

Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Pleistocene
The climate and vegetation of Europe, northern Africa, and the Middle East during the Last Glacial Maximum (21 000 yr BP) based on pollen data
Basil A. S. Davis, Marc Fasel, Jed O. Kaplan, Emmanuele Russo, and Ariane Burke
Clim. Past, 20, 1939–1988, https://doi.org/10.5194/cp-20-1939-2024,https://doi.org/10.5194/cp-20-1939-2024, 2024
Short summary
Improving the age constraints on the archeological record in Scladina Cave (Belgium): new speleothem U-Th ages and paleoclimatological data
Hubert Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kevin Di Modica, Gregory Abrams, Marjan van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen van der Lubbe
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-27,https://doi.org/10.5194/cp-2024-27, 2024
Revised manuscript accepted for CP
Short summary
Climate changes during the Late Glacial in southern Europe: new insights based on pollen and brGDGTs of Lake Matese in Italy
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023,https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021,https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Younger Dryas ice margin retreat in Greenland: new evidence from southwestern Greenland
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021,https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary

Cited articles

Alden, W. C.: Physiography and glacial geology of eastern Montana and adjacent areas, US Government Printing Office, https://doi.org/10.3133/pp174, 1932. 
Balco, G.: Glacier change and paleoclimate applications of cosmogenic-nuclide exposure dating, Annu. Rev. Earth Pl. Sc., 48, 21–48, 2020. 
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, 2008. 
Bartlein, P. J., Anderson, K. H., Anderson, P., Edwards, M., Mock, C., Thompson, R. S., Webb, R. S., Webb III, T., and Whitlock, C.: Paleoclimate simulations for North America over the past 21 000 years: features of the simulated climate and comparisons with paleoenvironmental data, Quaternary Sci. Rev., 17, 549–585, 1998. 
Birkel, S. D., Putnam, A. E., Denton, G. H., Koons, P. O., Fastook, J. L., Putnam, D. E., and Maasch, K. A.: Climate inferences from a glaciological reconstruction of the late Pleistocene Wind River ice cap, Wind River Range, Wyoming, Arct. Antarct. Alp. Res., 44, 265–276, 2012. 
Download
Short summary
Glaciers in the northern Rocky Mountains began retreating 17 000 to 18 000 years ago, after the end of the most recent global ice volume maxima. Climate in the region during this time was likely 10 to 8.5° colder than modern with less than or equal to present amounts of precipitation. Glaciers across the Rockies began retreating at different times but eventually exhibited similar patterns of retreat, suggesting a common mechanism influencing deglaciation.