Bryan, K.: Poleward heat transport by the ocean: observations and models,
Annu. Rev. Earth Planet. Sci., 10, 15, 1982. a
Chidichimo, M. P., Donohue, K. A., Watts, D. R., and Tracey, K. L.: Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage, J. Phys. Oceanogr., 44, 1829–1853, 2014. a
Daru, V. and Tenaud, C.: High order one-step monotonicity-preserving schemes
for unsteady compressible flow calculations, J. Comput. Phys., 193, 563–594, 2004. a
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V., Benson, R., Dixon, K., Griffies, S. M., Lee, H. C., Pacanowski, R. C., and Vecchi, G. A.: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model, J. Climate, 25, 2755–2781, 2012.
a,
b
Donohue, K., Tracey, K., Watts, D., Chidichimo, M. P., and Chereskin, T.: Mean antarctic circumpolar current transport measured in drake passage,
Geophys. Res. Lett., 43, 11–760, 2016. a
Gille, S. T.: The Southern Ocean momentum balance: Evidence for topographic
effects from numerical model output and altimeter data, J. Phys. Oceanogr., 27, 2219–2232, 1997. a
Grezio, A., Wells, N., Ivchenko, V., and De Cuevas, B.: Dynamical budgets of
the Antarctic Circumpolar Current using ocean general-circulation models, Q. J. Roy. Meteorol. Soc., 131, 833–860, 2005. a
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103, 2013. a
Hallberg, R. and Gnanadesikan, A.: An exploration of the role of transient
eddies in determining the transport of a zonally reentrant current, J. Phys. Oceanogr., 31, 3312–3330, 2001. a
Haney, R. L.: Surface thermal boundary condition for ocean circulation models, J. Phys. Oceanogr, 1, 241–248, 1971. a
Hill, D. J., Haywood, A. M., Valdes, P. J., Francis, J. E., Lunt, D. J., Wade, B. S., and Bowman, V. C.: Paleogeographic controls on the onset of the
Antarctic circumpolar current, Geophys. Res. Lett., 40, 5199–5204, 2013.
a,
b,
c,
d
Hochmuth, K., Gohl, K., Leitchenkov, G., Sauermilch, I., Whittaker, J. M.,
Uenzelmann-Neben, G., Davy, B., and De Santis, L.: The evolving paleobathymetry of the circum-Antarctic Southern Ocean since 34 Ma: a key to
understanding past cryosphere-ocean developments, Geochem. Geophy. Geosy., 21, e2020GC009122,
https://doi.org/10.1029/2020GC009122, 2020.
a,
b,
c
Huber, M. and Nof, D.: The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene, Palaeogeogr. Palaeocl., 231, 9–28, 2006.
a,
b
Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A.,
Warnaar, J., Schellenberg, S. A., and Williams, G. L.: Eocene circulation of
the Southern Ocean: Was Antarctica kept warm by subtropical waters?,
Paleoceanography, 19, PA4026,
https://doi.org/10.1029/2004PA001014, 2004.
a,
b,
c,
d,
e,
f
Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810,
https://doi.org/10.5194/cp-14-789-2018, 2018.
a,
b,
c,
d,
e
Johnson, G. C. and Bryden, H. L.: On the size of the Antarctic Circumpolar
Current, Deep-Sea Res. Pt. A, 36, 39–53, 1989.
a,
b
Johnson, J. and Hill, R.: A three-dimensional model of the Southern Ocean with bottom topography, in: Deep Sea Research and Oceanographic Abstracts,
vol. 22, Elsevier, 745–751,
https://doi.org/10.1016/0011-7471(75)90079-0, 1975.
a
Kennedy, A. T., Farnsworth, A., Lunt, D., Lear, C. H., and Markwick, P.:
Atmospheric and oceanic impacts of Antarctic glaciation across the
Eocene–Oligocene transition, Philos. T. Roy. Soc. A, 373, 20140419,
https://doi.org/10.1098/rsta.2014.0419, 2015.
a,
b
Kennett, J. P.: Cenozoic evolution of Antarctic glaciation, the
circum-Antarctic Ocean, and their impact on global paleoceanography, J. Geophys. Res., 82, 3843–3860, 1977.
a,
b,
c,
d
Koenig, Z., Provost, C., Ferrari, R., Sennéchael, N., and Rio, M.-H.: Volume transport of the Antarctic Circumpolar Current: Production and validation of a 20 year long time series obtained from in situ and satellite observations, J. Geophys. Res.-Oceans, 119, 5407–5433,
https://doi.org/10.1002/2014JC009966, 2014.
a
Lacasce, J. H., Escartin, J., Chassignet, E. P., and Xu, X.: Jet instability
over smooth, corrugated, and realistic bathymetry, J. Phys. Oceanogr., 49, 585–605, 2019. a
Livermore, R., Hillenbrand, C.-D., Meredith, M., and Eagles, G.: Drake Passage and Cenozoic climate: an open and shut case?, Geochem. Geophy. Geosy., 8, Q01005,
https://doi.org/10.1029/2005GC001224, 2007.
a
Lyle, M., Gibbs, S., Moore, T. C., and Rea, D. K.: Late Oligocene initiation of the Antarctic circumpolar current: evidence from the South Pacific, Geology, 35, 691–694, 2007. a
Marshall, D.: Topographic steering of the Antarctic circumpolar current, J. Phys. Oceanogr., 25, 1636–1650, 1995. a
Marshall, D. P., Ambaum, M. H., Maddison, J. R., Munday, D. R., and Novak, L.: Eddy saturation and frictional control of the Antarctic Circumpolar Current, Geophys. Res. Lett., 44, 286–292, 2017. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766, 1997a. a
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic,
quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res.-Oceans, 102, 5733–5752, 1997b. a
Masich, J., Chereskin, T. K., and Mazloff, M. R.: Topographic form stress in
the Southern Ocean State Estimate, J. Geophys. Res.-Oceans, 120, 7919–7933, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Mueller, R. D.: Global plate boundary evolution and kinematics since the late Paleozoic, Global Planet. Change, 146, 226–250, 2016.
a,
b,
c
Mazloff, M. R., Heimbach, P., and Wunsch, C.: An eddy-permitting Southern
Ocean State Estimate, J. Phys. Oceanogr., 40, 880–899,
https://doi.org/10.1175/2009JPO4236.1, 2010.
a
Mecking, J., Drijfhout, S. S., Jackson, L. C., and Graham, T.: Stable AMOC off state in an eddy-permitting coupled climate model, Clim. Dynam., 47,
2455–2470, 2016. a
Megann, A.: Estimating the numerical diapycnal mixing in an eddy-permitting
ocean model, Ocean Model., 121, 19–33, 2018. a
Meredith, M. P., Woodworth, P. L., Chereskin, T. K., Marshall, D. P., Allison, L. C., Bigg, G. R., Donohue, K., Heywood, K. J., Hughes, C. W., Hibbert, A., and Hogg, A. M.: Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities, Rev. Geophys., 49, RG4005,
https://doi.org/10.1029/2010RG000348, 2011.
a,
b
Munday, D., Johnson, H., and Marshall, D.: The role of ocean gateways in the
dynamics and sensitivity to wind stress of the early Antarctic Circumpolar
Current, Paleoceanography, 30, 284–302, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Munday, D. R., Johnson, H. L., and Marshall, D. P.: Eddy saturation of
equilibrated circumpolar currents, J. Phys. Oceanogr., 43, 507–532, 2013.
a,
b
Munday, D. R., Zhai, X., Harle, J., Coward, A. C., and Nurser, A. G.: Relative vs. absolute wind stress in a circumpolar model of the Southern Ocean, Ocean Model., 168, 101891,
https://doi.org/10.1016/j.ocemod.2021.101891, 2021.
a
Munk, W. H.: On the wind-driven ocean circulation, J. Atmos. Sci., 7, 80–93, 1950. a
Murphy, M. G. and Kennett, J. P.: Development of latitudinal thermal gradients during the Oligocene: Oxygen isotope evidence from the southwest Pacific, in: Initial Reports of the Deep Sea Drilling Project 90, US Govt. Printing Office, Washington, 1347–1360,
https://doi.org/10.2973/dsdp.proc.90.140.1986, 1986.
a
Olbers, D.: Comments on “On the obscurantist physics of `form drag' in
theorizing about the Circumpolar Current”, J. Phys. Oceanogr., 28, 1647–1654, 1998. a
Sauermilch, I., Whittaker, J. M., Klocker, A., Munday, D. R., Hochmuth, K.,
Bijl, P. K., and LaCasce, J. H.: Gateway-driven weakening of ocean gyres leads to Southern Ocean cooling, Nat. Commun., 12, 1–8, 2021.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t,
u,
v,
w,
x,
y
Scher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Kordesch, W. E., and Delaney, M. L.: Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies, Nature, 523, 580–583, 2015.
a,
b,
c,
d,
e,
f,
g,
h
Sijp, W. P. and England, M. H.: Effect of the Drake Passage throughflow on
global climate, J. Phys. Oceanogr., 34, 1254–1266, 2004.
a,
b
Sijp, W. P., England, M. H., and Huber, M.: Effect of the deepening of the
Tasman Gateway on the global ocean, Paleoceanography, 26, PA4207,
https://doi.org/10.1029/2011PA002143, 2011.
a,
b,
c
Spence, P., Saenko, O. A., Dufour, C. O., Le Sommer, J., and England, M. H.:
Mechanisms maintaining Southern Ocean meridional heat transport under projected wind forcing, J. Phys. Oceanogr., 42, 1923–1931, 2012. a
Steckler, M. and Watts, A.: Subsidence of the Atlantic-type continental margin off New York, Earth Planet. Sc. Lett., 41, 1–13, 1978. a
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L.: Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography, 19, PA4026,
https://doi.org/10.1029/2004PA001022, 2004.
a,
b,
c,
d
Stommel, H.: The westward intensification of wind-driven ocean currents, Eos
Trans. Am. Geophys. Union, 29, 202–206, 1948. a
Straub, D. N.: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current, J. Phys. Oceanogr., 23, 776–782, 1993. a
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B., and Gaina, C.: Global plate motion frames: toward a unified model, Rev. Geophys., 46, RG3004,
https://doi.org/10.1029/2007RG000227, 2008.
a
van de Lagemaat, S. H., Swart, M. L., Vaes, B., Kosters, M. E., Boschman, L. M., Burton-Johnson, A., Bijl, P. K., Spakman, W., and Van Hinsbergen, D. J.: Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?, Earth-Sci. Rev., 215, 103551,
https://doi.org/10.1016/j.earscirev.2021.103551, 2021.
a
van Hinsbergen, D. J., De Groot, L. V., van Schaik, S. J., Spakman, W., Bijl,
P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude
calculator for paleoclimate studies, PloS One, 10, e0126946,
https://doi.org/10.1371/journal.pone.0126946, 2015.
a,
b,
c
Viebahn, J. P., von der Heydt, A. S., Le Bars, D., and Dijkstra, H. A.: Effects of Drake Passage on a strongly eddying global ocean, Paleoceanography, 31, 564–581, 2016. a
Ward, M. L. and Hogg, A. M.: Establishment of momentum balance by form stress
in a wind-driven channel, Ocean Model., 40, 133–146, 2011.
a,
b,
c
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345, 2015. a
Zhai, X. and Munday, D. R.: Sensitivity of Southern Ocean overturning to wind
stress changes: Role of surface restoring time scales, Ocean Model., 84,
12–25, 2014.
a,
b