Articles | Volume 18, issue 12
https://doi.org/10.5194/cp-18-2669-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2669-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The sensitivity of the Eocene–Oligocene Southern Ocean to the strength and position of wind stress
Qianjiang Xing
CORRESPONDING AUTHOR
CSIRO‐UTAS Quantitative Marine Sciences PhD Program, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
David Munday
British Antarctic Survey, Cambridge, UK
Andreas Klocker
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Isabel Sauermilch
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Joanne Whittaker
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Related authors
No articles found.
Thomas Wilder, Xiaoming Zhai, David Munday, and Manoj Joshi
Ocean Sci., 19, 1669–1686, https://doi.org/10.5194/os-19-1669-2023, https://doi.org/10.5194/os-19-1669-2023, 2023
Short summary
Short summary
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Rachel Furner, Peter Haynes, Dave Munday, Brooks Paige, Daniel C. Jones, and Emily Shuckburgh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-132, https://doi.org/10.5194/gmd-2021-132, 2021
Revised manuscript not accepted
Short summary
Short summary
Traditional weather & climate models are built from physics-based equations, while data-driven models are built from patterns found in datasets using Machine Learning or statistics. There is growing interest in using data-driven models for weather & climate prediction, but confidence in their use depends on understanding the patterns they're finding. We look at this with a simple regression model of ocean temperature and see the patterns found by the regression model are similar to the physics.
M. Hosseinpour, R. D. Müller, S. E. Williams, and J. M. Whittaker
Solid Earth, 4, 461–479, https://doi.org/10.5194/se-4-461-2013, https://doi.org/10.5194/se-4-461-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Cenozoic
Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean
Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model
Yurui Zhang, Thierry Huck, Camille Lique, Yannick Donnadieu, Jean-Baptiste Ladant, Marina Rabineau, and Daniel Aslanian
Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, https://doi.org/10.5194/cp-16-1263-2020, 2020
Short summary
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
R. P. M. Topper and P. Th. Meijer
Clim. Past, 11, 233–251, https://doi.org/10.5194/cp-11-233-2015, https://doi.org/10.5194/cp-11-233-2015, 2015
Cited articles
Baatsen, M., van Hinsbergen, D. J. J., von der Heydt, A. S., Dijkstra, H. A., Sluijs, A., Abels, H. A., and Bijl, P. K.: Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic, Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, 2016. a, b
Baatsen, M., von der Heydt, A., Kliphuis, M., Viebahn, J., and Dijkstra, H.:
Multiple states in the late Eocene ocean circulation, Global Planet. Change, 163, 18–28, 2018. a
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020. a, b, c
Barker, P. and Thomas, E.: Origin, signature and palaeoclimatic influence of
the Antarctic Circumpolar Current, Earth-Sci. Rev., 66, 143–162, 2004. a
Bryan, K.: Poleward heat transport by the ocean: observations and models,
Annu. Rev. Earth Planet. Sci., 10, 15, 1982. a
Chidichimo, M. P., Donohue, K. A., Watts, D. R., and Tracey, K. L.: Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage, J. Phys. Oceanogr., 44, 1829–1853, 2014. a
Daru, V. and Tenaud, C.: High order one-step monotonicity-preserving schemes
for unsteady compressible flow calculations, J. Comput. Phys., 193, 563–594, 2004. a
Donohue, K., Tracey, K., Watts, D., Chidichimo, M. P., and Chereskin, T.: Mean antarctic circumpolar current transport measured in drake passage,
Geophys. Res. Lett., 43, 11–760, 2016. a
Gille, S. T.: The Southern Ocean momentum balance: Evidence for topographic
effects from numerical model output and altimeter data, J. Phys. Oceanogr., 27, 2219–2232, 1997. a
Grezio, A., Wells, N., Ivchenko, V., and De Cuevas, B.: Dynamical budgets of
the Antarctic Circumpolar Current using ocean general-circulation models, Q. J. Roy. Meteorol. Soc., 131, 833–860, 2005. a
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103, 2013. a
Hallberg, R. and Gnanadesikan, A.: An exploration of the role of transient
eddies in determining the transport of a zonally reentrant current, J. Phys. Oceanogr., 31, 3312–3330, 2001. a
Haney, R. L.: Surface thermal boundary condition for ocean circulation models, J. Phys. Oceanogr, 1, 241–248, 1971. a
Hochmuth, K., Gohl, K., Leitchenkov, G., Sauermilch, I., Whittaker, J. M.,
Uenzelmann-Neben, G., Davy, B., and De Santis, L.: The evolving paleobathymetry of the circum-Antarctic Southern Ocean since 34 Ma: a key to
understanding past cryosphere-ocean developments, Geochem. Geophy. Geosy., 21, e2020GC009122, https://doi.org/10.1029/2020GC009122, 2020. a, b, c
Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A.,
Warnaar, J., Schellenberg, S. A., and Williams, G. L.: Eocene circulation of
the Southern Ocean: Was Antarctica kept warm by subtropical waters?,
Paleoceanography, 19, PA4026, https://doi.org/10.1029/2004PA001014, 2004. a, b, c, d, e, f
Johnson, J. and Hill, R.: A three-dimensional model of the Southern Ocean with bottom topography, in: Deep Sea Research and Oceanographic Abstracts,
vol. 22, Elsevier, 745–751, https://doi.org/10.1016/0011-7471(75)90079-0, 1975. a
Kennedy, A. T., Farnsworth, A., Lunt, D., Lear, C. H., and Markwick, P.:
Atmospheric and oceanic impacts of Antarctic glaciation across the
Eocene–Oligocene transition, Philos. T. Roy. Soc. A, 373, 20140419, https://doi.org/10.1098/rsta.2014.0419, 2015. a, b
Koenig, Z., Provost, C., Ferrari, R., Sennéchael, N., and Rio, M.-H.: Volume transport of the Antarctic Circumpolar Current: Production and validation of a 20 year long time series obtained from in situ and satellite observations, J. Geophys. Res.-Oceans, 119, 5407–5433, https://doi.org/10.1002/2014JC009966, 2014. a
LaCasce, J. H.: The prevalence of oceanic surface modes, Geophys. Res. Lett., 44, 11097–11105., https://doi.org/10.1002/2017GL075430, 2017. a
Lacasce, J. H., Escartin, J., Chassignet, E. P., and Xu, X.: Jet instability
over smooth, corrugated, and realistic bathymetry, J. Phys. Oceanogr., 49, 585–605, 2019. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, 1994. a
Livermore, R., Hillenbrand, C.-D., Meredith, M., and Eagles, G.: Drake Passage and Cenozoic climate: an open and shut case?, Geochem. Geophy. Geosy., 8, Q01005, https://doi.org/10.1029/2005GC001224, 2007. a
Lyle, M., Gibbs, S., Moore, T. C., and Rea, D. K.: Late Oligocene initiation of the Antarctic circumpolar current: evidence from the South Pacific, Geology, 35, 691–694, 2007. a
Marshall, D.: Topographic steering of the Antarctic circumpolar current, J. Phys. Oceanogr., 25, 1636–1650, 1995. a
Marshall, D. P., Ambaum, M. H., Maddison, J. R., Munday, D. R., and Novak, L.: Eddy saturation and frictional control of the Antarctic Circumpolar Current, Geophys. Res. Lett., 44, 286–292, 2017. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766, 1997a. a
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic,
quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res.-Oceans, 102, 5733–5752, 1997b. a
Mazloff, M. R., Heimbach, P., and Wunsch, C.: An eddy-permitting Southern
Ocean State Estimate, J. Phys. Oceanogr., 40, 880–899, https://doi.org/10.1175/2009JPO4236.1, 2010. a
Mecking, J., Drijfhout, S. S., Jackson, L. C., and Graham, T.: Stable AMOC off state in an eddy-permitting coupled climate model, Clim. Dynam., 47,
2455–2470, 2016. a
Megann, A.: Estimating the numerical diapycnal mixing in an eddy-permitting
ocean model, Ocean Model., 121, 19–33, 2018. a
Meredith, M. P., Woodworth, P. L., Chereskin, T. K., Marshall, D. P., Allison, L. C., Bigg, G. R., Donohue, K., Heywood, K. J., Hughes, C. W., Hibbert, A., and Hogg, A. M.: Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities, Rev. Geophys., 49, RG4005, https://doi.org/10.1029/2010RG000348, 2011. a, b
Munday, D. R., Zhai, X., Harle, J., Coward, A. C., and Nurser, A. G.: Relative vs. absolute wind stress in a circumpolar model of the Southern Ocean, Ocean Model., 168, 101891, https://doi.org/10.1016/j.ocemod.2021.101891, 2021. a
Munk, W. H.: On the wind-driven ocean circulation, J. Atmos. Sci., 7, 80–93, 1950. a
Munk, W. H. and Palmén, E.: Note on the dynamics of the antarctic
circumpolar current 1, Tellus, 3, 53–55, 1951. a
Murphy, M. G. and Kennett, J. P.: Development of latitudinal thermal gradients during the Oligocene: Oxygen isotope evidence from the southwest Pacific, in: Initial Reports of the Deep Sea Drilling Project 90, US Govt. Printing Office, Washington, 1347–1360, https://doi.org/10.2973/dsdp.proc.90.140.1986, 1986. a
Olbers, D.: Comments on “On the obscurantist physics of `form drag' in
theorizing about the Circumpolar Current”, J. Phys. Oceanogr., 28, 1647–1654, 1998. a
Parsons, B. and Sclater, J. G.: An analysis of the variation of ocean floor
bathymetry and heat flow with age, J. Geophys. Res., 82, 803–827, 1977. a
Royer, J.-Y. and Rollet, N.: Plate-tectonic setting of the Tasmanian region,
Aust. J. Earth Sci., 44, 543–560, 1997. a
Scher, H. D. and Martin, E. E.: Timing and climatic consequences of the opening of Drake Passage, Science, 312, 428–430, 2006. a
Sijp, W. P., England, M. H., and Huber, M.: Effect of the deepening of the
Tasman Gateway on the global ocean, Paleoceanography, 26, PA4207, https://doi.org/10.1029/2011PA002143, 2011. a, b, c
Spence, P., Saenko, O. A., Dufour, C. O., Le Sommer, J., and England, M. H.:
Mechanisms maintaining Southern Ocean meridional heat transport under projected wind forcing, J. Phys. Oceanogr., 42, 1923–1931, 2012. a
Steckler, M. and Watts, A.: Subsidence of the Atlantic-type continental margin off New York, Earth Planet. Sc. Lett., 41, 1–13, 1978. a
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L.: Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography, 19, PA4026, https://doi.org/10.1029/2004PA001022, 2004. a, b, c, d
Stommel, H.: The westward intensification of wind-driven ocean currents, Eos
Trans. Am. Geophys. Union, 29, 202–206, 1948. a
Straub, D. N.: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current, J. Phys. Oceanogr., 23, 776–782, 1993. a
Tansley, C. E. and Marshall, D. P.: On the dynamics of wind-driven circumpolar currents, J. Phys. Oceanogr., 31, 3258–3273, 2001. a
Toggweiler, J. and Bjornsson, H.: Drake Passage and palaeoclimate, J. Quatern. Sci., 15, 319–328, 2000. a
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B., and Gaina, C.: Global plate motion frames: toward a unified model, Rev. Geophys., 46, RG3004, https://doi.org/10.1029/2007RG000227, 2008. a
van de Lagemaat, S. H., Swart, M. L., Vaes, B., Kosters, M. E., Boschman, L. M., Burton-Johnson, A., Bijl, P. K., Spakman, W., and Van Hinsbergen, D. J.: Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?, Earth-Sci. Rev., 215, 103551, https://doi.org/10.1016/j.earscirev.2021.103551, 2021. a
van Hinsbergen, D. J., De Groot, L. V., van Schaik, S. J., Spakman, W., Bijl,
P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude
calculator for paleoclimate studies, PloS One, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015. a, b, c
Viebahn, J. P., von der Heydt, A. S., Le Bars, D., and Dijkstra, H. A.: Effects of Drake Passage on a strongly eddying global ocean, Paleoceanography, 31, 564–581, 2016. a
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345, 2015. a
Short summary
A high-resolution ocean model and realistic paleo-bathymetry are applied to obtain accurate simulation results. We firstly propose that the alignment of the maximum wind stress with a deep Tasmanian Gateway and Drake Passage is a trigger for the proto-Antarctic Circumpolar Current (proto-ACC) and the cooling of the Eocene Southern Ocean. We use zonal momentum budget analysis to explore the nature of the proto-ACC and the sensitivity of its transport through gateways to doubled wind stress.
A high-resolution ocean model and realistic paleo-bathymetry are applied to obtain accurate...