Articles | Volume 18, issue 11
https://doi.org/10.5194/cp-18-2483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Leeuwin Current dynamics over the last 60 kyr – relation to Australian ecosystem and Southern Ocean change
Dirk Nürnberg
CORRESPONDING AUTHOR
Ocean Circulation and Climate Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
Akintunde Kayode
Ocean Circulation and Climate Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
Karl J. F. Meier
Institute of Earth Science, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
Cyrus Karas
Departamento de Ingeniería Geoespacial y Ambiental, Universidad de Santiago de Chile, Av. Bernardo O'Higgins 3363,
Santiago, Chile
Related authors
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Millenial/D-O
Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis
Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate
Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr
Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events
Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka)
Stratification of surface waters during the last glacial millennial climatic events: a key factor in subsurface and deep-water mass dynamics
Parallelisms between sea surface temperature changes in the western tropical Atlantic (Guiana Basin) and high latitude climate signals over the last 140 000 years
Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1
Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg / Ca and stable carbon and oxygen isotopes of benthic foraminifera
Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C)
Millennial meridional dynamics of the Indo-Pacific Warm Pool during the last termination
Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation
Persistent millennial-scale link between Greenland climate and northern Pacific Oxygen Minimum Zone under interglacial conditions
Deglacial intermediate water reorganization: new evidence from the Indian Ocean
Water mass evolution of the Greenland Sea since late glacial times
Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr
An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway
Timing and magnitude of equatorial Atlantic surface warming during the last glacial bipolar oscillation
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
M. Wary, F. Eynaud, M. Sabine, S. Zaragosi, L. Rossignol, B. Malaizé, E. Palis, J. Zumaque, C. Caulle, A. Penaud, E. Michel, and K. Charlier
Clim. Past, 11, 1507–1525, https://doi.org/10.5194/cp-11-1507-2015, https://doi.org/10.5194/cp-11-1507-2015, 2015
Short summary
Short summary
This study reports the hydrological variations recorded at different depths of the water column SW of the Faeroe Is. during the last glacial abrupt climatic events (Heinrich events and Dansgaard-Oeschger cycles). Our combined multiproxy and high-resolution approach allows us to evidence that 1) Greenland and Heinrich stadials were characterized by strong stratification of surface waters, 2) this surface stratification seems to have played a key role in the dynamics of the underlying water masses
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
Y. Kubota, K. Kimoto, T. Itaki, Y. Yokoyama, Y. Miyairi, and H. Matsuzaki
Clim. Past, 11, 803–824, https://doi.org/10.5194/cp-11-803-2015, https://doi.org/10.5194/cp-11-803-2015, 2015
A. Schmittner and D. C. Lund
Clim. Past, 11, 135–152, https://doi.org/10.5194/cp-11-135-2015, https://doi.org/10.5194/cp-11-135-2015, 2015
Short summary
Short summary
Model simulations of carbon isotope changes as a result of a reduction in the Atlantic Meridional Overturning Circulation (AMOC) agree well with sediment data from the early last deglaciation, supporting the idea that the AMOC was substantially reduced during that time period of global warming. We hypothesize, and present supporting evidence, that changes in the AMOC may have caused the coeval rise in atmospheric CO2, owing to a reduction in the efficiency of the ocean's biological pump.
L. Lo, C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai
Clim. Past, 10, 2253–2261, https://doi.org/10.5194/cp-10-2253-2014, https://doi.org/10.5194/cp-10-2253-2014, 2014
Short summary
Short summary
1. We have reconstructed new meridional thermal and precipitation stacked records in the Indo-Pacific Warm Pool (IPWP) during the last termination.
2. Meridional thermal gradient variations in the IPWP show tight links to the Northern Hemisphere millennial timescales event.
3. Anomalous warming in the south IPWP region could induce the southward shifting of the Intertropical Convergence Zone (ITCZ) in the IPWP during the Heinrich 1 and Younger Dryas events.
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
S. Romahn, A. Mackensen, J. Groeneveld, and J. Pätzold
Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, https://doi.org/10.5194/cp-10-293-2014, 2014
M. M. Telesiński, R. F. Spielhagen, and H. A. Bauch
Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, https://doi.org/10.5194/cp-10-123-2014, 2014
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
S. Weldeab
Clim. Past, 8, 1705–1716, https://doi.org/10.5194/cp-8-1705-2012, https://doi.org/10.5194/cp-8-1705-2012, 2012
Cited articles
Allen, J. and O'Connell, J. F.: Both half right: updating the evidence for
dating first human arrivals in Sahul, Aust. Archaeol., 79, 86–108, 2014.
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of thermometry
in planktonic foraminifera from a sediment trap time series,
Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846, 2003.
Bahr, A., Nürnberg, D., Karas, C., and Grützner, J.:
Millennial-scale versus long-term dynamics in the surface and subsurface of
the western North Atlantic Subtropical Gyre during marine isotope stage 5,
Glob. Planet. Change, 111, 77–87, https://doi.org/10.1016/j.gloplacha.2013.08.013, 2013.
Barker, P. M.: The circulation and formation of water masses south of
Australia and the inter-annual wind variability along the southern
Australian coast, PhD thesis, University of Melbourne, Victoria, Australia,
351 pp., 2004.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures
used for foraminiferal paleothermometry, Geochem. Geophys.
Geosy., 4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Barrows, T. T. and Juggins, S.: Sea-surface temperatures around the
Australian margin and Indian Ocean during the Last Glacial Maximum, Quat.
Sci. Rev., 24, 1017–1047, 2005.
Barrows, T. T., Juggins, S., De Deckker, P., Calvo, E., and Pelejero, C.:
Long-term sea surface temperature and climate change in the Australian-New
Zealand region, Paleoceanography, 22, PA2215, https://doi.org/10.1029/2006PA001328, 2007.
Bé, A. W. H. and Tolderlund, D. S.: Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, in: The Micropalaeontology of Oceans, edited by: Funnel, B. M. and Riedel, W. R., University Press, Cambridge, 105–149, 1971.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
1998.
Bostock, H. C., Opdyke, B. N., Gagan, M. K., Kiss, A. E., and Fifield, L. K.:
Glacial/interglacial changes in the East Australian current, Clim. Dyn., 26,
645–659, https://doi.org/10.1007/s00382-005-0103-7, 2006.
Bowler, J. M., Gillespie, R., Johnston, H., and Boljkovac, K.: Wind v water:
Glacial maximum records from the Willandra Lakes, in: Peopled landscapes:
archaeological and biogeographic approaches to landscapes, edited by:
Haberle, S. and David, B., Terra australis 34, Chapter 13, ANU e-press, https://doi.org/10.22459/TA34.01.2012.13, 2012.
Boyle, E. A. and Keigwin, L. D.: Comparison of Atlantic and Pacific
paleochemical records for the last 215 000 years: changes in deep ocean
circulation and chemical inventories, Earth Planet. Sci. Lett., 76, 135–150, https://doi.org/10.1016/0012-821X(85)90154-2,
1985.
Boyle, E. A. and Rosenthal, Y.: Chemical hydrography of the South Atlantic
during the Last Glacial Maximum: Cd vs. δ13C, in: The South
Atlantic: Present and Past Circulation, edited by: Wefer, G., Berger, W. H.,
Siedler, G., and Webb, D., Springer, Berlin, Heidelberg, 423–443, https://doi.org/10.1007/978-3-642-80353-6_23, 1996.
Brook, B. W. and Johnson, C. N.: Selective hunting of juveniles as a cause of
the imperceptible overkill of the Australian Pleistocene megafauna,
Alcheringa, 30, 39–48, 2006.
Cai, W., van Rensch, P., and Cowan, T.: Influence of global-scale variability
on the Subtropical Ridge over Southeast Australia, J. Clim., 24, 6035–6053,
https://doi.org/10.1175/2011JCLI4149.1, 2011.
Caley, T. and Roche, D. M.: Modeling water isotopologues during the last
glacial: implications for quantitative paleosalinity reconstruction,
Paleoceanography, 30, 739–750, 2015.
Calvo, E., Pelejero, C., De Deckker, P., and Logan, G. A.: Antarctic
deglacial pattern in a 30 kyr record of sea surface temperature offshore
South Australia, Geophys. Res. Lett., 34, L13707,
https://doi.org/10.1029/2007GL029937, 2007.
Church, J. A., Cresswell, G. R., and Godfrey, J. S.: The Leeuwin Current, in: Poleward flows along eastern boundaries, edited by: Neshyba, S. J., Mooers, Ch. N. K., Smith, R. L., and Barber, R. T., Coastal and Estuarine Studies book series, 34, 230–254, https://doi.org/10.1007/978-1-4613-8963-7_16, 1989.
Cirano, M. and Middleton, J. F.: Aspects of the mean wintertime circulation
along Australia's southern shelves: numerical studies, J. Phys. Oceanogr., 34, 668–684, 2004.
Clarkson, C., Jacobs, Z., Marwick, B., Fullagar, R., Wallis, L., Smith, M., Roberts, R. G., Hayes, E., Lowe, K., Carah, X., Florin, A. S., McNeil, J., Cox, D., Arnold, L.J., Hua, Q., Huntley, J., Brand, H. E. A., Manne, T., Fairbairn, A., Shulmeister, J., Lyle, L., Salinas, M., Page, M., Connell, K., Park, G., Norman, K., Murphy. T, and Pardoe, C.: Human occupation of northern
Australia by 65 000 years ago, Nature, 54, 306, https://doi.org/10.1038/nature22968,
2017.
Cléroux, C., Cortijo, E., and Duplessy, J.-C.: Deep-dwelling
foraminifera as thermocline temperature recorders, Geochem. Geophys.
Geosy., 8, 4, https://doi.org/10.1029/2006GC001474, 2008.
Courtillat, M., Hallenberger, M., Bassetti, M.-A., Aubert, D., Jeandel, C.,
Reuning, L., Korpanty, C., Moisette, P., Mounic, S., and Saavedra-Pellitero,
M.: New record of dust input and provenance during glacial periods in
Western Australia shelf (IODP Expedition 356, Site U1461) from the Middle to
Late Pleistocene, Atmosphere, 11, 1251, https://doi.org/10.3390/atmos11111251, 2020.
Cresswell, G. R.: Currents of the continental shelf and upper slope of
Tasmania, Pap. Proc. – R. Soc. Tasman., 133, 21–30, 2000.
Cresswell, G. R. and Golding, T. J.: Observations of a southward flowing
current in the south-eastern Indian Ocean – Deep Sea Res. Part I, 27,
449–466, 1980.
Cresswell, G. R. and Peterson, J. L.: The Leeuwin Current south of western
Australia, Aust. J. Mar. Freshwater Res., 44, 285–303, 1993.
De Deckker, P., Moros, M., Perner, K., and Jansen, E.: Influence of the
tropics and southern westerlies on glacial interhemispheric asymmetry, Nat.
Geosci., 5, 266–269, 2012.
De Deckker, P., van der Kaars, S., Haberle, S., Hua, Q., and Stuut, J.-B. W.:
The pollen record from marine core MD03-2607 from offshore Kangaroo Island
spanning the last 125 ka; implications for vegetation changes across the
Murray-Darling Basin, Aust. J. Earth Sci., 68, 928–951, https://doi.org/10.1080/08120099.2021.1896578, 2021.
Domingues, C. M., Maltrud, M. E., Wijffels, S. E., Church, J. A., and Tomczak,
M.: Simulated Lagrangian pathways between the Leeuwin Current System and the
upper ocean circulation of the southeast Indian Ocean, Deep Sea Res. Part II, 54, 797–817, https://doi.org/10.1016/j.dsr2.2006.10.003, 2007.
Drosdowsky, W.: An analysis of Australian seasonal rainfall and
teleconnection patterns anomalies: 1950–1987. II: Temporal variability,
Int. J. Climatol., 13, 111–149, 2003.
Drosdowsky, W.: The latitude of the subtropical ridge over eastern
Australia: The L-index revisited, Int. J. Climatol., 25, 1291–1299, 2005.
Elderfield, H., Vautravers, M., and Cooper, M.: The relationship between
shell size and , Sr Ca, δ18O, and δ13C of
species of planktonic foraminifera, Geochem. Geophys. Geosy., 3, 8,
https://doi.org/10.1029/2001GC000194, 2002.
EPICA Community Members: One-to-one coupling of glacial climate variability
in Greenland and Antarctica, Nature, 444, 195–198, 2006.
Farmer, E. C., Kaplan, A., de Menocal, P. B., and Lynch-Stieglitz, J.:
Corroborating ecological depth preferences of planktonic foraminifera in the
tropical Atlantic with stable oxygen isotope ratios of core-top specimens,
Paleoceanography, 22, PA3205, https://doi.org/10.1029/2006PA001361, 2007.
Feng, M., Meyers, G., Pearce, A., and Wijfells, S.: Annual and interannual
variations of the Leeuwin Current at 32∘ S, J. Geophys. Res.-Oceans, 108, 33–55, 2003.
Feng, M., Weller, E., and Hill, K.: The Leeuwin Current, in: A Marine
Climate Change Impacts and Adaptation Report Card for Australia 2009, edited
by: Poloczanska, E., Hobday, A. J., and Richardson, A., NCCARF Publication 05/09,
ISBN: 978-1-921609-03-9, 2009.
Findlay, C. S. and Flores, J. A.: Subtropical Front fluctuations south of
Australia ( S, E) for the last 130 ka
years based on calcareous nannoplankton, Mar. Micropaleontol., 40, 403–416,
2000.
Fletcher, M.-S. and Moreno, P. I.: Zonally symmetric changes in the strength
and position of the Southern Westerlies drove atmospheric CO2
variations over the past 14 k.y., Geology, 39, 419–422, 2011.
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J., Cooper,
M. J., and Fiebig, J.: Influence of test size, water depth and ecology on
, Sr Ca, δ18O and δ13C in nine modern species
of planktic foraminifers, Earth Planet. Sci. Lett., 319–320, 133–145, 2012.
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface
temperature and sea ice distribution of the Southern Ocean at the EPILOG
Last Glacial Maximum – a circum-Antarctic view based on siliceous
microfossil records, Quat. Sci. Rev., 24, 869–896, 2005.
Godfrey, J. S. and Ridgway, K. R.: The large-scale environment of the
poleward-flowing Leeuwin Current, Western Australia: Longshore steric height
patterns, wind stresses and geostrophic flow, J. Phys. Oceanogr., 15,
481–495, 1985.
Gottschalk, J., Skinner, L. C., Misra, S., Waelbroeck, C., Menviel, L., and
Timmermann, A.: Abrupt changes in the southern extent of North Atlantic Deep
Water during Dansgaard–Oeschger events, Nat. Geosci., 8, 950, https://doi.org/10.1038/NGEO2558, 2015.
Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde,
M., Ramsey, C. B., Satow, C., and Roberts, A. P.: Rapid coupling between ice
volume and polar temperature over the past 150 000 years, Nature, 491,
744–747, 2012.
Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I.,
Clarke, L., Cooper, M., Daunt, C., Delaney, M., deMenocal, P., Dutton, A.,
Eggins, S., Elderfield, H., Garbe-Schönberg, D., Goddard, E., Green, D.,
Gröneveld, J., Hastings, D., Hathorne, E., Kimoto, K., Klinkhammer, G.,
Labeyrie, L., Lea, D. W., Marchitto, T., Martínez-Botí, M. A.,
Mortyn, P. G., Ni, Y., Nürnberg, D., Paradis, G., Pena, L., Quinn, T.,
Rosenthal, Y., Russell, A., Sagawa, T., Sosdian, S., Stott, L., Tachikawa,
K., Tappa, E., Thunell, R., and Wilson, P. A.: Interlaboratory comparison
study of calibration standards for foraminiferal thermometry, Geochem.
Geophys. Geosy., 9, Q08010, https://doi.org/10.1029/2008GC001974, 2008.
Hathorne, E. C., Alard, O., James, R. H., and Rogers, N. W.: Determination of
intratest variability of trace elements in foraminifera by laser ablation
inductively coupled plasma-mass spectrometry, Geochem. Geophys. Geosy., 4, 8408, https://doi.org/10.1029/2003GC000539, 2003.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. E., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer,
P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.:
MARINE20 – The marine radiocarbon age calibration curve (0–55 000 CAL BP),
Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Herzfeld, M. and Tomczak, M.: Numerical modelling of sea surface temperature
and circulation in the Great Australian Bight, Progr. Oceanogr., 39, 29–78,
1997.
Holbrook, N. J., Goodwin, I. D., McGregor, S., Molina, E., and Power, S. B.:
ENSO to multi-decadal time scale changes in East Australian Current
transports and Fort Denison sea level: Oceanic Rossby waves as the
connecting mechanism, Deep Sea Res. Part II, 58, 547–558,
https://doi.org/10.1016/j.dsr2.2010.06.007, 2011.
Holbrook, N. J., Davidson, J., Feng, M., Hobday, A. J., Lough, J. M.,
McGregor, S., Power, S., and Risbey, J. S.: El Niño-southern oscillation,
in: A Marine Climate Change Impacts and Adaptation Report Card for Australia
2012, edited by: Poloczanska, E., Hobday, A. J., and Richardson, A., NCCARF
Publication 05/09, ISBN: 978-1-921609-03-9, 2012.
Holloway, P. E. and Nye, H. C.: Leeuwin Current and wind distributions on the
southern part of the Australian North West Shelf between January 1982 and
July 1983, Aust. J. Mar. Freshwater Res., 36, 123–137, 1985.
Howard, W. R. and Prell, W. L.: Late Quaternary surface circulation of the
southern Indian Ocean and its relationship to orbital
variations, Paleoceanography, 7, 79–118,
https://doi.org/10.1029/91PA02994, 1992.
Hut, G.: Consultants' group meeting on stable isotope reference samples for
geochemical and hydrological investigations, International Atomic Energy
Agency (IAEA), 18, 42, https://inis.iaea.org/collection/NCLCollectionStore/_Public/18/075/18075746.pdf?r=1 (last access: 11 November 2022), 1987.
James, N. P. and Bone, Y.: Neritic carbonate sediments in a temperate realm,
Southern Australia, Springer, Dordrecht, 254 pp., ISBN: 978-90-481-9288-5, 2011.
James, N. P., Boreen, T. D., Bone, Y., and Feary, D. A.: Holocene carbonate
sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved
shelf, Sediment. Geol., 90, 161–177, 1994.
Johnson, B. J., Miller, G. H., Fogel, M. L., Magee, J. W., Gagan, M. K., and
Chivas, A. R.: 65 000 years of vegetation change in central Australia and the
Australian Summer Monsoon, Science, 284, 1150–1152, 1999.
Kaiser, J. and Lamy, F.: Links between Patagonian Ice Sheet fluctuations and
Antarctic dust variability during the last glacial period (MIS 4-2), Quat.
Sci. Rev., 29, 1464–1471, https://doi.org/10.1016/j.quascirev.2010.03.005, 2010.
Karstensen, J. and Quadfasel, D.: Formation of Southern Hemisphere
Thermocline Waters: Water Mass Conversion and Subduction, J. Phys.
Oceanogr., 32, 3020–3038,
https://doi.org/10.1175/1520-0485(2002)032<3020:FOSHTW>2.0.CO;2, 2002.
Kawahata, H.: Shifts in oceanic and atmospheric boundaries in the Tasman Sea
(Southwest Pacific) during the Late Pleistocene: Evidence from organic
carbon and lithogenic fluxes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 184, 225–249, https://doi.org/10.1016/S0031-0182(01)00412-6, 2002.
Kiernan, K., Fink, D., Greig, D., and Mifud, C.: Cosmogenic radionuclide
chronology of pre-last glacial cycle moraines in the Western Arthur range,
Southwest Tasmania, Quat. Sci. Rev., 29, 3286–3297, 2010.
Lamy, F., Arz, H. W., Kilian, R., Lange, C. B., Lembke-Jene, L., Wengler, M.,
Kaiser, J., Baeza-Urrea, O., Hall, I. R., Harada, N., and Tiedemann, R.:
Glacial reduction and millennial-scale variations in Drake Passage
through flow, P. Natl. Acad. Sci. USA, 112, 13496–13501, 2015.
Legeckis, R. and Cresswell, G.: Satellite observations of sea-surface
temperature fronts off the coast of western and southern Australia, Deep Sea
Res., 28A, 297–306, 1981.
Li, Q., James, N.P., Bone, Y., and McGowan, B.: Paleoceanographic
significance of recent foraminiferal biofacies on the southern shelf of
Western Australia: a preliminary study, Palaeoceanogr. Palaeoclimatol.
Palaeoecol., 147, 101–120, 1999.
Lisiecki, E. L. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and Smolyar, I.V.: World Ocean Atlas 2018, 1, Temperature, edited by: Mishonov, A., NOAA Atlas NESDIS 81, 52 pp., https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (last access:
11 November 2022), 2019.
Lohmann, G. P. and Schweitzer, P. N.: Globorotalia truncatulinoides growth and chemistry as probes of the
past thermocline: 1. Shell size, Paleoceanography, 5 , 55–75, 1990.
Lopes dos Santos, A. R., Wilkins, D., De Deckker, P., and Schouten, S.: Late
Quaternary productivity changes from offshore southern Australia: a
biomarker approach, Palaeoceanogr. Palaeoclimatol. Palaeoecol., 363–364,
48–56, 2012.
Lopes dos Santos, A. R., De Deckker, P., Hopmans, E. C., Magee, J. W., Mets,
A., Sinninghe Damsté, J. S., and Schouten, S.: Abrupt vegetation change
after the Late Quaternary megafaunal extinction in south-eastern Australia,
Nat. Geosci., 6, 627–631, 2013.
Marshall, G. J.: Trends in the southern annular mode from observations and
reanalyses, J. Clim., 16, 4134–4143, 2003.
Martinez, J. I., De Deckker, P., and Barrows, T.: Paleoceanography of the
Last glacial maximum in the eastern Indian Ocean: planktonic foraminifera
evidence, Palaeoceanogr. Palaeoclimatol. Palaeoecol., 147, 73–99, https://doi.org/10.1016/S0031-0182(98)00153-9, 1999.
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T., and
Shackleton, N. J.: Age dating and the orbital theory of the Ice Ages:
Development of a high resolution 0 to 30 000-year chronostratigraphy, Quat.
Res., 27, 1–29, 1987.
McCartney, M. S.: Subantarctic Mode Water, in: A Voyage of Discovery, George Deacon 70th Anniversary Volume, edited by: Angel, M. V, Supplement to Deep Sea Res., 24, 103–119, 1977.
McCartney, M. S. and Donohue, K. A.: A deep cyclonic gyre in the
Australian-Antarctic Basin, Progr. Oceanogr., 75, 675–750, 2007.
McClatchie, S., Middleton, J., Pattiaratchi, C., Currie, D., and Kendrick
G.: The south-west marine region: ecosystems and key species groups,
Department of the Environment and Water Resources, ISBN: 9780642553815, 2006.
Meyers, G., Bailey, R. J., and Worby, A. P.: Geostrophic transport of
Indonesian Throughflow, Deep Sea Res. Part I, 42, 1163–1174, 1995.
Michel, E., De Deckker, P., and Nürnberg, D.: MD131/AUSCAN cruise, RV
Marion Dufresne, https://doi.org/10.17600/3200090, 2003.
Middleton, J. F. and Cirano, M.: A northern boundary current along
Australia's southern shelves: Flinders Current, J. Geophys. Res.-Oceans,
107, 3129, https://doi.org/10.1029/2000JC000701, 2002.
Middleton, J. F. and Platov, G.: The mean summertime circulation along
Australia's southern shelves: a numerical study, J. Phys. Oceanogr., 33,
2270–2287, 2003.
Middleton, J. F. and Bye, J. A. T.: A review of the shelf-slope circulation
along Australia's southern shelves: Cape Leeuwin to Portland, Progr.
Oceanogr., 75, 1–41, https://doi.org/10.1016/j.pocean.2007.07.001, 2007.
Miller, G. H., Fogel, M. L., Magee, J. W., Gagan, M. K., Clarke, S. J., and
Johnson, B. J.: Ecosystem collapse in Pleistocene Australia and a human role
in megafaunal extinction, Science, 309, 287–290, https://doi.org/10.1126/science.1111288, 2005.
Miller, G., Magee, J., Smith, M., Spooner, N., Baynes, A., Lehman, S.,
Fogel, M., Johnston, H., Williams, D., Clark, P., Florian, C., Holst, R.,
and deVogel, S.: Human predation contributed to the extinction of the
Australian megafaunal bird Genyornis newtoni ∼47 ka, Nat. Commun., 7, 10496, https://doi.org/10.1038/ncomms10496,
2016.
Mooney, S. D., Harrison, S. P., Bartlein, P. J., Daniau, A.-L., Stevenson, J., Brownlie, K. C., Buckman, S., Cupper, M., Luly, J., Black, M., Colhoun, E., D’Costa, D., Dodson, J., Haberle, S., Hope, G. S., Kershaw, P., Kenyon, C., McKenzie, M., and Williams, N.: Late Quaternary fire
regimes of Australasia, Quat. Sci. Rev., 30, 28–46,
https://doi.org/10.1016/j.quascirev.2010.10.010, 2010.
Moros, M., De Deckker, P., Jansen, E., Perner, K., and Telford, R.: Holocene
climate variability in the Southern Ocean recorded in a deep-sea sediment
core off South Australia, Quat. Sci. Rev., 28, 1932–1940, 2009.
Moss, P. T., Tibby, J., Petherick, L. M., McGowan, H. A., and Barr, C.: Late
Quaternary vegetation history of the sub-tropics of Eastern Australia, Quat.
Sci. Rev., 74, 257–272, 2013.
Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M.: Variability of
El Nino/Southern Oscillation activity at millennial timescales during the
Holocene epoch, Nature, 420, 162–165, 2002.
Newell, B. S.: Hydrology of south-east Australian waters: Bass Strait and New
South Wales tuna fishing area, CSIRO Div. Fish. Oceanogr. Techn. Papers, 10,
22 pp., http://www.cmar.csiro.au/e-print/open/Div_Fish_Tech_Paper_10.pdf (last access: 11 November 2022), 1961.
Nürnberg, D. and Groeneveld, J.: Pleistocene variability of the
Subtropical Convergence at East Tasman Plateau: evidence from planktonic
foraminiferal (ODP Site 1172A), Geochem. Geophys. Geosy., 7,
Q04P11, https://doi.org/10.1029/2005GC000984, 2006.
Nürnberg, D., Brughmans, N., and Schönfeld, J.: Paleo-export
production, terrigenous flux, and sea surface temperatures around Tasmania
– Implications for glacial/interglacial changes in the Subtropical
Convergence Zone, Geophys. Monogr. Ser., 151, 291–318, 2004.
Nürnberg, D., Ziegler, M., Karas, C., Tiedemann, R., and Schmidt, M. W.:
Interacting Loop Current variability and Mississippi River discharge over
the past 400 kyr, Earth Planet. Sci. Lett., 272, 278–289,
https://doi.org/10.1016/j.epsl.2008.04.051, 2008.
Nürnberg, D., Böschen, T., Doering, K., Mollier-Vogel, E., Raddatz,
J., and Schneider, R.: Sea surface and subsurface circulation dynamics off
equatorial Peru during the last ∼17 kyr, Paleoceanography, 30, 984–999, 2015.
Nürnberg, D., Riff, T., Bahr, A., Karas, C., Meier, K., and Lippold, J.:
Western boundary current in relation to Atlantic Subtropical Gyre dynamics
during abrupt glacial climate fluctuations, Glob. Planet. Change, 201, 103497, https://doi.org/10.1016/j.gloplacha.2021.103497, 2021.
Nürnberg, D., Kayode, A., Meier, K. J. F., and Karas, C.: Stable isotopes
and ratios of planktonic foraminiferal species (G. truncatulinoides, O. universa, G. ruber) from sediment
core MD03-2416G, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.943197,
2022a.
Nürnberg, D., Kayode, A., Meier, K. J. F., and Karas, C.: Stable isotopes
and ratios of planktonic foraminiferal species (G. truncatulinoides, O. universa, G. ruber) from sediment
core MD03-2609, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.943199,
2022b.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs
time-series analysis, Eos Transactions AGU, 77, 379, https://doi.org/10.1029/96EO00259, 1996.
Passlow V., Pinxian, W., and Chivas, A. R.: Late Quaternary paleocenography
near Tasmania, southern Australia, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
131, 433–463, 1997.
Pattiaratchi, C. and Woo, M.: The mean state of the Leeuwin Current system
between North West Cape and Cape Leeuwin, J. R. Soc. West. Aust., 92,
221–241, 2009.
Pedro, J. B., van Ommen, T. D., Rasmussen, S. O., Morgan, V. I., Chappellaz, J., Moy, A. D., Masson-Delmotte, V., and Delmotte, M.: The last deglaciation: timing the bipolar seesaw, Clim. Past, 7, 671–683, https://doi.org/10.5194/cp-7-671-2011, 2011.
Perner, K., Moros, M., De Deckker, P., Blanz, T., Wacker, L., Telford, R.,
Siegel, H., Schneider, R., and Jansen, E.: Heat export from the tropic
drives mid to late Holocene paleoceanographic changes offshore southern
Australia, Quat. Sci. Rev., 180, 96–110, 2018.
Petherick, L., Bostock, H., Cohen, T. J., Fitzsimmons, K., Tibby, J.,
Fletcher, M., Fletcher, S., Moss, P., Reeves, J., Mooney, S., Barrows, T.,
Kemp, J., Jansen, J., Nanson, G., and Dosseto, A.: Climatic records over the
past 30 ka from temperate Australia – a synthesis from the Oz-INTIMATE
workgroup, Quat. Sci. Rev., 74, 58–77, 2013.
Regenberg, M., S. Steph, D. Nürnberg, R. Tiedemann, and
Garbe-Schönberg, D.: Calibrating ratios of multiple planktonic
foraminiferal species with δ18O-calcification temperatures:
Paleothermometry for the upper water column, Earth Planet. Sci. Lett., 278,
324–336, 2009.
Reißig, S., Nürnberg, D., Bahr, A., Poggemann, D.‐W., and Hoffmann, J.:
Southward displacement of the North Atlantic subtropical gyre circulation system during North Atlantic cold spells, Paleoceanogr. Paleoclimatol., 34, 866–885, https://doi.org/10.1029/2018PA003376, 2019.
Richardson, L. E., Middleton, J. F., Kyser, T. K., James, N. P., and Opdyke,
B. N.: Water masses and their seasonal variation on the Lincoln Shelf, South
Australia, Limnol. Oceanogr., 63, 1944–1963,
https://doi.org/10.1002/lno.10817, 2018.
Richardson, L. E., Middleton, J. F., Kyser, T. K., James, N. P., and Opdyke,
B. N.: Shallow water masses and their connectivity along the southern
Australian continental margin, Deep Sea Res. Part I, 152, 103083,
https://doi.org/10.1016/j.dsr.2019.103083, 2019.
Ridgway, K. R.: Seasonal circulation around Tasmania: an interface between
eastern and western boundary dynamics, J. Geophys. Res., 112, C10016,
https://doi.org/10.1029/2006JC003898, 2007.
Ridgway, K. R. and Condie, S. A.: The 5500-km-long boundary flow off western
and southern Australia, J. Geophys. Res.-Oceans, 109, C04017, https://doi.org/10.1029/2003JC001921, 2004.
Rintoul, S. R. and Bullister, J. L.: A late winter hydrographic section from
Tasmania to Antarctica, Deep Sea Res. Part I, 46, 1417–1454, 1999.
Rintoul, S. R. and Sokolov, S.: Baroclinic transport variability of the
Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3),
J. Geophys. Res., 106, 2815–2832, 2001.
Rintoul, S. R. and England, M. H.: Ekman transport dominates local air-sea
fluxes in driving variability of Subantarctic Mode Water, J. Phys.
Oceanogr., 32, 1308–1321, 2002.
Roberts, J., McCave, I., McClymont, E., Kender, S., Hillenbrand, C.-D.,
Matano, R., Hodell, D. A., and Peck, V.: Deglacial changes in flow and frontal
structure through the Drake Passage, Earth Planet. Sci. Lett., 474, 397–408,
2017.
Rochford, J.: Seasonal changes in the distribution of Leeuwin Current waters
off southern Australia, Aust. J. Mar. Freshwater Res., 37, 1–10, 1986.
Rule, S., Brook, B. W., Haberle, S. G., Turney, C. S. M., Kershaw, A. P., and
Johnson, C. N.: The aftermath of megafaunal extinction: Ecosystem
transformation in Pleistocene Australia, Science, 335, 1483–1486, https://doi.org/10.1126/science.1214261, 2012.
Saltré, F., Rodríguez-Rey, M., Brook, B. W., Johnson, C.N., Turney, C. S. M., Alroy, J., Cooper, A., Beeton, N., Bird, M. I., Fordham, D. A., Gillespie, R., Herrando-Pérez, S., Jacobs, Z., Miller, G. H., Nogués-Bravo, D., Prideaux, G. J., Roberts, R. G., and Bradshaw, C. J. A.: Climate change
not to blame for late Quaternary megafauna extinctions in Australia, Nat.
Commun., 7, 10511, https://doi.org/10.1038/ncomms10511, 2016.
Schlitzer, R.: Ocean Data View, http://odv.awi.de (last access:
11 November 2022), 2019.
Schmidt, G. A., Bigg, G. R., and Rohling, E. J.: Global Seawater Oxygen-18
Database – v1.22, https://data.giss.nasa.gov/o18data/ (last access:
11 November 2022), 1999.
Schmidt, M. W. and Lynch-Stieglitz, J.: Florida Straits deglacial temperature
and salinity change: Implications for tropical hydrologic cycle variability
during the Younger Dryas, Paleoceanography, 26, PA4205,
https://doi.org/10.1029/2011PA002157, 2011.
Schodlok, M. P. and Tomczak, M.: The circulation south of Australia derived
from an inverse model, Geophys. Res. Lett., 24, 2781–2784, 1997.
Shi, J.-R., Talley, L. D., Xie, S.-P., Liu, W., and Gille, S. T.: Effects of
buoyancy and wind forcing on Southern Ocean climate change, J. Clim., 33,
10003–10020, https://doi.org/10.1175/JCLI-D-19-0877.1, 2020.
Singh, G., Kershaw, A. P., and Clark, P.: Quaternary vegetation and fire
history in Australia, in: Fire in the Australian biota, edited by: Gill,
A. M., Groves, R. H., and Noble, I. R., Australian Academy of Science, Canberra,
23–54, ISBN: 9780858470576, 1981.
Smith, M.: The Archaeology of Australia's Deserts, Cambridge University Press, 424 pp.,
ISBN: 9781139023016, 2013.
Smith, R., Huyer, A., Godfrey, S., and Church, A. J.: The Leeuwin Current off
western Australia, 1986–1987, J. Phys. Oceanogr., 21, 323–345, 1991.
Speich, S., Blanke, B., de Vries, P., Drijfhout, S., Döös, K.,
Ganachaud, A., and Marsh, R.: Tasman leakage: a new route in the global
ocean conveyor belt, Geophys. Res. Lett., 29, 1416,
https://doi.org/10.1029/2001GL014586, 2002.
Spooner, M. I., De Deckker, P., Barrows, T. T., and Fifield, K. L.: The
behaviour of the Leeuwin Current offshore NW Australia during the last five
glacial-interglacial cycles, Glob. Planet. Change, 75, 119–132, 2011.
Sprintall, J. and Tomzcak, M.: On the formation of central water and
thermocline ventilation in the southern hemisphere, Deep Sea Res. Part I,
40, 827–848, https://doi.org/10.1016/0967-0637(93)90074-D, 1993.
Suppiah, R.: The Australian summer monsoon: A review, Progr. Phys. Geogr.,
16, 283–318, 1992.
Stuiver, M. and Reimer, P. J.: CALIB rev. 8, Radiocarbon, 35, 215–230, 1993.
Tedesco, K. A. and Thunell, R. C.: Seasonal and interannual variations in
planktonic foraminiferal flux and assemblage composition in the Cariaco
Basin, Venezuela, J. Foram. Res., 33, 192–210, 2003.
Thompson, R.: Observations of the Leeuwin Current off Western Australia, J.
Phys. Oceanogr., 14, 623–628, 1984.
Tobler, R., Rohrlach, A., Soubrier, J., Bover, P., Llamas, B., Tuke, J., Bean, N., Abdullah-Highfold, A., Agius, S., O’Donoghue, A., O’Loughlin, I., Sutton, P., Zilio, F., Walshe, K., Williams, A. N., Turney, C. S. M., Williams, M., Richards, S. M., Mitchell, R. J., Kowal, E., Stephen, J. R., Williams, L., Haak, W., and Cooper, A.: Aboriginal mitogenomes reveal
50 000 years of regionalism in Australia, Nature 544, 180–184,
https://doi.org/10.1038/nature21416, 2017.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies,
atmospheric CO2, and climate change during the ice ages, Paleoceanogr.
Paleoclimatol., 21, PA2005, https://doi.org/10.1029/2005PA001154, 2006.
Tudhope, A. W., Chilcott, C. P., and McCulloch, M. T.: Variability in the El
Niño-Southern Oscillation through a glacial-interglacial cycle, Science,
291, 1511, https://doi.org/10.1126/science.1057969, 2001.
van der Kaars, S., Miller, G. H., Turney, C. S. M., Cook, J. E., Nürnberg,
D., Schönfeld, J., Kershaw, A. P., and Lehman, S. J.: Human rather than
climate the primary cause of Pleistocene megafaunal extinction in Australia,
Nat. Commun., 8, 14142, https://doi.org/10.1038/ncomms14142, 2017.
Vaux, D. and Olsen, A. M.: Use of drift bottles in fisheries research, Aust.
Fish. Newslett., 20, 17–20, 1961.
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica
driven by local orbital forcing. Nature, 500, 400–444,
https://doi.org/10.1038/nature12376, 2013.
Wandres, M.: The influence of atmospheric and ocean circulation variability
on the southwest Western Australian wave climate, PhD thesis, The
University of Western Australia, https://doi.org/10.4225/23/5ae2a57566b64,
2018.
Wells, P. E. and Wells, G. M.: Large-scale reorganization of ocean currents
offshore Western Australia during the Late Quaternary, Mar. Micropaleontol.,
24, 157–186, 1994.
Wijeratne, S., Pattiaratchi, C., and Proctor, R.: Estimates of surface and
subsurface boundary current transport around Australia. J. Geophys. Res.
Oceans, 123(5), 3444-3466, https://doi.org/10.1029/2017jc013221, 2018.
Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C., and Collard, M.: Human
refugia in Australia during the Last Glacial Maximum and terminal
Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological
record. J. Archaeol. Sci., 40, 4612–4625, 2013.
Woo, M. and Pattiaratchi, C.: Hydrography and water masses of the western
Australian coast, Deep Sea Res. Part I, 55, 1090–1104, 2008.
Wroe, S., Field, J. H., Archer, M., Grayson, D. K., Price, G. J., Louys, J.,
Faith, J. T., Webb, G. E., Davidson, I., and Mooney, S.: Climate change frames
debate over the of megafauna in Sahul (Pleistocene Australia-New Guinea),
P. Natl. Acad. Sci. USA, 110, 8777–8781, https://doi.org/10.1073/pnas.1302698110,
2013.
Wu, S., Lembke-Jene, L., Lamy, F., Arz, H., Nowaczyk, N., Xiao, W., Zhang,
X, Hass, H. C., Titschak, J., Zheng, X., Liu, J., Dumm, L., Diekmann, B.,
Nürnberg, D., Tiedemann, R., and Kuhn, G.: Orbital- and millennial-scale
Antarctic Circumpolar Current variability in Drake Passage over the past
140 000 years, Nat. Commun., 12, 3948,
https://doi.org/10.1038/s41467-021-24264-9, 2021.
Wyrtki, K.: Physical oceanography of the Indian Ocean, in: Ecological
studies: Analysis and Synthesis, vol. 3, edited by: Zeitschel, B. and Gerlach, S. A.,
Springer, Berlin, Heidelberg, 18–36,
https://doi.org/10.1007/978-3-642-65468-8_3, 1973.
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and...