Articles | Volume 18, issue 9
https://doi.org/10.5194/cp-18-2143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spring onset and seasonality patterns during the Late Glacial period in the eastern Baltic region
Leeli Amon
CORRESPONDING AUTHOR
Department of Geology, Tallinn University of Technology, Tallinn,
19086, Estonia
Friederike Wagner-Cremer
Department of Physical Geography, Utrecht University, 3584 CB Utrecht, the Netherlands
Jüri Vassiljev
Department of Geology, Tallinn University of Technology, Tallinn,
19086, Estonia
Siim Veski
Department of Geology, Tallinn University of Technology, Tallinn,
19086, Estonia
Related authors
Eliise Poolma, Katarzyna Marcisz, Leeli Amon, Patryk Fiutek, Piotr Kołaczek, Karolina Leszczyńska, Dmitri Mauquoy, Michał Słowiński, Siim Veski, Friederike Wagner-Cremer, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2087, https://doi.org/10.5194/egusphere-2025-2087, 2025
Short summary
Short summary
We studied a peatland in northern Poland to see how climate and natural ecosystem changes shaped it over the past 11,500 years. By analysing preserved plants and microscopic life, we found clear shifts in wetness linked to climate and internal development. This longest complete peat record in the region shows how peatlands help us understand long-term environmental change and their future resilience to climate change.
Luke Oliver Andrews, Katarzyna Marcisz, Piotr Kołaczek, Leeli Amon, Siim Veski, Atko Heinsalu, Normunds Stivrins, Mariusz Bąk, Marco A. Aquino-Lopez, Anna Cwanek, Edyta Łokas, Monika Karpińska-Kołaczek, Sambor Czerwiński, Michał Słowiński, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1351, https://doi.org/10.5194/egusphere-2025-1351, 2025
Short summary
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following two-to-threefold alkalinity increases. Limited recovery was evident ~30 years post-pollution.
Eliise Poolma, Katarzyna Marcisz, Leeli Amon, Patryk Fiutek, Piotr Kołaczek, Karolina Leszczyńska, Dmitri Mauquoy, Michał Słowiński, Siim Veski, Friederike Wagner-Cremer, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2087, https://doi.org/10.5194/egusphere-2025-2087, 2025
Short summary
Short summary
We studied a peatland in northern Poland to see how climate and natural ecosystem changes shaped it over the past 11,500 years. By analysing preserved plants and microscopic life, we found clear shifts in wetness linked to climate and internal development. This longest complete peat record in the region shows how peatlands help us understand long-term environmental change and their future resilience to climate change.
Luke Oliver Andrews, Katarzyna Marcisz, Piotr Kołaczek, Leeli Amon, Siim Veski, Atko Heinsalu, Normunds Stivrins, Mariusz Bąk, Marco A. Aquino-Lopez, Anna Cwanek, Edyta Łokas, Monika Karpińska-Kołaczek, Sambor Czerwiński, Michał Słowiński, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1351, https://doi.org/10.5194/egusphere-2025-1351, 2025
Short summary
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following two-to-threefold alkalinity increases. Limited recovery was evident ~30 years post-pollution.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Cited articles
Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., and Scheifinger, H.: Changes in European spring phenology, Int. J. Climatol., 22, 1727–1738, https://doi.org/10.1002/joc.818, 2002.
Amon, L. and Saarse, L.: Postglacial palaeoenvironmental changes in the area surrounding Lake Udriku in North Estonia, Geol. Q., 54, 85–94, 2010.
Amon, L., Veski, S., Heinsalu, A., and Saarse, L.: Timing of Lateglacial
vegetation dynamics and respective palaeoenvironmental conditions in
southern Estonia: evidence from the sediment record of Lake Nakri, J.
Quaternary Sci., 27, 169–180, https://doi.org/10.1002/jqs.1530, 2012.
Amon, L., Veski, S., and Vassiljev, J.: Tree taxa immigration to the eastern
Baltic region, southeastern sector of Scandinavian glaciation during the
Late-glacial period (14 500–11 700 cal. B.P.), Veget. Hist.
Archaeobot., 23, 207–216, https://doi.org/10.1007/s00334-014-0442-6, 2014.
Amon, L., Saarse, L., Vassiljev, J., Heinsalu, A., and Veski, S.: Timing of
the deglaciation and the late-glacial vegetation development on the
Pandivere Upland, North Estonia, B. Geol. Soc. Finland, 88, 69–83, https://doi.org/10.17741/bgsf/88.2.002, 2016.
Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W.,
Schaber, J., and Sitch, S.: Responses of spring phenology to climate change,
New Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004.
Björck, S., Bennike, O., Rosén, P., Andresen, C. S., Bohncke, S., Kaas, E., and Conley, D.: Anomalously mild Younger Dryas summer conditions in southern Greenland, Geology, 30, 427–430, https://doi.org/10.1130/0091-7613(2002)030<0427:AMYDSC>2.0.CO;2, 2002.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon,
51, 337–360, 2009.
Buermann, W., Forkel, M., O'Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Tian, H., Wiltshire, A. J., Zhu, D., Smith, W. K., and Richardson, A. D.: Widespread seasonal compensation effects of spring warming on northern plant productivity, Nature, 562, 110–114, https://doi.org/10.1038/s41586-018-0555-7, 2018.
CAVM Team: Circumpolar Arctic Vegetation Map (1 : 7 500 000 scale),
Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and
Wildlife Service, Anchorage, Alaska, 2003.
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., and Schwartz, M. D.:
Shifting plant phenology in response to global change, Trends Ecol. Evol., 22, 357–365, https://doi.org/10.1016/j.tree.2007.04.003, 2007.
Draveniece, A.: Detecting changes in winter seasons in Latvia: the role of
arctic air masses, Boreal Environ. Res., 14, 89–99, 2009.
Druzhinina, O., Kublitskiy, Y., Stančikaitė, M., Nazarova,
L., Syrykh, L., Gedminienė, L., Uogintas, D., Skipityte, R., Arslanov,
K., Vaikutienė, G., Kulkova, M., and Subetto, D.: The Late
Pleistocene–Early Holocene palaeoenvironmental evolution in the SE Baltic
region: a new approach based on chironomid, geochemical and isotopic data
from Kamyshovoye Lake, Russia, Boreas, 49, 544–561,
https://doi.org/10.1111/bor.12438, 2020.
Ercan, F. E., De Boer, H. J., and Wagner-Cremer, F.: A growing degree day
inference model based on mountain birch leaf cuticle analysis over a
latitudinal gradient in Fennoscandia, Holocene, 30, 344–349,
https://doi.org/10.1177/0959683619865605, 2020.
Ercan, F. E. Z., Mikola, J., Silfver, T., Myller, K., Vainio, E., Słowińska, S., Słowiński, M., Lamentowicz, M., Blok, D., and Wagner-Cremer, F.: Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range, PLOS ONE, 16, e0251625,
https://doi.org/10.1371/journal.pone.0251625, 2021.
Heikkilä, M., Fontana, S. L., and Seppä, H.: Rapid Lateglacial tree
population dynamics and ecosystem changes in the eastern Baltic region,
J. Quaternary Sci., 24, 802–815, https://doi.org/10.1002/jqs.1254, 2009.
Heiri, O., Brooks, S. J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E. S., Lang, B., Kirilova, E., Kuiper, S., Millet, L., Samartin, S., Toth, M., Verbruggen, F., Watson, J. E., van Asch, N., Lammertsma, E., Amon, L., Birks, H. H., Birks, J. B., Mortensen, M. F., Hoek, W. Z., Magyari, E., Muñoz Sobrino, C., Seppä, H., Tinner, W., Tonkov, S., Veski, S., and Lotter, A. F.: Validation of climate model-inferred regional temperature change for late-glacial Europe, Nat. Commun., 5, 1–7, https://doi.org/10.1038/ncomms5914, 2014.
Jaagus, J.: The impact of climate change on the snowcover pattern in
Estonia, Climatic Change 36, 65–77, https://doi.org/10.1023/A:1005304720412, 1997.
Jaagus, J., Briede, A., Rimkus, E., and Remm, K.: Precipitation pattern in
the Baltic countries under the influence of large-scale atmospheric
circulation and local landscape factors, Int. J. Climatol., 30, 705–720 https://doi.org/10.1002/joc.1929, 2010.
Jeong, S.-J., Ho, C.-H., Gim, H.-J., and Brown, M. E.: Phenology shifts at
start vs. end of growing season in temperate vegetation over the Northern
Hemisphere for the period 1982–2008, Glob. Change Biol., 17,
2385–2399, https://doi.org/10.1111/j.1365-2486.2011.02397.x, 2011.
Kalm, V.: Ice-flow pattern and extent of the last Scandinavian Ice Sheet
southeast of the Baltic Sea, Quaternary Sci. Rev., 44, 51–59, https://doi.org/10.1016/j.quascirev.2010.01.019, 2012.
Kisand, V., Talas, L., Kisand, A., Stivrins, N., Reitalu, T., Alliksaar, T., Vassiljev, J., Liiv, M., Heinsalu, A., Seppä, H., and Veski, S.: From
microbial eukaryotes to metazoan vertebrates: Wide spectrum paleo-diversity
in sedimentary ancient DNA over the last ∼ 14 500 years, Geobiology, 16, 628–639, https://doi.org/10.1111/gbi.12307, 2018.
Krauklis, A. and Draveniece, A.: Landscape seasons and air mass dynamics in
Latvia, Folia Geographica, 12, 16–47, 2004.
Kürschner, W. M.: The anatomical diversity of recent and fossil leaves of
the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert) –
implications for their use as biosensors of palaeoatmospheric CO2 levels, Rev. Palaeobot. Palyno., 96, 1–30, https://doi.org/10.1016/S0034-6667(96)00051-6, 1997.
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måge, F., Mestre, A., Nordli, Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H., Striz, M., Susnik, A., van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S., and Zust, A.: European phenological response to climate change matches the warming patter, Glob. Change Biol., 12, 1969–1976, https://doi.org/10.1111/j.1365-2486.2006.01193.x, 2006.
Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R., and Estrella, N.: Climate change fingerprints in recent
European plant phenology, Glob. Change Biol., 26, 2599–2612, https://doi.org/10.1111/gcb.15000, 2020.
Montgomery, R. A., Rice, K. E., Stefanski, A., and Reich, P. B.: Phenological
responses of temperate and boreal trees to warming depend on ambient spring
temperatures, leaf habit, and geographic range, P. Natl. Acad. Sci. USA, 117, 10397–10405, https://doi.org/10.1073/pnas.1917508117, 2020.
Odland, A.: Differences in the vertical distribution pattern of Betula
pubescens in Norway and its ecological significance, in: Holocene treeline
oscillations, dendrochronology and palaeoclimate, edited by: Frenzel, B.,
Stuttgart, Gustav Fischer, 43–59, http://hdl.handle.net/11250/2438009 (last access: 1 August 2022), 1996.
Peñuelas, J. and Filella, I.: Responses to a Warming World, Science,
294, 793–795, https://doi.org/10.1126/science.1066860, 2001.
Pudas, E., Tolvanen, A., Poikolainen, J., Sukuvaara, T., and Kubin, E.:
Timing of plant phenophases in Finnish Lapland in 1997–2006, Boreal
Environ. Res., 13, 31–43, 2008.
Rasmussen, S. O., Bigler, M. P., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Peder Steffensen, J., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey,
C., Butzin, M., Cheng, H., Edwards, R., Friedrich, M., Grootes, P.,
Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B.,
Manning, S., Muscheler, R., Palmer, J., Pearson, C., van der Plicht, J.,
Reimer, R., Richards, D., Scott, E., Southon, J., Turney, C., Wacker, L.,
Adolphi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A.,
Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F.,
Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere
radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E., Seyednasrollah, B., Krassovski, M. B., Latimer, J. M., Nettles, W. R., Heiderman, R. R., Warren, J. M., and Hanson, P. J.: Ecosystem warming extends
vegetation activity but heightens vulnerability to cold temperatures,
Nature, 560, 368–371, https://doi.org/10.1038/s41586-018-0399-1, 2018.
Riigi ilmateenistus: Kliimakaardid,
https://www.ilmateenistus.ee/kliima/kliimakaardid/, last access: 21 September 2021.
Rosentau, A., Vassiljev, J., and Hang, T.: Development of the Baltic Ice Lake
in the eastern Baltic, Quatern. Int., 206, 16–23, https://doi.org/10.1016/j.quaint.2008.10.005, 2009.
Salminen, H. and Jalkanen, R.: Modeling of bud break of Scots pine in
northern Finland in 1908–2014, Front. Plant Sci., 6, 104,
https://doi.org/10.3389/fpls.2015.00104, 2015.
Schenk, F., Väliranta, M., Muschitiello, F., Tarasov, L., Heikkilä,
M., Björck, S., Brandefelt, J., Johansson, A. V., Näslund, J.-O., and
Wohlfarth, B.: Warm summers during the Younger Dryas cold reversal, Nat.
Commun. 9, 1634, https://doi.org/10.1038/s41467-018-04071-5, 2018.
Šeirienė, V., Gastevičienė, N., Luoto, T. P., Gedminienė,
L., and Stančikaitė, M.: The Lateglacial and early Holocene climate
variability and vegetation dynamics derived from chironomid and pollen
records of Lieporiai palaeolake, North Lithuania, Quatern. Int., 605–606, 55–64, https://doi.org/10.1016/j.quaint.2020.12.017, 2020.
Stančikaitė, M., Kisielienė, D., Moe, D., and Vaikutienė, G.:
Lateglacial and early Holocene environmental changes in northeastern
Lithuania, Quatern. Int., 207, 80–92, https://doi.org/10.1016/j.quaint.2008.10.009, 2009.
Steinthorsdottir, M. and Wagner-Cremer, F.: Hot summers ahead? Multi-decadal
spring season warming precedes sudden summer temperature rise in
preanthropogenic climate change, GFF, 141, 175–180, https://doi.org/10.1080/11035897.2019.1655791, 2019.
Stivrins, N., Kołaczek, P., Reitalu, T., Seppä, H., and Veski, S.:
Phytoplankton response to the environmental and climatic variability in a
temperate lake over the last 14 500 years in eastern Latvia, J.
Paleolimnol., 54, 103–119, https://doi.org/10.1007/s10933-015-9840-8, 2015.
Vassiljev, J. and Saarse, L.: Timing of the Baltic Ice Lake in the eastern
Baltic, B. Geol. Soc. Finland, 85, 9–18,
https://doi.org/10.17741/bgsf/85.1.001, 2013.
Veski, S., Amon, L., Heinsalu, A., Reitalu, T., Saarse, L., Stivrins, N., and
Vassiljev, J.: Lateglacial vegetation dynamics in the eastern Baltic region
between 14 500 and 11 400 cal yr BP: A complete record since the Bølling (GI-1e) to the Holocene, Quaternary Sci. Rev., 40, 39–53, https://doi.org/10.1016/j.quascirev.2012.02.013, 2012.
Veski, S., Seppä, H., Stančikaitė, M., Zernitskaya, V., Reitalu,
T., Gryguc, G., Heinsalu, A., Stivrins, N., Amon, L., Vassiljev, J., and
Heiri, O.: Quantitative summer and winter temperature reconstructions from
pollen and chironomid data between 15 and 8 ka BP in the Baltic–Belarus
area, Quatern. Int., 388, 4–11, https://doi.org/10.1016/j.quaint.2014.10.059, 2015.
Wagner-Cremer, F. and Lotter, A. F.: Spring-season changes during the Late
Pleniglacial and Bølling/Allerød interstadial, Quaternary Sci.
Rev., 30, 1825–1828, https://doi.org/10.1016/j.quascirev.2011.05.003, 2011.
Wagner-Cremer, F., Finsinger, W., and Moberg, A.: Tracing growing degree-day
changes in the cuticle morphology of Betula nana leaves: a new micro-phenological palaeo-proxy, J. Quaternary Sci., 25, 1008–1017 https://doi.org/10.1002/jqs.1388, 2010.
Wang, C., Cao, R., Chen, J., Rao, Y., and Tang, Y.: Temperature sensitivity
of spring vegetation phenology correlates to within-spring warming speed
over the Northern Hemisphere, Ecol. Indic., 50, 62–68,
https://doi.org/10.1016/j.ecolind.2014.11.004, 2015.
Short summary
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region were reconstructed using the micro-phenology based on dwarf birch subfossil leaf cuticles. The comparison of pollen- and chironomid-inferred past temperature estimations with spring onset, growth degree day, and plant macrofossil data shows coherent patterns during the cooler Older Dryas and warmer Bølling–Allerød periods but more complicated climate dynamics during the Younger Dryas cold reversal.
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region...