Articles | Volume 18, issue 9
https://doi.org/10.5194/cp-18-2143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spring onset and seasonality patterns during the Late Glacial period in the eastern Baltic region
Leeli Amon
CORRESPONDING AUTHOR
Department of Geology, Tallinn University of Technology, Tallinn,
19086, Estonia
Friederike Wagner-Cremer
Department of Physical Geography, Utrecht University, 3584 CB Utrecht, the Netherlands
Jüri Vassiljev
Department of Geology, Tallinn University of Technology, Tallinn,
19086, Estonia
Siim Veski
Department of Geology, Tallinn University of Technology, Tallinn,
19086, Estonia
Related authors
Luke Oliver Andrews, Katarzyna Marcisz, Piotr Kołaczek, Leeli Amon, Siim Veski, Atko Heinsalu, Normunds Stivrins, Mariusz Bąk, Marco A. Aquino-Lopez, Anna Cwanek, Edyta Łokas, Monika Karpińska-Kołaczek, Sambor Czerwiński, Michał Słowiński, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1351, https://doi.org/10.5194/egusphere-2025-1351, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following two-to-threefold alkalinity increases. Limited recovery was evident ~30 years post-pollution.
Luke Oliver Andrews, Katarzyna Marcisz, Piotr Kołaczek, Leeli Amon, Siim Veski, Atko Heinsalu, Normunds Stivrins, Mariusz Bąk, Marco A. Aquino-Lopez, Anna Cwanek, Edyta Łokas, Monika Karpińska-Kołaczek, Sambor Czerwiński, Michał Słowiński, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1351, https://doi.org/10.5194/egusphere-2025-1351, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following two-to-threefold alkalinity increases. Limited recovery was evident ~30 years post-pollution.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Related subject area
Subject: Vegetation Dynamics | Archive: Terrestrial Archives | Timescale: Pleistocene
Reconstruction of Holocene and Last Interglacial vegetation dynamics and wildfire activity in southern Siberia
Global biome changes over the last 21,000 years inferred from model-data comparisons
Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP
Late Quaternary climate variability at Mfabeni peatland, eastern South Africa
The last glacial termination on the eastern flank of the central Patagonian Andes (47 ° S)
Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97 ka): insights from a Belgian speleothem
Terrestrial biosphere changes over the last 120 kyr
Vegetation responses to interglacial warming in the Arctic: examples from Lake El'gygytgyn, Far East Russian Arctic
Hominin responses to environmental changes during the Middle Pleistocene in central and southern Italy
High-latitude environmental change during MIS 9 and 11: biogeochemical evidence from Lake El'gygytgyn, Far East Russia
Masked millennial-scale climate variations in South West Africa during the last glaciation
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
Clim. Past, 21, 661–677, https://doi.org/10.5194/cp-21-661-2025, https://doi.org/10.5194/cp-21-661-2025, 2025
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends during the Last Interglacial (LIG) (124.1–118.8 ka) and the Holocene (10–0 ka). Wildfires were more prevalent during the LIG than the Holocene and were supported by fire-prone species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Xianyong Cao, Fang Tian, Furong Li, Marie-José Gaillard, Natalia Rudaya, Qinghai Xu, and Ulrike Herzschuh
Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, https://doi.org/10.5194/cp-15-1503-2019, 2019
Short summary
Short summary
The high-quality pollen records (collected from lakes and peat bogs) of the last 40 ka cal BP form north Asia are homogenized and the plant abundance signals are calibrated by the modern relative pollen productivity estimates. Calibrated plant abundances for each site are generally consistent with in situ modern vegetation, and vegetation changes within the regions are characterized by minor changes in the abundance of major taxa rather than by invasions of new taxa during the last 40 ka cal BP.
Charlotte Miller, Jemma Finch, Trevor Hill, Francien Peterse, Marc Humphries, Matthias Zabel, and Enno Schefuß
Clim. Past, 15, 1153–1170, https://doi.org/10.5194/cp-15-1153-2019, https://doi.org/10.5194/cp-15-1153-2019, 2019
Short summary
Short summary
Here we reconstruct vegetation and precipitation, in eastern South Africa, over the last 32 000 years, by measuring the stable carbon and hydrogen isotope composition of plant waxes from Mfabeni peat bog (KwaZulu-Natal). Our results indicate that the late Quaternary climate in eastern South Africa did not respond directly to orbital forcing or to changes in sea-surface temperatures. Our findings stress the influence of the Southern Hemisphere westerlies in driving climate change in the region.
William I. Henríquez, Rodrigo Villa-Martínez, Isabel Vilanova, Ricardo De Pol-Holz, and Patricio I. Moreno
Clim. Past, 13, 879–895, https://doi.org/10.5194/cp-13-879-2017, https://doi.org/10.5194/cp-13-879-2017, 2017
Short summary
Short summary
Results from Lago Edita, central-western Patagonia (47° S), allow examination of the timing and direction of paleoclimate signals during the last glacial termination (T1) in southern midlatitudes. Cold and wet conditions prevailed during T1, terminated by warm pulses at 13 000 and 11 000 yr BP. Delayed warming, relative to sites along the Pacific coast, raises the possibility that residual ice masses in the Andes induced regional cooling along downwind sectors of central Patagonia during T1.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
A. V. Lozhkin and P. M. Anderson
Clim. Past, 9, 1211–1219, https://doi.org/10.5194/cp-9-1211-2013, https://doi.org/10.5194/cp-9-1211-2013, 2013
R. Orain, V. Lebreton, E. Russo Ermolli, A.-M. Sémah, S. Nomade, Q. Shao, J.-J. Bahain, U. Thun Hohenstein, and C. Peretto
Clim. Past, 9, 687–697, https://doi.org/10.5194/cp-9-687-2013, https://doi.org/10.5194/cp-9-687-2013, 2013
R. M. D'Anjou, J. H. Wei, I. S. Castañeda, J. Brigham-Grette, S. T. Petsch, and D. B. Finkelstein
Clim. Past, 9, 567–581, https://doi.org/10.5194/cp-9-567-2013, https://doi.org/10.5194/cp-9-567-2013, 2013
I. Hessler, L. Dupont, D. Handiani, A. Paul, U. Merkel, and G. Wefer
Clim. Past, 8, 841–853, https://doi.org/10.5194/cp-8-841-2012, https://doi.org/10.5194/cp-8-841-2012, 2012
Cited articles
Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., and Scheifinger, H.: Changes in European spring phenology, Int. J. Climatol., 22, 1727–1738, https://doi.org/10.1002/joc.818, 2002.
Amon, L. and Saarse, L.: Postglacial palaeoenvironmental changes in the area surrounding Lake Udriku in North Estonia, Geol. Q., 54, 85–94, 2010.
Amon, L., Veski, S., Heinsalu, A., and Saarse, L.: Timing of Lateglacial
vegetation dynamics and respective palaeoenvironmental conditions in
southern Estonia: evidence from the sediment record of Lake Nakri, J.
Quaternary Sci., 27, 169–180, https://doi.org/10.1002/jqs.1530, 2012.
Amon, L., Veski, S., and Vassiljev, J.: Tree taxa immigration to the eastern
Baltic region, southeastern sector of Scandinavian glaciation during the
Late-glacial period (14 500–11 700 cal. B.P.), Veget. Hist.
Archaeobot., 23, 207–216, https://doi.org/10.1007/s00334-014-0442-6, 2014.
Amon, L., Saarse, L., Vassiljev, J., Heinsalu, A., and Veski, S.: Timing of
the deglaciation and the late-glacial vegetation development on the
Pandivere Upland, North Estonia, B. Geol. Soc. Finland, 88, 69–83, https://doi.org/10.17741/bgsf/88.2.002, 2016.
Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W.,
Schaber, J., and Sitch, S.: Responses of spring phenology to climate change,
New Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004.
Björck, S., Bennike, O., Rosén, P., Andresen, C. S., Bohncke, S., Kaas, E., and Conley, D.: Anomalously mild Younger Dryas summer conditions in southern Greenland, Geology, 30, 427–430, https://doi.org/10.1130/0091-7613(2002)030<0427:AMYDSC>2.0.CO;2, 2002.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon,
51, 337–360, 2009.
Buermann, W., Forkel, M., O'Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Tian, H., Wiltshire, A. J., Zhu, D., Smith, W. K., and Richardson, A. D.: Widespread seasonal compensation effects of spring warming on northern plant productivity, Nature, 562, 110–114, https://doi.org/10.1038/s41586-018-0555-7, 2018.
CAVM Team: Circumpolar Arctic Vegetation Map (1 : 7 500 000 scale),
Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and
Wildlife Service, Anchorage, Alaska, 2003.
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., and Schwartz, M. D.:
Shifting plant phenology in response to global change, Trends Ecol. Evol., 22, 357–365, https://doi.org/10.1016/j.tree.2007.04.003, 2007.
Draveniece, A.: Detecting changes in winter seasons in Latvia: the role of
arctic air masses, Boreal Environ. Res., 14, 89–99, 2009.
Druzhinina, O., Kublitskiy, Y., Stančikaitė, M., Nazarova,
L., Syrykh, L., Gedminienė, L., Uogintas, D., Skipityte, R., Arslanov,
K., Vaikutienė, G., Kulkova, M., and Subetto, D.: The Late
Pleistocene–Early Holocene palaeoenvironmental evolution in the SE Baltic
region: a new approach based on chironomid, geochemical and isotopic data
from Kamyshovoye Lake, Russia, Boreas, 49, 544–561,
https://doi.org/10.1111/bor.12438, 2020.
Ercan, F. E., De Boer, H. J., and Wagner-Cremer, F.: A growing degree day
inference model based on mountain birch leaf cuticle analysis over a
latitudinal gradient in Fennoscandia, Holocene, 30, 344–349,
https://doi.org/10.1177/0959683619865605, 2020.
Ercan, F. E. Z., Mikola, J., Silfver, T., Myller, K., Vainio, E., Słowińska, S., Słowiński, M., Lamentowicz, M., Blok, D., and Wagner-Cremer, F.: Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range, PLOS ONE, 16, e0251625,
https://doi.org/10.1371/journal.pone.0251625, 2021.
Heikkilä, M., Fontana, S. L., and Seppä, H.: Rapid Lateglacial tree
population dynamics and ecosystem changes in the eastern Baltic region,
J. Quaternary Sci., 24, 802–815, https://doi.org/10.1002/jqs.1254, 2009.
Heiri, O., Brooks, S. J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E. S., Lang, B., Kirilova, E., Kuiper, S., Millet, L., Samartin, S., Toth, M., Verbruggen, F., Watson, J. E., van Asch, N., Lammertsma, E., Amon, L., Birks, H. H., Birks, J. B., Mortensen, M. F., Hoek, W. Z., Magyari, E., Muñoz Sobrino, C., Seppä, H., Tinner, W., Tonkov, S., Veski, S., and Lotter, A. F.: Validation of climate model-inferred regional temperature change for late-glacial Europe, Nat. Commun., 5, 1–7, https://doi.org/10.1038/ncomms5914, 2014.
Jaagus, J.: The impact of climate change on the snowcover pattern in
Estonia, Climatic Change 36, 65–77, https://doi.org/10.1023/A:1005304720412, 1997.
Jaagus, J., Briede, A., Rimkus, E., and Remm, K.: Precipitation pattern in
the Baltic countries under the influence of large-scale atmospheric
circulation and local landscape factors, Int. J. Climatol., 30, 705–720 https://doi.org/10.1002/joc.1929, 2010.
Jeong, S.-J., Ho, C.-H., Gim, H.-J., and Brown, M. E.: Phenology shifts at
start vs. end of growing season in temperate vegetation over the Northern
Hemisphere for the period 1982–2008, Glob. Change Biol., 17,
2385–2399, https://doi.org/10.1111/j.1365-2486.2011.02397.x, 2011.
Kalm, V.: Ice-flow pattern and extent of the last Scandinavian Ice Sheet
southeast of the Baltic Sea, Quaternary Sci. Rev., 44, 51–59, https://doi.org/10.1016/j.quascirev.2010.01.019, 2012.
Kisand, V., Talas, L., Kisand, A., Stivrins, N., Reitalu, T., Alliksaar, T., Vassiljev, J., Liiv, M., Heinsalu, A., Seppä, H., and Veski, S.: From
microbial eukaryotes to metazoan vertebrates: Wide spectrum paleo-diversity
in sedimentary ancient DNA over the last ∼ 14 500 years, Geobiology, 16, 628–639, https://doi.org/10.1111/gbi.12307, 2018.
Krauklis, A. and Draveniece, A.: Landscape seasons and air mass dynamics in
Latvia, Folia Geographica, 12, 16–47, 2004.
Kürschner, W. M.: The anatomical diversity of recent and fossil leaves of
the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert) –
implications for their use as biosensors of palaeoatmospheric CO2 levels, Rev. Palaeobot. Palyno., 96, 1–30, https://doi.org/10.1016/S0034-6667(96)00051-6, 1997.
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måge, F., Mestre, A., Nordli, Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H., Striz, M., Susnik, A., van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S., and Zust, A.: European phenological response to climate change matches the warming patter, Glob. Change Biol., 12, 1969–1976, https://doi.org/10.1111/j.1365-2486.2006.01193.x, 2006.
Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R., and Estrella, N.: Climate change fingerprints in recent
European plant phenology, Glob. Change Biol., 26, 2599–2612, https://doi.org/10.1111/gcb.15000, 2020.
Montgomery, R. A., Rice, K. E., Stefanski, A., and Reich, P. B.: Phenological
responses of temperate and boreal trees to warming depend on ambient spring
temperatures, leaf habit, and geographic range, P. Natl. Acad. Sci. USA, 117, 10397–10405, https://doi.org/10.1073/pnas.1917508117, 2020.
Odland, A.: Differences in the vertical distribution pattern of Betula
pubescens in Norway and its ecological significance, in: Holocene treeline
oscillations, dendrochronology and palaeoclimate, edited by: Frenzel, B.,
Stuttgart, Gustav Fischer, 43–59, http://hdl.handle.net/11250/2438009 (last access: 1 August 2022), 1996.
Peñuelas, J. and Filella, I.: Responses to a Warming World, Science,
294, 793–795, https://doi.org/10.1126/science.1066860, 2001.
Pudas, E., Tolvanen, A., Poikolainen, J., Sukuvaara, T., and Kubin, E.:
Timing of plant phenophases in Finnish Lapland in 1997–2006, Boreal
Environ. Res., 13, 31–43, 2008.
Rasmussen, S. O., Bigler, M. P., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Peder Steffensen, J., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey,
C., Butzin, M., Cheng, H., Edwards, R., Friedrich, M., Grootes, P.,
Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B.,
Manning, S., Muscheler, R., Palmer, J., Pearson, C., van der Plicht, J.,
Reimer, R., Richards, D., Scott, E., Southon, J., Turney, C., Wacker, L.,
Adolphi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A.,
Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F.,
Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere
radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E., Seyednasrollah, B., Krassovski, M. B., Latimer, J. M., Nettles, W. R., Heiderman, R. R., Warren, J. M., and Hanson, P. J.: Ecosystem warming extends
vegetation activity but heightens vulnerability to cold temperatures,
Nature, 560, 368–371, https://doi.org/10.1038/s41586-018-0399-1, 2018.
Riigi ilmateenistus: Kliimakaardid,
https://www.ilmateenistus.ee/kliima/kliimakaardid/, last access: 21 September 2021.
Rosentau, A., Vassiljev, J., and Hang, T.: Development of the Baltic Ice Lake
in the eastern Baltic, Quatern. Int., 206, 16–23, https://doi.org/10.1016/j.quaint.2008.10.005, 2009.
Salminen, H. and Jalkanen, R.: Modeling of bud break of Scots pine in
northern Finland in 1908–2014, Front. Plant Sci., 6, 104,
https://doi.org/10.3389/fpls.2015.00104, 2015.
Schenk, F., Väliranta, M., Muschitiello, F., Tarasov, L., Heikkilä,
M., Björck, S., Brandefelt, J., Johansson, A. V., Näslund, J.-O., and
Wohlfarth, B.: Warm summers during the Younger Dryas cold reversal, Nat.
Commun. 9, 1634, https://doi.org/10.1038/s41467-018-04071-5, 2018.
Šeirienė, V., Gastevičienė, N., Luoto, T. P., Gedminienė,
L., and Stančikaitė, M.: The Lateglacial and early Holocene climate
variability and vegetation dynamics derived from chironomid and pollen
records of Lieporiai palaeolake, North Lithuania, Quatern. Int., 605–606, 55–64, https://doi.org/10.1016/j.quaint.2020.12.017, 2020.
Stančikaitė, M., Kisielienė, D., Moe, D., and Vaikutienė, G.:
Lateglacial and early Holocene environmental changes in northeastern
Lithuania, Quatern. Int., 207, 80–92, https://doi.org/10.1016/j.quaint.2008.10.009, 2009.
Steinthorsdottir, M. and Wagner-Cremer, F.: Hot summers ahead? Multi-decadal
spring season warming precedes sudden summer temperature rise in
preanthropogenic climate change, GFF, 141, 175–180, https://doi.org/10.1080/11035897.2019.1655791, 2019.
Stivrins, N., Kołaczek, P., Reitalu, T., Seppä, H., and Veski, S.:
Phytoplankton response to the environmental and climatic variability in a
temperate lake over the last 14 500 years in eastern Latvia, J.
Paleolimnol., 54, 103–119, https://doi.org/10.1007/s10933-015-9840-8, 2015.
Vassiljev, J. and Saarse, L.: Timing of the Baltic Ice Lake in the eastern
Baltic, B. Geol. Soc. Finland, 85, 9–18,
https://doi.org/10.17741/bgsf/85.1.001, 2013.
Veski, S., Amon, L., Heinsalu, A., Reitalu, T., Saarse, L., Stivrins, N., and
Vassiljev, J.: Lateglacial vegetation dynamics in the eastern Baltic region
between 14 500 and 11 400 cal yr BP: A complete record since the Bølling (GI-1e) to the Holocene, Quaternary Sci. Rev., 40, 39–53, https://doi.org/10.1016/j.quascirev.2012.02.013, 2012.
Veski, S., Seppä, H., Stančikaitė, M., Zernitskaya, V., Reitalu,
T., Gryguc, G., Heinsalu, A., Stivrins, N., Amon, L., Vassiljev, J., and
Heiri, O.: Quantitative summer and winter temperature reconstructions from
pollen and chironomid data between 15 and 8 ka BP in the Baltic–Belarus
area, Quatern. Int., 388, 4–11, https://doi.org/10.1016/j.quaint.2014.10.059, 2015.
Wagner-Cremer, F. and Lotter, A. F.: Spring-season changes during the Late
Pleniglacial and Bølling/Allerød interstadial, Quaternary Sci.
Rev., 30, 1825–1828, https://doi.org/10.1016/j.quascirev.2011.05.003, 2011.
Wagner-Cremer, F., Finsinger, W., and Moberg, A.: Tracing growing degree-day
changes in the cuticle morphology of Betula nana leaves: a new micro-phenological palaeo-proxy, J. Quaternary Sci., 25, 1008–1017 https://doi.org/10.1002/jqs.1388, 2010.
Wang, C., Cao, R., Chen, J., Rao, Y., and Tang, Y.: Temperature sensitivity
of spring vegetation phenology correlates to within-spring warming speed
over the Northern Hemisphere, Ecol. Indic., 50, 62–68,
https://doi.org/10.1016/j.ecolind.2014.11.004, 2015.
Short summary
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region were reconstructed using the micro-phenology based on dwarf birch subfossil leaf cuticles. The comparison of pollen- and chironomid-inferred past temperature estimations with spring onset, growth degree day, and plant macrofossil data shows coherent patterns during the cooler Older Dryas and warmer Bølling–Allerød periods but more complicated climate dynamics during the Younger Dryas cold reversal.
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region...