Articles | Volume 18, issue 1
https://doi.org/10.5194/cp-18-147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr
Programa de Postgrados en Oceanografía, Departamento de
Oceanografía, Facultad de Ciencias Naturales y Oceanográficas,
Universidad de Concepción, Concepción, Chile
Centro de Investigación Dinámica de Ecosistemas Marinos de
Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Gisela Winckler
Lamont-Doherty Earth Observatory, Columbia University, Palisades,
NY 10964, United States
Department of Earth and Environmental Sciences, Columbia
University, New York, NY 10027, United States
Helge W. Arz
Leibniz-Institut für Ostseeforschung Warnemünde (IOW),
Rostock-Warnemünde, Germany
Lester Lembke-Jene
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Carina B. Lange
Centro de Investigación Dinámica de Ecosistemas Marinos de
Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
Departamento de Oceanografía and Centro Oceanográfico
COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
Scripps Institution of Oceanography, La Jolla, California 92037,
United States
Gerhard Kuhn
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Frank Lamy
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Related authors
No articles found.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-81, https://doi.org/10.5194/cp-2024-81, 2024
Preprint under review for CP
Short summary
Short summary
We report palaeoclimate and sediment provenance records for the last 220 kyr from a sediment core from the northern Red Sea. They comprise high-resolution grain size, clay mineral and geochemical data, together with Nd and Sr isotope data. The data sets document a strong temporal variability of dust influx on glacial-interglacial timescales and several shorter-term strong fluvial episodes. A key finding is that the Nile delta became a major dust source during glacioeustatic sea-level lowstands.
Isabell Hochfeld, Ben A. Ward, Anke Kremp, Juliane Romahn, Alexandra Schmidt, Miklós Bálint, Lutz Becks, Jérôme Kaiser, Helge W. Arz, Sarah Bolius, Laura S. Epp, Markus Pfenninger, Christopher A. Klausmeier, Elena Litchman, and Jana Hinners
EGUsphere, https://doi.org/10.5194/egusphere-2024-3297, https://doi.org/10.5194/egusphere-2024-3297, 2024
Short summary
Short summary
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to biodiversity and ecosystem functioning, but their predictions vary widely. We argue that MEMs should consider evolutionary processes and undergo independent validation. Here, we present a novel framework for MEM development using validation data from sediment archives, which map long-term environmental and evolutionary change. Our approach is a crucial step towards improving the predictive power of MEMs.
Benjamin A. Keisling, Joerg M. Schaefer, Robert M. DeConto, Jason P. Briner, Nicolás E. Young, Caleb K. Walcott, Gisela Winckler, Allie Balter-Kennedy, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2427, https://doi.org/10.5194/egusphere-2024-2427, 2024
Short summary
Short summary
Understanding how much the Greenland ice sheet melted in response to past warmth helps better predicting future sea-level change. Here we present a framework for using numerical ice-sheet model simulations to provide constraints on how much mass the ice sheet loses before different areas become ice-free. As observations from subglacial archives become more abundant, this framework can guide subglacial sampling efforts to gain the most robust information about past ice-sheet geometries.
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023, https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
Short summary
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost mobilization, which occurred earlier in the Yukon than in the Amur river basin. Sea ice extent or surface temperatures of adjacent oceans might have had a strong influence on the timing of permafrost mobilization. In contrast to previous evidence, our records imply that during glacial peaks of permafrost decomposition, lipids and lignin might have been delivered to the ocean by identical processes.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Jérôme Kaiser, Norbert Wasmund, Mati Kahru, Anna K. Wittenborn, Regina Hansen, Katharina Häusler, Matthias Moros, Detlef Schulz-Bull, and Helge W. Arz
Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, https://doi.org/10.5194/bg-17-2579-2020, 2020
Short summary
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018, https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Short summary
We present the first marine pollen record of the early Pliocene from western equatorial South America. Our reconstruction of the vegetation aims to provide insights into hydrological changes related to tectonic events (Central American Seaway closure, uplift of the Northern Andes). We find stable humid conditions, suggesting a southern location of the Intertropical Convergence Zone. The presence of high montane vegetation indicates an early uplift of the Western Cordillera of the northern Andes.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Björn Klaes, Rolf Kilian, Gerhard Wörner, Sören Thiele-Bruhn, and Helge W. Arz
E&G Quaternary Sci. J., 67, 1–6, https://doi.org/10.5194/egqsj-67-1-2018, https://doi.org/10.5194/egqsj-67-1-2018, 2018
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Liv Heinecke, Steffen Mischke, Karsten Adler, Anja Barth, Boris K. Biskaborn, Birgit Plessen, Ingmar Nitze, Gerhard Kuhn, Ilhomjon Rajabov, and Ulrike Herzschuh
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-34, https://doi.org/10.5194/cp-2016-34, 2016
Revised manuscript not accepted
Short summary
Short summary
The climate history of the Pamir Mountains (Tajikistan) during the last ~29 kyr was investigated using sediments from Lake Karakul as environmental archive. The inferred lake level was highest from the Late Glacial to the early Holocene and lake changes were mainly coupled to climate change. We conclude that the joint influence of Westerlies and Indian Monsoon during the early Holocene caused comparatively moist conditions, while dominating Westerlies yielded dry conditions since 6.7 cal kyr BP.
B. Srain, S. Pantoja, J. Sepúlveda, C. B. Lange, P. Muñoz, R. E. Summons, J. McKay, and M. Salamanca
Biogeosciences, 12, 6045–6058, https://doi.org/10.5194/bg-12-6045-2015, https://doi.org/10.5194/bg-12-6045-2015, 2015
S. Albani, N. M. Mahowald, G. Winckler, R. F. Anderson, L. I. Bradtmiller, B. Delmonte, R. François, M. Goman, N. G. Heavens, P. P. Hesse, S. A. Hovan, S. G. Kang, K. E. Kohfeld, H. Lu, V. Maggi, J. A. Mason, P. A. Mayewski, D. McGee, X. Miao, B. L. Otto-Bliesner, A. T. Perry, A. Pourmand, H. M. Roberts, N. Rosenbloom, T. Stevens, and J. Sun
Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, https://doi.org/10.5194/cp-11-869-2015, 2015
Short summary
Short summary
We propose an innovative framework to organize paleodust records, formalized in a publicly accessible database, and discuss the emerging properties of the global dust cycle during the Holocene by integrating our analysis with simulations performed with the Community Earth System Model. We show how the size distribution of dust is intrinsically related to the dust mass accumulation rates and that only considering a consistent size range allows for a consistent analysis of the global dust cycle.
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz
Clim. Past, 10, 939–954, https://doi.org/10.5194/cp-10-939-2014, https://doi.org/10.5194/cp-10-939-2014, 2014
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Planktonic foraminiferal assemblages as tracers of paleoceanographic changes within the northern Benguela current system since the Early Pleistocene
Glacial–interglacial Circumpolar Deep Water temperatures during the last 800 000 years: estimates from a synthesis of bottom water temperature reconstructions
Sea-level and monsoonal control on the Maldives carbonate platform (Indian Ocean) over the last 1.3 million years
Changes in the Red Sea overturning circulation during Marine Isotope Stage 3
Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception
An Intertropical Convergence Zone shift controlled the terrestrial material supply on the Ninetyeast Ridge
Sea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years
Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Change in the North Atlantic circulation associated with the mid-Pleistocene transition
Thermocline state change in the eastern equatorial Pacific during the late Pliocene/early Pleistocene intensification of Northern Hemisphere glaciation
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
Central Arctic Ocean paleoceanography from ∼ 50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition
Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins
Mediterranean Outflow Water variability during the Early Pleistocene
Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios
Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31–19)
Photic zone changes in the north-west Pacific Ocean from MIS 4–5e
Seasonal changes in glacial polynya activity inferred from Weddell Sea varves
High-latitude obliquity as a dominant forcing in the Agulhas current system
Sensitivity of Red Sea circulation to sea level and insolation forcing during the last interglacial
Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition
Oceanic tracer and proxy time scales revisited
Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation
A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient
High Arabian Sea productivity conditions during MIS 13 – odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition?
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
David M. Chandler and Petra M. Langebroek
Clim. Past, 20, 2055–2080, https://doi.org/10.5194/cp-20-2055-2024, https://doi.org/10.5194/cp-20-2055-2024, 2024
Short summary
Short summary
Sea level rise and global climate change caused by ice melt in Antarctica represent a puzzle of feedbacks between the climate, ocean, and ice sheets over tens to thousands of years. Antarctic Ice Sheet melting is caused mainly by warm deep water from the Southern Ocean. Here, we analyse close relationships between deep water temperatures and global climate over the last 800 000 years. This knowledge can help us to better understand how climate and sea level are likely to change in the future.
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Xudong Xu, Jianguo Liu, Yun Huang, Lanlan Zhang, Liang Yi, Shengfa Liu, Yiping Yang, Li Cao, and Long Tan
Clim. Past, 18, 1369–1384, https://doi.org/10.5194/cp-18-1369-2022, https://doi.org/10.5194/cp-18-1369-2022, 2022
Short summary
Short summary
Terrestrial materials in marine environments record source information and help us understand how climate and ocean impact sediment compositions. Here, we use evidence on the Ninetyeast Ridge to analyze the relationship between terrestrial material supplementation and climatic change. We find that the ITCZ controlled the rainfall in the Burman source area and that closer connections occurred between the Northern–Southern Hemisphere in the eastern Indian Ocean during the late LGM.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Kim Alix Jakob, Jörg Pross, Christian Scholz, Jens Fiebig, and Oliver Friedrich
Clim. Past, 14, 1079–1095, https://doi.org/10.5194/cp-14-1079-2018, https://doi.org/10.5194/cp-14-1079-2018, 2018
Short summary
Short summary
Eastern equatorial Pacific (EEP) thermocline dynamics during the intensification of Northern Hemisphere glaciation (iNHG; ~ 2.5 Ma) currently remain unclear. In light of this uncertainty, we generated geochemical, faunal and sedimentological data for EEP Site 849 (~ 2.75–2.4 Ma). We recorded a thermocline depth change shortly before the final phase of the iNHG, which supports the hypothesis that tropical thermocline shoaling may have contributed to substantial Northern Hemisphere ice growth.
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017, https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Short summary
We investigated a sediment core from the Maldives to unravel the interaction between equatorial climate and ocean variability of the past 200 000 years. The sedimentological, geochemical and foraminiferal data records reveal enhanced dust, which was transported by intensified winter monsoon winds during glacial conditions. Precessional fluctuations of bottom water oxygen suggests an expansion of the Arabian Sea OMZ and a varying inflow of Antarctic Intermediate Water.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Carl Wunsch
Clim. Past, 12, 1281–1296, https://doi.org/10.5194/cp-12-1281-2016, https://doi.org/10.5194/cp-12-1281-2016, 2016
Short summary
Short summary
This paper examines the oxygen isotope data in several deep-sea cores. The question addressed is whether those data support an inference that the abyssal ocean in the Last Glacial Maximum period was significantly colder than it is today. Along with a separate analysis of salinity data in the same cores, it is concluded that a cold, saline deep ocean is consistent with the available data but so is an abyss much more like that found today. LGM model testers should beware.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
G. E. A. Swann and A. M. Snelling
Clim. Past, 11, 15–25, https://doi.org/10.5194/cp-11-15-2015, https://doi.org/10.5194/cp-11-15-2015, 2015
Short summary
Short summary
New diatom isotope records are presented alongside existing geochemical and isotope records to document changes in the photic zone, including nutrient supply and the efficiency of the soft-tissue biological pump, between MIS 4 and MIS 5e in the subarctic north-west Pacific Ocean. The results provide evidence for temporal changes in the strength and efficiency of the regional soft-tissue biological pump, altering the ratio of regenerated to preformed nutrients in the water.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
T. Caley, J.-H. Kim, B. Malaizé, J. Giraudeau, T. Laepple, N. Caillon, K. Charlier, H. Rebaubier, L. Rossignol, I. S. Castañeda, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011, https://doi.org/10.5194/cp-7-1285-2011, 2011
G. Trommer, M. Siccha, E. J. Rohling, K. Grant, M. T. J. van der Meer, S. Schouten, U. Baranowski, and M. Kucera
Clim. Past, 7, 941–955, https://doi.org/10.5194/cp-7-941-2011, https://doi.org/10.5194/cp-7-941-2011, 2011
S. Sepulcre, L. Vidal, K. Tachikawa, F. Rostek, and E. Bard
Clim. Past, 7, 75–90, https://doi.org/10.5194/cp-7-75-2011, https://doi.org/10.5194/cp-7-75-2011, 2011
C. Siberlin and C. Wunsch
Clim. Past, 7, 27–39, https://doi.org/10.5194/cp-7-27-2011, https://doi.org/10.5194/cp-7-27-2011, 2011
A. H. L. Voelker, T. Rodrigues, K. Billups, D. Oppo, J. McManus, R. Stein, J. Hefter, and J. O. Grimalt
Clim. Past, 6, 531–552, https://doi.org/10.5194/cp-6-531-2010, https://doi.org/10.5194/cp-6-531-2010, 2010
L. E. Lisiecki
Clim. Past, 6, 305–314, https://doi.org/10.5194/cp-6-305-2010, https://doi.org/10.5194/cp-6-305-2010, 2010
M. Ziegler, L. J. Lourens, E. Tuenter, and G.-J. Reichart
Clim. Past, 6, 63–76, https://doi.org/10.5194/cp-6-63-2010, https://doi.org/10.5194/cp-6-63-2010, 2010
Cited articles
Anderson, R. F., Chase, Z., Fleisher, M. Q., and Sachs, J.: The Southern
Ocean's biological pump during the Last Gla,cial Maximum, Deep-Sea Res. Pt. II, 49, 1909–1938,
https://doi.org/10.1016/S0967-0645(02)00018-8, 2002.
Anderson, R. F., Barker, S., Fleisher, M., Gersonde, R., Goldstein, S. L.,
Kuhn, G., Mortyn, P. G., Pahnke, K., and Sachs, J. P.: Biological response to
millennial variability of dust and nutrient supply in the Subantarctic South
Atlantic Ocean, Philos. T. R. Soc. A, 372, 20130054,
https://doi.org/10.1098/rsta.2013.0054, 2014.
Bacon, M. P.: Glacial to interglacial changes in carbonate and clay
sedimentation in the Atlantic Ocean estimated from 230Th measurements,
Isot. Geosci., 2, 97–111, 1984.
Berger, W. H., Smetacek, V., and Wefer, G.: Ocean Productivity and
Paleoproductivity – An Overview, in Productivity of the Ocean: Present and
Past, edited by: Berger, W., Smetacek, V., and Wefer, G., John
Wiley & Sons Limited, Berlin, 1–34, 1989.
Bianchi, C. and Gersonde, R.: The Southern Ocean surface between Marine
Isotope Stages 6 and 5d: Shape and timing of climate changes, Palaeogeogr.
Palaeoclim., 187, 151–177,
https://doi.org/10.1016/S0031-0182(02)00516-3, 2002.
Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise), Biogeosciences, 5, 215–225, https://doi.org/10.5194/bg-5-215-2008, 2008.
Boyd, P., LaRoche, J., Gall, M., Frew, R., and McKay, R. M. L.: Role of iron,
light, and silicate in controlling algal biomass in subantarctic waters SE
of New Zealand, J. Geophys. Res.-Oceans, 104, 13395–13408,
https://doi.org/10.1029/1999JC900009, 1999.
Boyd, P. W., Watson, J., Law, C. S., Abraham, E. R., Trull, T., Murdoch,
R., Bakker, D. C., Bowie, R., Buesseler, K. O., Chang, H., Charette, M.,
Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey,
M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M. T.,
McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K.,
Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and Zeldis,
J.: A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated
by iron fertilization, Nature, 407, 695–702, https://doi.org/10.1038/35037500,
2000.
Boyd, P. W., Arrigo, K. R., Strzepek, R., and Van Dijken, G. L.: Mapping
phytoplankton iron utilization: Insights into Southern Ocean supply
mechanisms, J. Geophys. Res.-Oceans, 117, 1–18,
https://doi.org/10.1029/2011JC007726, 2012.
Bradtmiller, L. I., Anderson, R. F., Fleisher, M. Q., and Burckle, L. H.:
Comparing glacial and Holocene opal fluxes in the Pacific sector of the
Southern Ocean, Paleoceanography, 24, 1–20, https://doi.org/10.1029/2008PA001693,
2009.
Broecker, W. S. and Clark, E.: Glacial-to-Holocene Redistribution of
Carbonate Ion in the Deep Sea, Science, 294, 2152–2155,
https://doi.org/10.1126/science.1064171, 2001.
Brzezinski, M. A., Pride, C. J., Franck, V. M., Sigman, D. M., Sarmiento, J.
L., Matsumoto, K., Gruber, N., Rau, G. H., and Coale, K. H.: A switch from
Si(OH)4 to NO depletion in the glacial Southern Ocean, Geophys. Res.
Lett., 29, 1564, https://doi.org/10.1029/2001GL014349, 2002.
Brzezinski, M. A., Jones, J. L., and Demarest, M. S.: Control of silica
production by iron and silicic acid during the Southern Ocean Iron
Experiment (SOFeX), Limnol. Oceanogr., 50, 810–824,
https://doi.org/10.4319/lo.2005.50.3.0810, 2005.
Buesseler, K. O.: The decoupling of production and particulate export in the
surface ocean, Global Biogeochem. Cy., 12, 297–310,
https://doi.org/10.1029/97GB03366, 1998.
Caniupán, M., Lamy, F., Lange, C. B., Kaiser, J., Arz, H., Kilian, R.,
Baeza Urrea, O., Aracena, C., Hebbeln, D., Kissel, C., Laj, C., Mollenhauer,
G., and Tiedemann, R.: Millennial-scale sea surface temperature and
Patagonian Ice Sheet changes off southernmost Chile (53∘ S) over
the past ∼60 kyr, Paleoceanography, 26, PA3221, https://doi.org/10.1029/2010PA002049,
2011.
Cárdenas, P., Lange, C. B., Vernet, M., Esper, O., Srain, B., Vorrath,
M.-E., Ehrhardt, S., Müller, J., Kuhn, G., Arz, H. W., Lembke-Jene, L.,
and Lamy, F.: Biogeochemical proxies and diatoms in surface sediments across
the Drake Passage reflect oceanic domains and frontal systems in the region,
Prog. Oceanogr., 174, 72–88, https://doi.org/10.1016/j.pocean.2018.10.004, 2019.
Carter, L., McCave, I. N., and Williams, M. J. M.: Chapter 4 Circulation and
Water Masses of the Southern Ocean: A Review, in: Developments in Earth and
Environmental Sciences, vol. 8, edited by: Florindo, F. and Soegert, M.,
Elsevier B.V., Amsterdam, 85–114, 2008.
Chapman, C. C., Lea, M.-A., Meyer, A., Sallée, J.-B., and Hindell, M.:
Defining Southern Ocean fronts and their influence on biological and
physical processes in a changing climate, Nat. Clim. Change, 10,
209–219, https://doi.org/10.1038/s41558-020-0705-4, 2020.
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Accumulation
of biogenic and lithogenic material in the Pacific sector of the Southern
Ocean during the past 40,000 years, Deep-Sea Res. Pt. II,
50, 799–832, https://doi.org/10.1016/S0967-0645(02)00595-7, 2003.
Chase, Z., Kohfeld, K. E., and Matsumoto, K.: Controls on biogenic silica
burial in the Southern Ocean, Global Biogeochem. Cy., 29, 1599–1616,
https://doi.org/10.1002/2015GB005186, 2015.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
Last Glacial Maximum, Science, 325, 710–714,
https://doi.org/10.1126/science.1172873, 2009.
Costa, K. and McManus, J.: Efficacy of 230Th normalization in sediments from
the Juan de Fuca Ridge, northeast Pacific Ocean, Geochim. Cosmochim. Ac.,
197, 215–225, https://doi.org/10.1016/j.gca.2016.10.034, 2017.
Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng,
F., Dutay, J. C., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel,
C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L.,
Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J.
F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S.,
Robinson, L. F., Rowland, G. H., Roy-Barman, M., Tagliabue, A., Torfstein,
A., Winckler, G., and Zhou, Y.: 230Th Normalization: New Insights on an
Essential Tool for Quantifying Sedimentary Fluxes in the Modern and
Quaternary Ocean, Paleoceanogr. Paleoclim., 35, 1–36,
https://doi.org/10.1029/2019PA003820, 2020.
Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A.,
Fabel, D., García, J.-L., Geiger, A., Glasser, N. F., Gheorghiu, D. M.,
Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova, M.,
Palmer, A., Pelto, M., Rodés, Á., Sagredo, E. A., Smedley, R. K.,
Smellie, J. L., and Thorndycraft, V. R.: The evolution of the Patagonian Ice
Sheet from 35 ka to the present day (PATICE), Earth-Sci. Rev., 204,
103152, https://doi.org/10.1016/j.earscirev.2020.103152, 2020.
Deacon, G.: The Antarctic Circumpolar Ocean, Studies in Polar Research
Series, viii, Geol. Mag., 122, 306–306, 1984.
de Baar, H. J. W. and De Jong, J. T. M.: Distributions, sources and sinks of
iron in seawater, in: The Biogeochemistry of Iron in Seawater, edited by:
Turner, D. R. and Hunter, K. A., John Wiley & Sons Limited, West Sussex, England, 123–253,
2001.
de Baar, H. J. W., Bathmannt, U., Smetacek, V., Löscher, B. M., and Veth,
C.: Importance of iron for plankton blooms and carbon dioxide drawdown in
the Southern Ocean, Nature, 373, 412–415, https://doi.org/10.1038/373412a0, 1995.
Demidov, A. B., Mosharov, S. A., Gagarin, V. I., and Romanova, N. D.: Spatial
variability of the primary production and chlorophyll a concentration in the
drake passage in the austral spring, Oceanology, 51, 281–294,
https://doi.org/10.1134/S0001437011020056, 2011.
Diekmann, B.: Sedimentary patterns in the late Quaternary Southern Ocean,
Deep-Sea Res. Pt. II, 54, 2350–2366,
https://doi.org/10.1016/j.dsr2.2007.07.025, 2007.
Dugdale, R. C., Wilkerson, F. P., and Minas, H. J.: The role of a silicate
pump in driving new production, Deep-Sea Res. Pt. I,
42, 697–719, https://doi.org/10.1016/0967-0637(95)00015-X, 1995.
Dymond, J., Suess, E., and Lyle, M.: Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity, Paleoceanography, 7, 163–181, https://doi.org/10.1029/92PA00181, 1992.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111, 8753–8758,
https://doi.org/10.1073/pnas.1323922111, 2014.
Fitzsimmons, J. N., Boyle, E. A., and Jenkins, W. J.: Distal transport of
dissolved hydrothermal iron in the deep South Pacific Ocean, P. Natl.
Acad. Sci. USA, 111, 16654–16661, https://doi.org/10.1073/pnas.1418778111, 2014.
Fleisher, M. Q. and Anderson, R. F.: Assessing the collection efficiency of
Ross Sea sediment traps using 230 Th and 231 Pa, Deep-Sea Res., 50, 693–712,
https://doi.org/10.1016/S0967-0645(02)00591-X, 2003.
Franck, V. M., Brzezinski, M. A., Coale, K. H., and Nelson, D. M.: Iron and
silicic acid concentrations regulate Si uptake north and south of the Polar
Frontal Zone in the Pacific Sector of the Southern Ocean, Deep-Sea Res. Pt.
II, 47, 3315–3338,
https://doi.org/10.1016/S0967-0645(00)00070-9, 2000.
François, R., Altabet, M. A., Yu, E.-F., Sigman, D. M., Bacon, M. P.,
Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L. D.: Contribution of
Southern Ocean surface-water stratification to low atmospheric CO2
concentrations during the last glacial period, Nature, 389, 929–935,
https://doi.org/10.1038/40073, 1997.
Francois, R., Frank, M., Rutgers van der Loeff, M. M., and Bacon, M. P.: 230
Th normalization: An essential tool for interpreting sedimentary fluxes
during the late Quaternary, Paleoceanography, 19, PA1018,
https://doi.org/10.1029/2003PA000939, 2004.
Frank, M.: Accumulation rate and vertical rain rate of sediment core
PS2082-1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.81101, 2002.
Frank, M., Mangini, A., Gersonde, R., Rutgers van der Loeff, M., and Kuhn,
G.: Late Quaternary sediment dating and quantification of lateral sediment
redistribution applying 230Thex: a study from the eastern Atlantic sector of
the Southern Ocean, Geol. Rundschau, 85, 554–566,
https://doi.org/10.1007/BF02369010, 1996.
Frank, M., Gersonde, R., and Mangini, A.: Sediment Redistribution, 230Thex-
Normalization and Implications for the Reconstruction of Particle Flux and
Export Paleoproductivity, in: Use of Proxies in Paleoceanography,
Springer Berlin Heidelberg, Berlin, Heidelberg, 409–426, 1999.
Freeman, N. M., Lovenduski, N. S., Munro, D. R., Krumhardt, K. M., Lindsay,
K., Long, M. C., and Maclennan, M.: The Variable and Changing Southern Ocean
Silicate Front: Insights from the CESM Large Ensemble, Global Biogeochem.
Cy., 32, 752–768, https://doi.org/10.1029/2017GB005816, 2018.
Freeman, N. M., Munro, D. R., Sprintall, J., Mazloff, M. R., Purkey, S.,
Rosso, I., DeRanek, C. A., and Sweeney, C.: The Observed Seasonal Cycle of
Macronutrients in Drake Passage: Relationship to Fronts and Utility as a
Model Metric, J. Geophys. Res.-Oceans, 124, 4763–4783,
https://doi.org/10.1029/2019JC015052, 2019.
Galbraith, E. D. and Skinner, L. C.: The Biological Pump during the Last Glacial Maximum, Annu. Rev. Mar. Sci., 12, 559–586, https://doi.org/10.1146/annurev-marine-010419-010906, 2020.
Gersonde, R.: The expedition of the research vessel “Polarstern” to the
polar South Pacific in 2009/2010 (ANT-XXVI/2 – BIPOMAC), Gersonde, edited by:
Bornemann, H. and Chiaventone, B., Berichte zur Polar- und Meeresforschung
(Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener
Institute for Polar and Marine Research, Bremerhaven, 2011.
Gille, S. T.: Meridional displacement of the Antarctic Circumpolar Current,
Philos. T. R. Soc., 372, 20130273,
https://doi.org/10.1098/rsta.2013.0273, 2014.
Glasser, N. F., Jansson, K. N., Harrison, S., and Kleman, J.: The glacial
geomorphology and Pleistocene history of South America between 38∘ S and 56∘ S, Quaternary Sci. Rev., 27, 365–390,
https://doi.org/10.1016/j.quascirev.2007.11.011, 2008.
Gordon, A. L., Molinelli, E., and Baker, T.: Large-scale relative dynamic
topography of the Southern Ocean, J. Geophys. Res., 83, 3023,
https://doi.org/10.1029/jc083ic06p03023, 1978.
Gottschalk, J., Hodell, D. A., Skinner, L. C., Crowhurst, S. J., Jaccard, S.
L., and Charles, C.: Past Carbonate Preservation Events in the Deep Southeast
Atlantic Ocean (Cape Basin) and Their Implications for Atlantic Overturning
Dynamics and Marine Carbon Cycling, Paleoceanogr. Paleoclim., 33,
643–663, https://doi.org/10.1029/2018PA003353, 2018.
Gouretski, V. V. and Koltermann, K. P.: The World Ocean Circulation
Experiment (WOCE) Global Hydrographic Climatology, 35th Edn., edited by:
B. BHS Hamburg, available at:
http://rda.ucar.edu/datasets/ds285.4/ (last access: 14 January 2022), 2004.
Gowan, E. J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A.
L. C., Gyllencreutz, R., Mangerud, J., Svendsen, J.-I., and Lohmann, G.: A
new global ice sheet reconstruction for the past 80 000 years, Nat. Commun.,
12, 1199, https://doi.org/10.1038/s41467-021-21469-w, 2021.
Graham, R. M., De Boer, A. M., van Sebille, E., Kohfeld, K. E., and
Schlosser, C.: Inferring source regions and supply mechanisms of iron in the
Southern Ocean from satellite chlorophyll data, Deep-Sea Res. Pt. I, 104, 9–25, https://doi.org/10.1016/j.dsr.2015.05.007, 2015.
Ho, S. L., Mollenhauer, G., Lamy, F., Martínez-Garcia, A., Mohtadi, M.,
Gersonde, R., Hebbeln, D., Nunez-Ricardo, S., Rosell-Melé, A., and
Tiedemann, R.: Sea surface temperature variability in the Pacific sector of
the Southern Ocean over the past 700 kyr, Paleoceanography, 27, PA4202,
https://doi.org/10.1029/2012PA002317, 2012.
Hodell, D. A., Charles, C. D., and Ninnemann, U. S.: Comparison of
interglacial stages in the South Atlantic sector of the Southern Ocean for
the past 450 kyr: Implifications for Marine Isotope Stage (MIS) 11, Global
Planet. Change, 24, 7–26, https://doi.org/10.1016/S0921-8181(99)00069-7, 2000.
Honjo, S.: Particle export and the biological pump in the Southern Ocean,
Antarct. Sci., 16, 501–516, https://doi.org/10.1017/S0954102004002287, 2004.
Hopwood, M. J., Carroll, D., Höfer, J., Achterberg, E. P., Meire, L., Le
Moigne, F. A. C., Bach, L. T., Eich, C., Sutherland, D. A., and González,
H. E.: Highly variable iron content modulates iceberg-ocean fertilisation
and potential carbon export, Nat. Commun., 10, 5261,
https://doi.org/10.1038/s41467-019-13231-0, 2019.
Howard, W. R. and Prell, W. L.: Late Quaternary CaCO3 production and
preservation in the Southern Ocean: Implications for oceanic and atmospheric
carbon cycling, Paleoceanography, 9, 453–482, https://doi.org/10.1029/93PA03524,
1994.
Jaccard, S. L., Hayes, C. T., Martínez-García, A., Hodell, D. A.,
Anderson, R. F., Sigman, D. M., and Haug, G. H.: Suplementary materials: Two
modes of change in Southern Ocean productivity over the past million years,
Science, 339, 1419–1423, https://doi.org/10.1126/science.1227545, 2013.
Kaiser, J. and Lamy, F.: Links between Patagonian Ice Sheet fluctuations and
Antarctic dust variability during the last glacial period (MIS 4-2), Quaternary
Sci. Rev., 29, 1464–1471, https://doi.org/10.1016/j.quascirev.2010.03.005,
2010.
Kaiser, J., Lamy, F., Arz, H. W., and Hebbeln, D.: Dynamics of the
millennial-scale sea surface temperature and Patagonian Ice Sheet
fluctuations in southern Chile during the last 70 kyr (ODP Site 1233), Quatern.
Int., 161, 77–89, https://doi.org/10.1016/j.quaint.2006.10.024, 2007.
Kemp, A. E. S., Grigorov, I., Pearce, R. B., and Naveira Garabato, A. C.:
Migration of the Antarctic Polar Front through the mid-Pleistocene
transition: evidence and climatic implications, Quaternary Sci. Rev., 29,
1993–2009, https://doi.org/10.1016/j.quascirev.2010.04.027, 2010.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J.
L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, 1–23, https://doi.org/10.1029/2004GB002247, 2004.
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson, R. F.:
Role of marine biology in glacial-interglacial CO2 cycles, Science,
308, 74–78, https://doi.org/10.1126/science.1105375, 2005.
Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le
Quéré, C., and Bopp, L.: Southern Hemisphere westerly wind changes
during the Last Glacial Maximum: Paleo-data synthesis, Quaternary Sci. Rev.,
68, 76–95, https://doi.org/10.1016/j.quascirev.2013.01.017, 2013.
Kopczynska, E. E., Dehairs, F., Elskens, M., and Wright, S.: Phytoplankton
and microzooplankton variability between the Subtropical and Polar Fronts
south of Australia: Thriving under regenerative and new production in late
summer, J. Geophys. Res.-Oceans, 106, 31597–31609,
https://doi.org/10.1029/2000JC000278, 2001.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R.,
Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.:
Dust – Climate couplings over the past 800,000 years from the EPICA Dome C
ice core, Nature, 452, 616–619, https://doi.org/10.1038/nature06763, 2008.
Lamy, F.: The expedition PS97 of the research vessel POLARSTERN to the Drake
Passage in 2016, Bremerhaven, Germany, 2016, Berichte zur Polar- und
Meeresforschung = Reports on Polar and Marine Research, Alfred Wegener
Institute for Polar and Marine Research, Bremerhaven, Germany, 701, 571 pp.,
https://doi.org/10.2312/BzPM_0701_2016, 2016.
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., and Stoner, J.:
Antarctic Timing of Surface Water Changes off Chile and Patagonian Ice Sheet
Response, Science, 304, 1959–1962, https://doi.org/10.1126/science.1097863, 2004.
Lamy, F., Kilian, R., Arz, H. W., Francois, J. P., Kaiser, J., Prange, M., and Steinke, T.: Holocene changes in the position and intensity of the southern westerly wind belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/ngeo959, 2010.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martinez-Garcia, A., Lambert, F., and Kilian, R.: Increased
Dust Deposition in the Pacific Southern Ocean During Glacial Periods,
Science, 343, 403–407, https://doi.org/10.1126/science.1245424, 2014.
Lamy, F., Arz, H. W., Kilian, R., Lange, C. B., Lembke-Jene, L., Wengler,
M., Kaiser, J., Baeza-Urrea, O., Hall, I. R., Harada, N., and Tiedemann, R.:
Glacial reduction and millennial-scale variations in Drake Passage
throughflow, P. Natl. Acad. Sci. USA, 112, 13496–501,
https://doi.org/10.1073/pnas.1509203112, 2015.
Laufkötter, C., Stern, A. A., John, J. G., Stock, C. A., and Dunne, J.
P.: Glacial Iron Sources Stimulate the Southern Ocean Carbon Cycle, Geophys.
Res. Lett., 45, 13377–13385, https://doi.org/10.1029/2018GL079797, 2018.
Li, F., Ginoux, P., and Ramaswamy, V.: Distribution, transport, and
deposition of mineral dust in the Southern Ocean and Antarctica:
Contribution of major sources, J. Geophys. Res., 113, D10207,
https://doi.org/10.1029/2007JD009190, 2008.
Li, F., Ginoux, P., and Ramaswamy, V.: Transport of Patagonian dust to
Antarctica, J. Geophys. Res.-Atmos., 115, 1–9,
https://doi.org/10.1029/2009JD012356, 2010.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lowell, T. V., Heusser, C. J., Andersen, B. G., Moreno, P. I., Hauser, A.,
Heusser, L. E., Schluchter, C., Marchant, D. R., and Denton, G. H.:
Interhemispheric Correlation of Late Pleistocene Glacial Events, Science,
269, 1541–1549, https://doi.org/10.1126/science.269.5230.1541, 1995.
Marcantonio, F., Lyle, M., and Ibrahim, R.: Particle sorting during sediment
redistribution processes and the effect on 230Th-normalized mass
accumulation rates, Geophys. Res. Lett., 41, 5547–5554,
https://doi.org/10.1002/2014GL060477, 2014.
Marshall, J. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012.
Martin, J. H.: Glacial-interglacial CO2 change: The Iron Hypothesis,
Paleoceanography, 5, 1–13, https://doi.org/10.1029/PA005i001p00001, 1990.
Martínez-Garcia, A., Rosell-Melé, A., Geibert, W., Gersonde, R.,
Masqué, P., Gaspari, V., and Barbante, C.: Links between iron supply,
marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma,
Paleoceanography, 24, PA1207, https://doi.org/10.1029/2008PA001657, 2009.
Martínez-Garcia, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub,
M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron
Fertilization of the Subantarctic Ocean During the Last Ice Age, Science,
343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
Matsumoto, K., Chase, Z., and Kohfeld, K.: Different mechanisms of silicic
acid leakage and their biogeochemical consequences, Paleoceanography, 29,
238–254, https://doi.org/10.1002/2013PA002588, 2014.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes,
pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy.
Geosy., 7, Q10N05, https://doi.org/10.1029/2006GC001284, 2006.
McGee, D., Winckler, G., Borunda, A., Serno, S., Anderson, R. F., Recasens,
C., Bory, A., Gaiero, D., Jaccard, S. L., Kaplan, M., McManus, J. F., Revel,
M., and Sun, Y.: Tracking eolian dust with helium and thorium: Impacts of
grain size and provenance, Geochim. Cosmochim. Ac., 175, 47–67,
https://doi.org/10.1016/j.gca.2015.11.023, 2016.
Mengelt, C., Abbott, M. R., Barth, J. A., Letelier, R. M., Measures, C. I.,
and Vink, S.: Phytoplankton pigment distribution in relation to silicic
acid, iron and the physical structure across the Antarctic Polar Front,
170∘ W, during austral summer, Deep-Sea Res. Pt. II, 48, 4081–4100, https://doi.org/10.1016/S0967-0645(01)00081-9, 2001.
Meredith, M. P., Woodworth, P. L., Chereskin, T. K., Marshall, D. P.,
Allison, L. C., Bigg, G. R., Donohue, K., Heywood, K. J., Hughes, C. W.,
Hibbert, A., Hogg, A. M., Johnson, H. L., Jullion, L., King, B. A., Leach,
H., Lenn, Y. D., Maqueda, M. A. M., Munday, D. R., Garabato, A. C. N.,
Provost, C., Sallée, J. B., and Sprintall, J.: Sustained monitoring of
the southern ocean at drake passage: past achievements and future
priorities, Rev. Geophys., 49, RG4005, https://doi.org/10.1029/2010RG000348,
2011.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765,
2013.
Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid
determination of biogenic opal in pelagic marine sediments, Deep-Sea Res.
Pt. A, 36, 1415–1426,
https://doi.org/10.1016/0198-0149(89)90092-7, 1989.
Müller, P. J. and Schneider, R.: An automated leaching method for the
determination of opal in sediments and particulate matter, Deep-Sea Res.
Pt. I, 40, 425–444,
https://doi.org/10.1016/0967-0637(93)90140-X, 1993.
Naveira Garabato, A. C., Ferrari, R., and Polzin, K. L.: Eddy stirring in the
Southern Ocean, J. Geophys. Res., 116, C09019, https://doi.org/10.1029/2010JC006818,
2011.
Noble, T. L., Piotrowski, A. M., Robinson, L. F., McManus, J. F.,
Hillenbrand, C. D., and Bory, A. J. M.: Greater supply of Patagonian-sourced
detritus and transport by the ACC to the Atlantic sector of the Southern
Ocean during the last glacial period, Earth Planet. Sc. Lett., 317–318,
374–385, https://doi.org/10.1016/j.epsl.2011.10.007, 2012.
Nürnberg, C. C., Bohrmann, G., Schlüter, M., and Frank, M.: Barium
accumulation in the Atlantic sector of the Southern Ocean: Results From
190,000-year records, Paleoceanography, 12, 594–603,
https://doi.org/10.1029/97PA01130, 1997.
Orsi, H., Whitworth, T., and Nowlin Jr., W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res., 42, 641–673,
https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
PAGES, Past Interglacials Working Group of PAGES: Interglacials of the last
800,000years, Rev. Geophys., 54, 162–219,
https://doi.org/10.1002/2015RG000482, 2016.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, Eos T. Am. Geophys. Un., 77, 379–379,
https://doi.org/10.1029/96EO00259, 1996.
Paparazzo, F. E.: Tendencias espaciales y temporales en la distribución
de macronutrientes en aguas superficiales del Pasaje Drake, Ecol. Austral.,
26, 27–39, https://doi.org/10.25260/EA.16.26.1.0.142, 2016.
Paytan, A.: Ocean Paleoproductivity, in: Encyclopedia of Paleoclimatology and
Ancient Environments, Encyclopedia of Earth Sciences Series, edited by:
Gornitz, V., Springer Netherlands, Dordrecht, 643–651, 2009.
Peine, F., Turnewitsch, R., Mohn, C., Reichelt, T., Springer, B., and
Kaufmann, M.: The importance of tides for sediment dynamics in the deep
sea – Evidence from the particulate-matter tracer 234Th in deep-sea
environments with different tidal forcing, Deep-Sea Res. Pt. I, 56, 1182–1202, https://doi.org/10.1016/j.dsr.2009.03.009, 2009.
Rabassa, J.: Late Cenozoic Glaciations in Patagonia and Tierra del Fuego,
Dev. Quat. Sci., 11, 151–204, https://doi.org/10.1016/S1571-0866(07)10008-7, 2008.
Rabassa, J. and Clapperton, C. M.: Quaternary glaciations in the southern
hemisphere: An overview, Quaternary Sci. Rev., 9, 299–304,
https://doi.org/10.1016/0277-3791(90)90024-5, 1990.
Rabassa, J., Coronato, A., and Martínez, O.: Late Cenozoic glaciations
in Patagonia and Tierra del Fuego: An updated review, Biol. J. Linn. Soc.,
103, 316–335, https://doi.org/10.1111/j.1095-8312.2011.01681.x, 2011.
Renault, A., Provost, C., Sennéchael, N., Barré, N., and Kartavtseff,
A.: Two full-depth velocity sections in the Drake Passage in
2006 – Transport estimates, Deep-Sea Res. Pt. II,
58, 2572–2591, https://doi.org/10.1016/j.dsr2.2011.01.004, 2011.
Rigual-Hernández, A. S., Trull, T. W., Bray, S. G., Cortina, A., and Armand, L. K.: Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump, Biogeosciences, 12, 5309–5337, https://doi.org/10.5194/bg-12-5309-2015, 2015.
Rigual Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H., Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M., Ballegeer, A.-M., Fuertes, M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate export in the Southern Ocean, Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, 2020.
Roberts, J., McCave, I. N., McClymont, E. L., Kender, S., Hillenbrand,
C.-D., Matano, R., Hodell, D. A., and Peck, V. L.: Deglacial changes in flow
and frontal structure through the Drake Passage, Earth Planet. Sc. Lett.,
474, 397–408, https://doi.org/10.1016/j.epsl.2017.07.004, 2017.
Saavedra-Pellitero, M., Baumann, K. H., Lamy, F., and Köhler, P.:
Coccolithophore variability across Marine Isotope Stage 11 in the Pacific
sector of the Southern Ocean and its potential impact on the carbon cycle,
Paleoceanography, 32, 864–880, https://doi.org/10.1002/2017PA003156, 2017.
Saavedra-Pellitero, M., Baumann, K.-H., Fuertes, M. Á., Schulz, H., Marcon, Y., Vollmar, N. M., Flores, J.-A., and Lamy, F.: Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016, Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, 2019.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: 14 January 2022), 2021.
Schlüter, M. and Rickert, D.: Effect of pH on the measurement of
biogenic silica, Mar. Chem., 63, 81–92,
https://doi.org/10.1016/S0304-4203(98)00052-8, 1998.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat. Geosci.,
2, 337–340, https://doi.org/10.1038/ngeo501, 2009.
Shoenfelt, E. M., Sun, J., Winckler, G., Kaplan, M. R., Borunda, A. L.,
Farrell, K. R., Moreno, P. I., Gaiero, D. M., Recasens, C., Sambrotto, R. N.,
and Bostick, B. C.: High particulate iron(II) content in glacially sourced
dusts enhances productivity of a model diatom, Sci. Adv., 3, e1700314,
https://doi.org/10.1126/sciadv.1700314, 2017.
Shoenfelt, E. M., Winckler, G., Lamy, F., Anderson, R. F., and Bostick, B.
C.: Highly bioavailable dust-borne iron delivered to the Southern Ocean
during glacial periods, P. Natl. Acad. Sci. USA, 115,
11180–11185, https://doi.org/10.1073/pnas.1809755115, 2018.
Shoenfelt, E. M., Winckler, G., Annett, A. L., Hendry, K. R., and Bostick, B.
C.: Physical Weathering Intensity Controls Bioavailable Primary Iron(II)
Silicate Content in Major Global Dust Sources, Geophys. Res. Lett., 46,
10854–10864, https://doi.org/10.1029/2019GL084180, 2019.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial
cycles in atmospheric CO2 concentration, Nature, 466, 47–55,
https://doi.org/10.1038/nature09149, 2010.
Sprenk, D., Weber, E. M., Kuhn, G., Rosén, P., Frank, M.,
Molina-Kescher, M., Liebetrau, V., and Röhling, H. G.: Southern Ocean
bioproductivity during the last glacial cycle - New detection method and
decadal-scale insight from the Scotia Sea, Geol. Soc. Spec. Publ., 381,
245–261, https://doi.org/10.1144/SP381.17, 2013.
Strub, P. T., James, C., Montecino, V., Rutllant, J. A., and Blanco, J. L.:
Ocean circulation along the southern Chile transition region (38∘–46∘ S): Mean, seasonal and interannual variability, with a focus
on 2014–2016, Prog. Oceanogr., 172, 159–198,
https://doi.org/10.1016/j.pocean.2019.01.004, 2019.
Sugden, D. E., McCulloch, R. D., Bory, A. J.-M., and Hein, A. S.: Influence
of Patagonian glaciers on Antarctic dust deposition during the last glacial
period, Nat. Geosci., 2, 281–285, https://doi.org/10.1038/ngeo474, 2009.
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic,
B. K., and Key, R. M.: Current CaCO3 dissolution at the seafloor caused
by anthropogenic CO2, P. Natl. Acad. Sci. USA, 115, 11700–11705,
https://doi.org/10.1073/pnas.1804250115, 2018.
Suman, D. O. and Bacon, M. P.: Variations in Holocene sedimentation in the
North American Basin determined from 230Th measurements, Deep-Sea Res. Pt.
A, 36, 869–878, https://doi.org/10.1016/0198-0149(89)90033-2,
1989.
Tapia, R., Ho, S. L., Núñez-Ricardo, S., Marchant, M., Lamy, F., and
Hebbeln, D.: Increased marine productivity in the southern Humboldt Current
System during MIS 2–4 and 10–11, Paleoceanogr. Paleoclim., 33,
2–31, https://doi.org/10.1029/2020PA004066, 2021.
Thöle, L. M., Amsler, H. E., Moretti, S., Auderset, A., Gilgannon, J.,
Lippold, J., Vogel, H., Crosta, X., Mazaud, A., Michel, E.,
Martínez-García, A., and Jaccard, S. L.: Glacial-interglacial dust
and export production records from the Southern Indian Ocean, Earth Planet.
Sc. Lett., 525, 115716, https://doi.org/10.1016/j.epsl.2019.115716, 2019.
Toyos, M. H., Lamy, F., Lange, C. B., Lembke-Jene, L., Saavedra-Pellitero,
M., Esper, O., and Arz, H. W.: Antarctic Circumpolar Current Dynamics at the
Pacific Entrance to the Drake Passage Over the Past 1.3 Million Years,
Paleoceanogr. Paleoclim., 35, 1–20, https://doi.org/10.1029/2019PA003773,
2020.
Toyos, M. H., Winckler, G., Arz, H. W., Lembke-Jene, L., Lange, C. B., Kuhn, G., and Lamy, F.: Concentration, accumulation rates, Th fluxes, focusing factors, and productivity proxies on core PS97/093-2 over the past 400,000 years, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.934588, 2021.
Turekian, K. K. and Wedepohl, K. H.: Distribution of the Elements in Some
Major Units of the Earth's Crust, GSA Bull., 72, 175–192,
https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2, 1961.
Turnewitsch, R., Reyss, J.-L., Nycander, J., Waniek, J. J., and Lampitt, R.
S.: Internal tides and sediment dynamics in the deep sea – Evidence from
radioactive 234Th/238U disequilibria, Deep-Sea Res. Pt. I, 55, 1727–1747, https://doi.org/10.1016/j.dsr.2008.07.008, 2008.
Vernet, M., Sines, K., Chakos, D., Cefarelli, A. O., and Ekern, L.: Impacts
on phytoplankton dynamics by free-drifting icebergs in the NW Weddell Sea,
Deep-Sea Res. Pt. II, 58, 1422–1435,
https://doi.org/10.1016/j.dsr2.2010.11.022, 2011.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G.
M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.: Ice sheets matter for the
global carbon cycle, Nat. Commun., 10, 3567,
https://doi.org/10.1038/s41467-019-11394-4, 2019.
Wengler, M., Lamy, F., Struve, T., Borunda, A., Böning, P., Geibert, W.,
Kuhn, G., Pahnke, K., Roberts, J., Tiedemann, R., and Winckler, G.: A
geochemical approach to reconstruct modern dust fluxes and sources to the
South Pacific, Geochim. Cosmochim. Ac., 264, 205–223,
https://doi.org/10.1016/j.gca.2019.08.024, 2019.
Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D., and Mahowald, N.:
Covariant glacial-interglacial dust fluxes in the equatorial Pacific and
Antarctica, Science, 320, 93–96, https://doi.org/10.1126/science.1150595, 2008.
Winckler, G., Anderson, R. F., Jaccard, S. L., and Marcantonio, F.: Ocean
dynamics, not dust, have controlled equatorial Pacific productivity over the
past 500,000 years, P. Natl. Acad. Sci. USA, 113, 6119–6124,
https://doi.org/10.1073/pnas.1600616113, 2016.
Wu, S., Kuhn, G., Diekmann, B., Lembke-Jene, L., Tiedemann, R., Zheng, X.,
Ehrhardt, S., Arz, H. W., and Lamy, F.: Surface sediment characteristics
related to provenance and ocean circulation in the Drake Passage sector of
the Southern Ocean, Deep-Sea Res. Pt. I, 154,
103135, https://doi.org/10.1016/j.dsr.2019.103135, 2019.
Wu, S., Lembke-Jene, L., Lamy, F., Arz, H. W., Nowaczyk, N., Xiao, W.,
Zhang, X., Hass, H. C., Titschack, J., Zheng, X., Liu, J., Dumm, L.,
Diekmann, B., Nürnberg, D., Tiedemann, R., and Kuhn, G.: Orbital- and
millennial-scale Antarctic Circumpolar Current variability in Drake Passage
over the past 140,000 years, Nat. Commun., 12, 3948,
https://doi.org/10.1038/s41467-021-24264-9, 2021.
Wu, S.-Y. and Hou, S.: Impact of icebergs on net primary productivity in the Southern Ocean, The Cryosphere, 11, 707–722, https://doi.org/10.5194/tc-11-707-2017, 2017.
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is...