Articles | Volume 18, issue 1
https://doi.org/10.5194/cp-18-147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr
Programa de Postgrados en Oceanografía, Departamento de
Oceanografía, Facultad de Ciencias Naturales y Oceanográficas,
Universidad de Concepción, Concepción, Chile
Centro de Investigación Dinámica de Ecosistemas Marinos de
Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Gisela Winckler
Lamont-Doherty Earth Observatory, Columbia University, Palisades,
NY 10964, United States
Department of Earth and Environmental Sciences, Columbia
University, New York, NY 10027, United States
Helge W. Arz
Leibniz-Institut für Ostseeforschung Warnemünde (IOW),
Rostock-Warnemünde, Germany
Lester Lembke-Jene
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Carina B. Lange
Centro de Investigación Dinámica de Ecosistemas Marinos de
Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
Departamento de Oceanografía and Centro Oceanográfico
COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
Scripps Institution of Oceanography, La Jolla, California 92037,
United States
Gerhard Kuhn
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Frank Lamy
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und
Meeresforschung, Bremerhaven, Germany
Related authors
No articles found.
Janina Güntzel, Juliane Müller, Ralf Tiedemann, Gesine Mollenhauer, Lester Lembke-Jene, Estella Weigelt, Lasse Schopen, Niklas Wesch, Laura Kattein, Andrew N. Mackintosh, and Johann P. Klages
EGUsphere, https://doi.org/10.5194/egusphere-2025-2515, https://doi.org/10.5194/egusphere-2025-2515, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Combined multi-proxy sediment core analyses reveal the deglaciation along the Mac. Robertson Shelf, a yet insufficiently studied sector of the East Antarctic margin. Grounding line extent towards the continental shelf break prior to ~12.5 cal. ka BP and subsequent episodic mid-shelf retreat towards the early Holocene prevented Antarctic Bottom Water formation in its current form, hence suggesting either its absence or an alternative pre-Holocene formation mechanism.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, and Gerhard Schmiedl
Clim. Past, 21, 1025–1041, https://doi.org/10.5194/cp-21-1025-2025, https://doi.org/10.5194/cp-21-1025-2025, 2025
Short summary
Short summary
We report palaeoclimate and sediment provenance records for the last 220 kyr from a sediment core from the northern Red Sea. They comprise high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. The data sets document a strong temporal variability in dust influx on glacial–interglacial timescales and several shorter-term strong fluvial episodes. A key finding is that the Nile delta became a major dust source during glacioeustatic sea-level lowstands.
Isabell Hochfeld, Ben A. Ward, Anke Kremp, Juliane Romahn, Alexandra Schmidt, Miklós Bálint, Lutz Becks, Jérôme Kaiser, Helge W. Arz, Sarah Bolius, Laura S. Epp, Markus Pfenninger, Christopher A. Klausmeier, Elena Litchman, and Jana Hinners
Biogeosciences, 22, 2363–2380, https://doi.org/10.5194/bg-22-2363-2025, https://doi.org/10.5194/bg-22-2363-2025, 2025
Short summary
Short summary
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to biodiversity and ecosystem functioning, but their predictions vary widely. We argue that MEMs should consider evolutionary processes and undergo independent validation. Here, we present a novel framework for MEM development using validation data from sediment archives, which map long-term environmental and evolutionary change. Our approach is a crucial step towards improving the predictive power of MEMs.
Benjamin A. Keisling, Joerg M. Schaefer, Robert M. DeConto, Jason P. Briner, Nicolás E. Young, Caleb K. Walcott, Gisela Winckler, Allie Balter-Kennedy, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2427, https://doi.org/10.5194/egusphere-2024-2427, 2024
Short summary
Short summary
Understanding how much the Greenland ice sheet melted in response to past warmth helps better predicting future sea-level change. Here we present a framework for using numerical ice-sheet model simulations to provide constraints on how much mass the ice sheet loses before different areas become ice-free. As observations from subglacial archives become more abundant, this framework can guide subglacial sampling efforts to gain the most robust information about past ice-sheet geometries.
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023, https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
Short summary
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost mobilization, which occurred earlier in the Yukon than in the Amur river basin. Sea ice extent or surface temperatures of adjacent oceans might have had a strong influence on the timing of permafrost mobilization. In contrast to previous evidence, our records imply that during glacial peaks of permafrost decomposition, lipids and lignin might have been delivered to the ocean by identical processes.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Cited articles
Anderson, R. F., Chase, Z., Fleisher, M. Q., and Sachs, J.: The Southern
Ocean's biological pump during the Last Gla,cial Maximum, Deep-Sea Res. Pt. II, 49, 1909–1938,
https://doi.org/10.1016/S0967-0645(02)00018-8, 2002.
Anderson, R. F., Barker, S., Fleisher, M., Gersonde, R., Goldstein, S. L.,
Kuhn, G., Mortyn, P. G., Pahnke, K., and Sachs, J. P.: Biological response to
millennial variability of dust and nutrient supply in the Subantarctic South
Atlantic Ocean, Philos. T. R. Soc. A, 372, 20130054,
https://doi.org/10.1098/rsta.2013.0054, 2014.
Bacon, M. P.: Glacial to interglacial changes in carbonate and clay
sedimentation in the Atlantic Ocean estimated from 230Th measurements,
Isot. Geosci., 2, 97–111, 1984.
Berger, W. H., Smetacek, V., and Wefer, G.: Ocean Productivity and
Paleoproductivity – An Overview, in Productivity of the Ocean: Present and
Past, edited by: Berger, W., Smetacek, V., and Wefer, G., John
Wiley & Sons Limited, Berlin, 1–34, 1989.
Bianchi, C. and Gersonde, R.: The Southern Ocean surface between Marine
Isotope Stages 6 and 5d: Shape and timing of climate changes, Palaeogeogr.
Palaeoclim., 187, 151–177,
https://doi.org/10.1016/S0031-0182(02)00516-3, 2002.
Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise), Biogeosciences, 5, 215–225, https://doi.org/10.5194/bg-5-215-2008, 2008.
Boyd, P., LaRoche, J., Gall, M., Frew, R., and McKay, R. M. L.: Role of iron,
light, and silicate in controlling algal biomass in subantarctic waters SE
of New Zealand, J. Geophys. Res.-Oceans, 104, 13395–13408,
https://doi.org/10.1029/1999JC900009, 1999.
Boyd, P. W., Watson, J., Law, C. S., Abraham, E. R., Trull, T., Murdoch,
R., Bakker, D. C., Bowie, R., Buesseler, K. O., Chang, H., Charette, M.,
Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey,
M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M. T.,
McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K.,
Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and Zeldis,
J.: A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated
by iron fertilization, Nature, 407, 695–702, https://doi.org/10.1038/35037500,
2000.
Boyd, P. W., Arrigo, K. R., Strzepek, R., and Van Dijken, G. L.: Mapping
phytoplankton iron utilization: Insights into Southern Ocean supply
mechanisms, J. Geophys. Res.-Oceans, 117, 1–18,
https://doi.org/10.1029/2011JC007726, 2012.
Bradtmiller, L. I., Anderson, R. F., Fleisher, M. Q., and Burckle, L. H.:
Comparing glacial and Holocene opal fluxes in the Pacific sector of the
Southern Ocean, Paleoceanography, 24, 1–20, https://doi.org/10.1029/2008PA001693,
2009.
Broecker, W. S. and Clark, E.: Glacial-to-Holocene Redistribution of
Carbonate Ion in the Deep Sea, Science, 294, 2152–2155,
https://doi.org/10.1126/science.1064171, 2001.
Brzezinski, M. A., Pride, C. J., Franck, V. M., Sigman, D. M., Sarmiento, J.
L., Matsumoto, K., Gruber, N., Rau, G. H., and Coale, K. H.: A switch from
Si(OH)4 to NO depletion in the glacial Southern Ocean, Geophys. Res.
Lett., 29, 1564, https://doi.org/10.1029/2001GL014349, 2002.
Brzezinski, M. A., Jones, J. L., and Demarest, M. S.: Control of silica
production by iron and silicic acid during the Southern Ocean Iron
Experiment (SOFeX), Limnol. Oceanogr., 50, 810–824,
https://doi.org/10.4319/lo.2005.50.3.0810, 2005.
Buesseler, K. O.: The decoupling of production and particulate export in the
surface ocean, Global Biogeochem. Cy., 12, 297–310,
https://doi.org/10.1029/97GB03366, 1998.
Caniupán, M., Lamy, F., Lange, C. B., Kaiser, J., Arz, H., Kilian, R.,
Baeza Urrea, O., Aracena, C., Hebbeln, D., Kissel, C., Laj, C., Mollenhauer,
G., and Tiedemann, R.: Millennial-scale sea surface temperature and
Patagonian Ice Sheet changes off southernmost Chile (53∘ S) over
the past ∼60 kyr, Paleoceanography, 26, PA3221, https://doi.org/10.1029/2010PA002049,
2011.
Cárdenas, P., Lange, C. B., Vernet, M., Esper, O., Srain, B., Vorrath,
M.-E., Ehrhardt, S., Müller, J., Kuhn, G., Arz, H. W., Lembke-Jene, L.,
and Lamy, F.: Biogeochemical proxies and diatoms in surface sediments across
the Drake Passage reflect oceanic domains and frontal systems in the region,
Prog. Oceanogr., 174, 72–88, https://doi.org/10.1016/j.pocean.2018.10.004, 2019.
Carter, L., McCave, I. N., and Williams, M. J. M.: Chapter 4 Circulation and
Water Masses of the Southern Ocean: A Review, in: Developments in Earth and
Environmental Sciences, vol. 8, edited by: Florindo, F. and Soegert, M.,
Elsevier B.V., Amsterdam, 85–114, 2008.
Chapman, C. C., Lea, M.-A., Meyer, A., Sallée, J.-B., and Hindell, M.:
Defining Southern Ocean fronts and their influence on biological and
physical processes in a changing climate, Nat. Clim. Change, 10,
209–219, https://doi.org/10.1038/s41558-020-0705-4, 2020.
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Accumulation
of biogenic and lithogenic material in the Pacific sector of the Southern
Ocean during the past 40,000 years, Deep-Sea Res. Pt. II,
50, 799–832, https://doi.org/10.1016/S0967-0645(02)00595-7, 2003.
Chase, Z., Kohfeld, K. E., and Matsumoto, K.: Controls on biogenic silica
burial in the Southern Ocean, Global Biogeochem. Cy., 29, 1599–1616,
https://doi.org/10.1002/2015GB005186, 2015.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
Last Glacial Maximum, Science, 325, 710–714,
https://doi.org/10.1126/science.1172873, 2009.
Costa, K. and McManus, J.: Efficacy of 230Th normalization in sediments from
the Juan de Fuca Ridge, northeast Pacific Ocean, Geochim. Cosmochim. Ac.,
197, 215–225, https://doi.org/10.1016/j.gca.2016.10.034, 2017.
Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng,
F., Dutay, J. C., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel,
C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L.,
Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J.
F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S.,
Robinson, L. F., Rowland, G. H., Roy-Barman, M., Tagliabue, A., Torfstein,
A., Winckler, G., and Zhou, Y.: 230Th Normalization: New Insights on an
Essential Tool for Quantifying Sedimentary Fluxes in the Modern and
Quaternary Ocean, Paleoceanogr. Paleoclim., 35, 1–36,
https://doi.org/10.1029/2019PA003820, 2020.
Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A.,
Fabel, D., García, J.-L., Geiger, A., Glasser, N. F., Gheorghiu, D. M.,
Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova, M.,
Palmer, A., Pelto, M., Rodés, Á., Sagredo, E. A., Smedley, R. K.,
Smellie, J. L., and Thorndycraft, V. R.: The evolution of the Patagonian Ice
Sheet from 35 ka to the present day (PATICE), Earth-Sci. Rev., 204,
103152, https://doi.org/10.1016/j.earscirev.2020.103152, 2020.
Deacon, G.: The Antarctic Circumpolar Ocean, Studies in Polar Research
Series, viii, Geol. Mag., 122, 306–306, 1984.
de Baar, H. J. W. and De Jong, J. T. M.: Distributions, sources and sinks of
iron in seawater, in: The Biogeochemistry of Iron in Seawater, edited by:
Turner, D. R. and Hunter, K. A., John Wiley & Sons Limited, West Sussex, England, 123–253,
2001.
de Baar, H. J. W., Bathmannt, U., Smetacek, V., Löscher, B. M., and Veth,
C.: Importance of iron for plankton blooms and carbon dioxide drawdown in
the Southern Ocean, Nature, 373, 412–415, https://doi.org/10.1038/373412a0, 1995.
Demidov, A. B., Mosharov, S. A., Gagarin, V. I., and Romanova, N. D.: Spatial
variability of the primary production and chlorophyll a concentration in the
drake passage in the austral spring, Oceanology, 51, 281–294,
https://doi.org/10.1134/S0001437011020056, 2011.
Diekmann, B.: Sedimentary patterns in the late Quaternary Southern Ocean,
Deep-Sea Res. Pt. II, 54, 2350–2366,
https://doi.org/10.1016/j.dsr2.2007.07.025, 2007.
Dugdale, R. C., Wilkerson, F. P., and Minas, H. J.: The role of a silicate
pump in driving new production, Deep-Sea Res. Pt. I,
42, 697–719, https://doi.org/10.1016/0967-0637(95)00015-X, 1995.
Dymond, J., Suess, E., and Lyle, M.: Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity, Paleoceanography, 7, 163–181, https://doi.org/10.1029/92PA00181, 1992.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111, 8753–8758,
https://doi.org/10.1073/pnas.1323922111, 2014.
Fitzsimmons, J. N., Boyle, E. A., and Jenkins, W. J.: Distal transport of
dissolved hydrothermal iron in the deep South Pacific Ocean, P. Natl.
Acad. Sci. USA, 111, 16654–16661, https://doi.org/10.1073/pnas.1418778111, 2014.
Fleisher, M. Q. and Anderson, R. F.: Assessing the collection efficiency of
Ross Sea sediment traps using 230 Th and 231 Pa, Deep-Sea Res., 50, 693–712,
https://doi.org/10.1016/S0967-0645(02)00591-X, 2003.
Franck, V. M., Brzezinski, M. A., Coale, K. H., and Nelson, D. M.: Iron and
silicic acid concentrations regulate Si uptake north and south of the Polar
Frontal Zone in the Pacific Sector of the Southern Ocean, Deep-Sea Res. Pt.
II, 47, 3315–3338,
https://doi.org/10.1016/S0967-0645(00)00070-9, 2000.
François, R., Altabet, M. A., Yu, E.-F., Sigman, D. M., Bacon, M. P.,
Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L. D.: Contribution of
Southern Ocean surface-water stratification to low atmospheric CO2
concentrations during the last glacial period, Nature, 389, 929–935,
https://doi.org/10.1038/40073, 1997.
Francois, R., Frank, M., Rutgers van der Loeff, M. M., and Bacon, M. P.: 230
Th normalization: An essential tool for interpreting sedimentary fluxes
during the late Quaternary, Paleoceanography, 19, PA1018,
https://doi.org/10.1029/2003PA000939, 2004.
Frank, M.: Accumulation rate and vertical rain rate of sediment core
PS2082-1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.81101, 2002.
Frank, M., Mangini, A., Gersonde, R., Rutgers van der Loeff, M., and Kuhn,
G.: Late Quaternary sediment dating and quantification of lateral sediment
redistribution applying 230Thex: a study from the eastern Atlantic sector of
the Southern Ocean, Geol. Rundschau, 85, 554–566,
https://doi.org/10.1007/BF02369010, 1996.
Frank, M., Gersonde, R., and Mangini, A.: Sediment Redistribution, 230Thex-
Normalization and Implications for the Reconstruction of Particle Flux and
Export Paleoproductivity, in: Use of Proxies in Paleoceanography,
Springer Berlin Heidelberg, Berlin, Heidelberg, 409–426, 1999.
Freeman, N. M., Lovenduski, N. S., Munro, D. R., Krumhardt, K. M., Lindsay,
K., Long, M. C., and Maclennan, M.: The Variable and Changing Southern Ocean
Silicate Front: Insights from the CESM Large Ensemble, Global Biogeochem.
Cy., 32, 752–768, https://doi.org/10.1029/2017GB005816, 2018.
Freeman, N. M., Munro, D. R., Sprintall, J., Mazloff, M. R., Purkey, S.,
Rosso, I., DeRanek, C. A., and Sweeney, C.: The Observed Seasonal Cycle of
Macronutrients in Drake Passage: Relationship to Fronts and Utility as a
Model Metric, J. Geophys. Res.-Oceans, 124, 4763–4783,
https://doi.org/10.1029/2019JC015052, 2019.
Galbraith, E. D. and Skinner, L. C.: The Biological Pump during the Last Glacial Maximum, Annu. Rev. Mar. Sci., 12, 559–586, https://doi.org/10.1146/annurev-marine-010419-010906, 2020.
Gersonde, R.: The expedition of the research vessel “Polarstern” to the
polar South Pacific in 2009/2010 (ANT-XXVI/2 – BIPOMAC), Gersonde, edited by:
Bornemann, H. and Chiaventone, B., Berichte zur Polar- und Meeresforschung
(Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener
Institute for Polar and Marine Research, Bremerhaven, 2011.
Gille, S. T.: Meridional displacement of the Antarctic Circumpolar Current,
Philos. T. R. Soc., 372, 20130273,
https://doi.org/10.1098/rsta.2013.0273, 2014.
Glasser, N. F., Jansson, K. N., Harrison, S., and Kleman, J.: The glacial
geomorphology and Pleistocene history of South America between 38∘ S and 56∘ S, Quaternary Sci. Rev., 27, 365–390,
https://doi.org/10.1016/j.quascirev.2007.11.011, 2008.
Gordon, A. L., Molinelli, E., and Baker, T.: Large-scale relative dynamic
topography of the Southern Ocean, J. Geophys. Res., 83, 3023,
https://doi.org/10.1029/jc083ic06p03023, 1978.
Gottschalk, J., Hodell, D. A., Skinner, L. C., Crowhurst, S. J., Jaccard, S.
L., and Charles, C.: Past Carbonate Preservation Events in the Deep Southeast
Atlantic Ocean (Cape Basin) and Their Implications for Atlantic Overturning
Dynamics and Marine Carbon Cycling, Paleoceanogr. Paleoclim., 33,
643–663, https://doi.org/10.1029/2018PA003353, 2018.
Gouretski, V. V. and Koltermann, K. P.: The World Ocean Circulation
Experiment (WOCE) Global Hydrographic Climatology, 35th Edn., edited by:
B. BHS Hamburg, available at:
http://rda.ucar.edu/datasets/ds285.4/ (last access: 14 January 2022), 2004.
Gowan, E. J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A.
L. C., Gyllencreutz, R., Mangerud, J., Svendsen, J.-I., and Lohmann, G.: A
new global ice sheet reconstruction for the past 80 000 years, Nat. Commun.,
12, 1199, https://doi.org/10.1038/s41467-021-21469-w, 2021.
Graham, R. M., De Boer, A. M., van Sebille, E., Kohfeld, K. E., and
Schlosser, C.: Inferring source regions and supply mechanisms of iron in the
Southern Ocean from satellite chlorophyll data, Deep-Sea Res. Pt. I, 104, 9–25, https://doi.org/10.1016/j.dsr.2015.05.007, 2015.
Ho, S. L., Mollenhauer, G., Lamy, F., Martínez-Garcia, A., Mohtadi, M.,
Gersonde, R., Hebbeln, D., Nunez-Ricardo, S., Rosell-Melé, A., and
Tiedemann, R.: Sea surface temperature variability in the Pacific sector of
the Southern Ocean over the past 700 kyr, Paleoceanography, 27, PA4202,
https://doi.org/10.1029/2012PA002317, 2012.
Hodell, D. A., Charles, C. D., and Ninnemann, U. S.: Comparison of
interglacial stages in the South Atlantic sector of the Southern Ocean for
the past 450 kyr: Implifications for Marine Isotope Stage (MIS) 11, Global
Planet. Change, 24, 7–26, https://doi.org/10.1016/S0921-8181(99)00069-7, 2000.
Honjo, S.: Particle export and the biological pump in the Southern Ocean,
Antarct. Sci., 16, 501–516, https://doi.org/10.1017/S0954102004002287, 2004.
Hopwood, M. J., Carroll, D., Höfer, J., Achterberg, E. P., Meire, L., Le
Moigne, F. A. C., Bach, L. T., Eich, C., Sutherland, D. A., and González,
H. E.: Highly variable iron content modulates iceberg-ocean fertilisation
and potential carbon export, Nat. Commun., 10, 5261,
https://doi.org/10.1038/s41467-019-13231-0, 2019.
Howard, W. R. and Prell, W. L.: Late Quaternary CaCO3 production and
preservation in the Southern Ocean: Implications for oceanic and atmospheric
carbon cycling, Paleoceanography, 9, 453–482, https://doi.org/10.1029/93PA03524,
1994.
Jaccard, S. L., Hayes, C. T., Martínez-García, A., Hodell, D. A.,
Anderson, R. F., Sigman, D. M., and Haug, G. H.: Suplementary materials: Two
modes of change in Southern Ocean productivity over the past million years,
Science, 339, 1419–1423, https://doi.org/10.1126/science.1227545, 2013.
Kaiser, J. and Lamy, F.: Links between Patagonian Ice Sheet fluctuations and
Antarctic dust variability during the last glacial period (MIS 4-2), Quaternary
Sci. Rev., 29, 1464–1471, https://doi.org/10.1016/j.quascirev.2010.03.005,
2010.
Kaiser, J., Lamy, F., Arz, H. W., and Hebbeln, D.: Dynamics of the
millennial-scale sea surface temperature and Patagonian Ice Sheet
fluctuations in southern Chile during the last 70 kyr (ODP Site 1233), Quatern.
Int., 161, 77–89, https://doi.org/10.1016/j.quaint.2006.10.024, 2007.
Kemp, A. E. S., Grigorov, I., Pearce, R. B., and Naveira Garabato, A. C.:
Migration of the Antarctic Polar Front through the mid-Pleistocene
transition: evidence and climatic implications, Quaternary Sci. Rev., 29,
1993–2009, https://doi.org/10.1016/j.quascirev.2010.04.027, 2010.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J.
L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, 1–23, https://doi.org/10.1029/2004GB002247, 2004.
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson, R. F.:
Role of marine biology in glacial-interglacial CO2 cycles, Science,
308, 74–78, https://doi.org/10.1126/science.1105375, 2005.
Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le
Quéré, C., and Bopp, L.: Southern Hemisphere westerly wind changes
during the Last Glacial Maximum: Paleo-data synthesis, Quaternary Sci. Rev.,
68, 76–95, https://doi.org/10.1016/j.quascirev.2013.01.017, 2013.
Kopczynska, E. E., Dehairs, F., Elskens, M., and Wright, S.: Phytoplankton
and microzooplankton variability between the Subtropical and Polar Fronts
south of Australia: Thriving under regenerative and new production in late
summer, J. Geophys. Res.-Oceans, 106, 31597–31609,
https://doi.org/10.1029/2000JC000278, 2001.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R.,
Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.:
Dust – Climate couplings over the past 800,000 years from the EPICA Dome C
ice core, Nature, 452, 616–619, https://doi.org/10.1038/nature06763, 2008.
Lamy, F.: The expedition PS97 of the research vessel POLARSTERN to the Drake
Passage in 2016, Bremerhaven, Germany, 2016, Berichte zur Polar- und
Meeresforschung = Reports on Polar and Marine Research, Alfred Wegener
Institute for Polar and Marine Research, Bremerhaven, Germany, 701, 571 pp.,
https://doi.org/10.2312/BzPM_0701_2016, 2016.
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., and Stoner, J.:
Antarctic Timing of Surface Water Changes off Chile and Patagonian Ice Sheet
Response, Science, 304, 1959–1962, https://doi.org/10.1126/science.1097863, 2004.
Lamy, F., Kilian, R., Arz, H. W., Francois, J. P., Kaiser, J., Prange, M., and Steinke, T.: Holocene changes in the position and intensity of the southern westerly wind belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/ngeo959, 2010.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martinez-Garcia, A., Lambert, F., and Kilian, R.: Increased
Dust Deposition in the Pacific Southern Ocean During Glacial Periods,
Science, 343, 403–407, https://doi.org/10.1126/science.1245424, 2014.
Lamy, F., Arz, H. W., Kilian, R., Lange, C. B., Lembke-Jene, L., Wengler,
M., Kaiser, J., Baeza-Urrea, O., Hall, I. R., Harada, N., and Tiedemann, R.:
Glacial reduction and millennial-scale variations in Drake Passage
throughflow, P. Natl. Acad. Sci. USA, 112, 13496–501,
https://doi.org/10.1073/pnas.1509203112, 2015.
Laufkötter, C., Stern, A. A., John, J. G., Stock, C. A., and Dunne, J.
P.: Glacial Iron Sources Stimulate the Southern Ocean Carbon Cycle, Geophys.
Res. Lett., 45, 13377–13385, https://doi.org/10.1029/2018GL079797, 2018.
Li, F., Ginoux, P., and Ramaswamy, V.: Distribution, transport, and
deposition of mineral dust in the Southern Ocean and Antarctica:
Contribution of major sources, J. Geophys. Res., 113, D10207,
https://doi.org/10.1029/2007JD009190, 2008.
Li, F., Ginoux, P., and Ramaswamy, V.: Transport of Patagonian dust to
Antarctica, J. Geophys. Res.-Atmos., 115, 1–9,
https://doi.org/10.1029/2009JD012356, 2010.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lowell, T. V., Heusser, C. J., Andersen, B. G., Moreno, P. I., Hauser, A.,
Heusser, L. E., Schluchter, C., Marchant, D. R., and Denton, G. H.:
Interhemispheric Correlation of Late Pleistocene Glacial Events, Science,
269, 1541–1549, https://doi.org/10.1126/science.269.5230.1541, 1995.
Marcantonio, F., Lyle, M., and Ibrahim, R.: Particle sorting during sediment
redistribution processes and the effect on 230Th-normalized mass
accumulation rates, Geophys. Res. Lett., 41, 5547–5554,
https://doi.org/10.1002/2014GL060477, 2014.
Marshall, J. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012.
Martin, J. H.: Glacial-interglacial CO2 change: The Iron Hypothesis,
Paleoceanography, 5, 1–13, https://doi.org/10.1029/PA005i001p00001, 1990.
Martínez-Garcia, A., Rosell-Melé, A., Geibert, W., Gersonde, R.,
Masqué, P., Gaspari, V., and Barbante, C.: Links between iron supply,
marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma,
Paleoceanography, 24, PA1207, https://doi.org/10.1029/2008PA001657, 2009.
Martínez-Garcia, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub,
M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron
Fertilization of the Subantarctic Ocean During the Last Ice Age, Science,
343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
Matsumoto, K., Chase, Z., and Kohfeld, K.: Different mechanisms of silicic
acid leakage and their biogeochemical consequences, Paleoceanography, 29,
238–254, https://doi.org/10.1002/2013PA002588, 2014.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes,
pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy.
Geosy., 7, Q10N05, https://doi.org/10.1029/2006GC001284, 2006.
McGee, D., Winckler, G., Borunda, A., Serno, S., Anderson, R. F., Recasens,
C., Bory, A., Gaiero, D., Jaccard, S. L., Kaplan, M., McManus, J. F., Revel,
M., and Sun, Y.: Tracking eolian dust with helium and thorium: Impacts of
grain size and provenance, Geochim. Cosmochim. Ac., 175, 47–67,
https://doi.org/10.1016/j.gca.2015.11.023, 2016.
Mengelt, C., Abbott, M. R., Barth, J. A., Letelier, R. M., Measures, C. I.,
and Vink, S.: Phytoplankton pigment distribution in relation to silicic
acid, iron and the physical structure across the Antarctic Polar Front,
170∘ W, during austral summer, Deep-Sea Res. Pt. II, 48, 4081–4100, https://doi.org/10.1016/S0967-0645(01)00081-9, 2001.
Meredith, M. P., Woodworth, P. L., Chereskin, T. K., Marshall, D. P.,
Allison, L. C., Bigg, G. R., Donohue, K., Heywood, K. J., Hughes, C. W.,
Hibbert, A., Hogg, A. M., Johnson, H. L., Jullion, L., King, B. A., Leach,
H., Lenn, Y. D., Maqueda, M. A. M., Munday, D. R., Garabato, A. C. N.,
Provost, C., Sallée, J. B., and Sprintall, J.: Sustained monitoring of
the southern ocean at drake passage: past achievements and future
priorities, Rev. Geophys., 49, RG4005, https://doi.org/10.1029/2010RG000348,
2011.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765,
2013.
Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid
determination of biogenic opal in pelagic marine sediments, Deep-Sea Res.
Pt. A, 36, 1415–1426,
https://doi.org/10.1016/0198-0149(89)90092-7, 1989.
Müller, P. J. and Schneider, R.: An automated leaching method for the
determination of opal in sediments and particulate matter, Deep-Sea Res.
Pt. I, 40, 425–444,
https://doi.org/10.1016/0967-0637(93)90140-X, 1993.
Naveira Garabato, A. C., Ferrari, R., and Polzin, K. L.: Eddy stirring in the
Southern Ocean, J. Geophys. Res., 116, C09019, https://doi.org/10.1029/2010JC006818,
2011.
Noble, T. L., Piotrowski, A. M., Robinson, L. F., McManus, J. F.,
Hillenbrand, C. D., and Bory, A. J. M.: Greater supply of Patagonian-sourced
detritus and transport by the ACC to the Atlantic sector of the Southern
Ocean during the last glacial period, Earth Planet. Sc. Lett., 317–318,
374–385, https://doi.org/10.1016/j.epsl.2011.10.007, 2012.
Nürnberg, C. C., Bohrmann, G., Schlüter, M., and Frank, M.: Barium
accumulation in the Atlantic sector of the Southern Ocean: Results From
190,000-year records, Paleoceanography, 12, 594–603,
https://doi.org/10.1029/97PA01130, 1997.
Orsi, H., Whitworth, T., and Nowlin Jr., W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res., 42, 641–673,
https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
PAGES, Past Interglacials Working Group of PAGES: Interglacials of the last
800,000years, Rev. Geophys., 54, 162–219,
https://doi.org/10.1002/2015RG000482, 2016.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, Eos T. Am. Geophys. Un., 77, 379–379,
https://doi.org/10.1029/96EO00259, 1996.
Paparazzo, F. E.: Tendencias espaciales y temporales en la distribución
de macronutrientes en aguas superficiales del Pasaje Drake, Ecol. Austral.,
26, 27–39, https://doi.org/10.25260/EA.16.26.1.0.142, 2016.
Paytan, A.: Ocean Paleoproductivity, in: Encyclopedia of Paleoclimatology and
Ancient Environments, Encyclopedia of Earth Sciences Series, edited by:
Gornitz, V., Springer Netherlands, Dordrecht, 643–651, 2009.
Peine, F., Turnewitsch, R., Mohn, C., Reichelt, T., Springer, B., and
Kaufmann, M.: The importance of tides for sediment dynamics in the deep
sea – Evidence from the particulate-matter tracer 234Th in deep-sea
environments with different tidal forcing, Deep-Sea Res. Pt. I, 56, 1182–1202, https://doi.org/10.1016/j.dsr.2009.03.009, 2009.
Rabassa, J.: Late Cenozoic Glaciations in Patagonia and Tierra del Fuego,
Dev. Quat. Sci., 11, 151–204, https://doi.org/10.1016/S1571-0866(07)10008-7, 2008.
Rabassa, J. and Clapperton, C. M.: Quaternary glaciations in the southern
hemisphere: An overview, Quaternary Sci. Rev., 9, 299–304,
https://doi.org/10.1016/0277-3791(90)90024-5, 1990.
Rabassa, J., Coronato, A., and Martínez, O.: Late Cenozoic glaciations
in Patagonia and Tierra del Fuego: An updated review, Biol. J. Linn. Soc.,
103, 316–335, https://doi.org/10.1111/j.1095-8312.2011.01681.x, 2011.
Renault, A., Provost, C., Sennéchael, N., Barré, N., and Kartavtseff,
A.: Two full-depth velocity sections in the Drake Passage in
2006 – Transport estimates, Deep-Sea Res. Pt. II,
58, 2572–2591, https://doi.org/10.1016/j.dsr2.2011.01.004, 2011.
Rigual-Hernández, A. S., Trull, T. W., Bray, S. G., Cortina, A., and Armand, L. K.: Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump, Biogeosciences, 12, 5309–5337, https://doi.org/10.5194/bg-12-5309-2015, 2015.
Rigual Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H., Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M., Ballegeer, A.-M., Fuertes, M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate export in the Southern Ocean, Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, 2020.
Roberts, J., McCave, I. N., McClymont, E. L., Kender, S., Hillenbrand,
C.-D., Matano, R., Hodell, D. A., and Peck, V. L.: Deglacial changes in flow
and frontal structure through the Drake Passage, Earth Planet. Sc. Lett.,
474, 397–408, https://doi.org/10.1016/j.epsl.2017.07.004, 2017.
Saavedra-Pellitero, M., Baumann, K. H., Lamy, F., and Köhler, P.:
Coccolithophore variability across Marine Isotope Stage 11 in the Pacific
sector of the Southern Ocean and its potential impact on the carbon cycle,
Paleoceanography, 32, 864–880, https://doi.org/10.1002/2017PA003156, 2017.
Saavedra-Pellitero, M., Baumann, K.-H., Fuertes, M. Á., Schulz, H., Marcon, Y., Vollmar, N. M., Flores, J.-A., and Lamy, F.: Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016, Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, 2019.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: 14 January 2022), 2021.
Schlüter, M. and Rickert, D.: Effect of pH on the measurement of
biogenic silica, Mar. Chem., 63, 81–92,
https://doi.org/10.1016/S0304-4203(98)00052-8, 1998.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat. Geosci.,
2, 337–340, https://doi.org/10.1038/ngeo501, 2009.
Shoenfelt, E. M., Sun, J., Winckler, G., Kaplan, M. R., Borunda, A. L.,
Farrell, K. R., Moreno, P. I., Gaiero, D. M., Recasens, C., Sambrotto, R. N.,
and Bostick, B. C.: High particulate iron(II) content in glacially sourced
dusts enhances productivity of a model diatom, Sci. Adv., 3, e1700314,
https://doi.org/10.1126/sciadv.1700314, 2017.
Shoenfelt, E. M., Winckler, G., Lamy, F., Anderson, R. F., and Bostick, B.
C.: Highly bioavailable dust-borne iron delivered to the Southern Ocean
during glacial periods, P. Natl. Acad. Sci. USA, 115,
11180–11185, https://doi.org/10.1073/pnas.1809755115, 2018.
Shoenfelt, E. M., Winckler, G., Annett, A. L., Hendry, K. R., and Bostick, B.
C.: Physical Weathering Intensity Controls Bioavailable Primary Iron(II)
Silicate Content in Major Global Dust Sources, Geophys. Res. Lett., 46,
10854–10864, https://doi.org/10.1029/2019GL084180, 2019.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial
cycles in atmospheric CO2 concentration, Nature, 466, 47–55,
https://doi.org/10.1038/nature09149, 2010.
Sprenk, D., Weber, E. M., Kuhn, G., Rosén, P., Frank, M.,
Molina-Kescher, M., Liebetrau, V., and Röhling, H. G.: Southern Ocean
bioproductivity during the last glacial cycle - New detection method and
decadal-scale insight from the Scotia Sea, Geol. Soc. Spec. Publ., 381,
245–261, https://doi.org/10.1144/SP381.17, 2013.
Strub, P. T., James, C., Montecino, V., Rutllant, J. A., and Blanco, J. L.:
Ocean circulation along the southern Chile transition region (38∘–46∘ S): Mean, seasonal and interannual variability, with a focus
on 2014–2016, Prog. Oceanogr., 172, 159–198,
https://doi.org/10.1016/j.pocean.2019.01.004, 2019.
Sugden, D. E., McCulloch, R. D., Bory, A. J.-M., and Hein, A. S.: Influence
of Patagonian glaciers on Antarctic dust deposition during the last glacial
period, Nat. Geosci., 2, 281–285, https://doi.org/10.1038/ngeo474, 2009.
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic,
B. K., and Key, R. M.: Current CaCO3 dissolution at the seafloor caused
by anthropogenic CO2, P. Natl. Acad. Sci. USA, 115, 11700–11705,
https://doi.org/10.1073/pnas.1804250115, 2018.
Suman, D. O. and Bacon, M. P.: Variations in Holocene sedimentation in the
North American Basin determined from 230Th measurements, Deep-Sea Res. Pt.
A, 36, 869–878, https://doi.org/10.1016/0198-0149(89)90033-2,
1989.
Tapia, R., Ho, S. L., Núñez-Ricardo, S., Marchant, M., Lamy, F., and
Hebbeln, D.: Increased marine productivity in the southern Humboldt Current
System during MIS 2–4 and 10–11, Paleoceanogr. Paleoclim., 33,
2–31, https://doi.org/10.1029/2020PA004066, 2021.
Thöle, L. M., Amsler, H. E., Moretti, S., Auderset, A., Gilgannon, J.,
Lippold, J., Vogel, H., Crosta, X., Mazaud, A., Michel, E.,
Martínez-García, A., and Jaccard, S. L.: Glacial-interglacial dust
and export production records from the Southern Indian Ocean, Earth Planet.
Sc. Lett., 525, 115716, https://doi.org/10.1016/j.epsl.2019.115716, 2019.
Toyos, M. H., Lamy, F., Lange, C. B., Lembke-Jene, L., Saavedra-Pellitero,
M., Esper, O., and Arz, H. W.: Antarctic Circumpolar Current Dynamics at the
Pacific Entrance to the Drake Passage Over the Past 1.3 Million Years,
Paleoceanogr. Paleoclim., 35, 1–20, https://doi.org/10.1029/2019PA003773,
2020.
Toyos, M. H., Winckler, G., Arz, H. W., Lembke-Jene, L., Lange, C. B., Kuhn, G., and Lamy, F.: Concentration, accumulation rates, Th fluxes, focusing factors, and productivity proxies on core PS97/093-2 over the past 400,000 years, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.934588, 2021.
Turekian, K. K. and Wedepohl, K. H.: Distribution of the Elements in Some
Major Units of the Earth's Crust, GSA Bull., 72, 175–192,
https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2, 1961.
Turnewitsch, R., Reyss, J.-L., Nycander, J., Waniek, J. J., and Lampitt, R.
S.: Internal tides and sediment dynamics in the deep sea – Evidence from
radioactive 234Th/238U disequilibria, Deep-Sea Res. Pt. I, 55, 1727–1747, https://doi.org/10.1016/j.dsr.2008.07.008, 2008.
Vernet, M., Sines, K., Chakos, D., Cefarelli, A. O., and Ekern, L.: Impacts
on phytoplankton dynamics by free-drifting icebergs in the NW Weddell Sea,
Deep-Sea Res. Pt. II, 58, 1422–1435,
https://doi.org/10.1016/j.dsr2.2010.11.022, 2011.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G.
M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.: Ice sheets matter for the
global carbon cycle, Nat. Commun., 10, 3567,
https://doi.org/10.1038/s41467-019-11394-4, 2019.
Wengler, M., Lamy, F., Struve, T., Borunda, A., Böning, P., Geibert, W.,
Kuhn, G., Pahnke, K., Roberts, J., Tiedemann, R., and Winckler, G.: A
geochemical approach to reconstruct modern dust fluxes and sources to the
South Pacific, Geochim. Cosmochim. Ac., 264, 205–223,
https://doi.org/10.1016/j.gca.2019.08.024, 2019.
Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D., and Mahowald, N.:
Covariant glacial-interglacial dust fluxes in the equatorial Pacific and
Antarctica, Science, 320, 93–96, https://doi.org/10.1126/science.1150595, 2008.
Winckler, G., Anderson, R. F., Jaccard, S. L., and Marcantonio, F.: Ocean
dynamics, not dust, have controlled equatorial Pacific productivity over the
past 500,000 years, P. Natl. Acad. Sci. USA, 113, 6119–6124,
https://doi.org/10.1073/pnas.1600616113, 2016.
Wu, S., Kuhn, G., Diekmann, B., Lembke-Jene, L., Tiedemann, R., Zheng, X.,
Ehrhardt, S., Arz, H. W., and Lamy, F.: Surface sediment characteristics
related to provenance and ocean circulation in the Drake Passage sector of
the Southern Ocean, Deep-Sea Res. Pt. I, 154,
103135, https://doi.org/10.1016/j.dsr.2019.103135, 2019.
Wu, S., Lembke-Jene, L., Lamy, F., Arz, H. W., Nowaczyk, N., Xiao, W.,
Zhang, X., Hass, H. C., Titschack, J., Zheng, X., Liu, J., Dumm, L.,
Diekmann, B., Nürnberg, D., Tiedemann, R., and Kuhn, G.: Orbital- and
millennial-scale Antarctic Circumpolar Current variability in Drake Passage
over the past 140,000 years, Nat. Commun., 12, 3948,
https://doi.org/10.1038/s41467-021-24264-9, 2021.
Wu, S.-Y. and Hou, S.: Impact of icebergs on net primary productivity in the Southern Ocean, The Cryosphere, 11, 707–722, https://doi.org/10.5194/tc-11-707-2017, 2017.
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is...