Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Christopher J. Hollis
CORRESPONDING AUTHOR
GNS Science, Lower Hutt, 5040, New Zealand
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
GNS Science, Lower Hutt, 5040, New Zealand
Christopher D. Clowes
GNS Science, Lower Hutt, 5040, New Zealand
B. David A. Naafs
Organic Geochemistry Unit, School of Chemistry, School of Earth
Sciences and Cabot Institute for the Environment, University of Bristol,
Bristol, UK
Richard D. Pancost
Organic Geochemistry Unit, School of Chemistry, School of Earth
Sciences and Cabot Institute for the Environment, University of Bristol,
Bristol, UK
Kyle W. R. Taylor
Organic Geochemistry Unit, School of Chemistry, School of Earth
Sciences and Cabot Institute for the Environment, University of Bristol,
Bristol, UK
Jenny Dahl
GNS Science, Lower Hutt, 5040, New Zealand
Xun Li
GNS Science, Lower Hutt, 5040, New Zealand
G. Todd Ventura
GNS Science, Lower Hutt, 5040, New Zealand
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, Canada
Richard Sykes
GNS Science, Lower Hutt, 5040, New Zealand
Related authors
No articles found.
Olga Albot, Joshua Ratcliffe, Richard Levy, Sebastian Naeher, Daniel King, Catherine Ginnane, Jocelyn Turnbull, Mary Jill Ira Banta, Christopher Wood, Jenny Dahl, Jannine Cooper, and Andy Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2025-2949, https://doi.org/10.5194/egusphere-2025-2949, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Saltmarshes store carbon in their soils, contributing to climate change mitigation. We analysed five sites across Aotearoa New Zealand and found that carbon storage varies widely with land use and sediment inputs. Plant material was a major source of carbon in the soil and has been preserved for several centuries. Restoration increased soil carbon accumulation at two sites. These results improve national blue carbon estimates and highlight the role of saltmarshes as natural climate solutions.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Narges Ahangarian, Unyime Umoh, Natasha MacAdam, Adam MacDonald, Patricia Granados, Jeremy N. Bentley, Elish Redshaw, Martin G. Fowler, Venus Baghalabadi, and G. Todd Ventura
EGUsphere, https://doi.org/10.5194/egusphere-2025-1228, https://doi.org/10.5194/egusphere-2025-1228, 2025
Short summary
Short summary
This study documents previously unknown, shallow sediment stratigraphic archaeal zones that extend over a large section of the Scotian Slope of Northeastern Canada. These zones appear to be geochemically and not lithologically controlled. They are also not detectable by using traditional lipid biomarker ratios. They indicate subsurface microbial community structures to be more complex and tractable over large expanses of the continental margins.
Marjolaine Verret, Sebastian Naeher, Denis Lacelle, Catherine Ginnane, Warren Dickinson, Kevin Norton, Jocelyn Turnbull, and Richard Levy
EGUsphere, https://doi.org/10.5194/egusphere-2025-786, https://doi.org/10.5194/egusphere-2025-786, 2025
Short summary
Short summary
15 million years ago, the McMurdo Dry Valleys of Antarctica were dominated by a tundra environment. In contrast, the modern environment is amongst the coldest and driest on Earth. Using a permafrost core, this paper investigates the shift from a tundra- to a bacteria-dominated landscape. By differentiating between ancient and modern organic material, we further our understanding of preservation of ancient organic material and its response and contribution to future climate change.
Bella J. Duncan, Robert McKay, Richard Levy, Joseph G. Prebble, Timothy Naish, Osamu Seki, Christoph Kraus, Heiko Moossen, G. Todd Ventura, Denise K. Kulhanek, and James Bendle
EGUsphere, https://doi.org/10.5194/egusphere-2024-4021, https://doi.org/10.5194/egusphere-2024-4021, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We use plant wax compound specific stable isotopes to investigate how ancient Antarctic vegetation adapted to glacial conditions 23 million years ago. We find plants became less water efficient to prioritise photosynthesis during short, harsh growing seasons. Ecosystem changes also included enhanced aridity, and a shift to a stunted, low elevation vegetation. This shows the adaptability of ancient Antarctic vegetation under atmospheric CO2 conditions comparable to modern.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Caitlyn R. Witkowski, Vittoria Lauretano, Alex Farnsworth, Shufeng Li, Shi-Hu Li, Jan Peter Mayser, B. David A. Naafs, Robert A. Spicer, Tao Su, He Tang, Zhe-Kun Zhou, Paul J. Valdes, and Richard D. Pancost
EGUsphere, https://doi.org/10.5194/egusphere-2023-373, https://doi.org/10.5194/egusphere-2023-373, 2023
Preprint archived
Short summary
Short summary
Untangling the complex tectonic evolution in the Tibetan region can help us understand its impacts on climate, the Asian monsoon system, and the development of major biodiversity hotspots. We show that this “missing link” site between high elevation Tibet and low elevation coastal China had a dynamic environment but no temperature change, meaning its been at its current-day elevation for the past 34 million years.
Jeremy N. Bentley, Gregory T. Ventura, Clifford C. Walters, Stefan M. Sievert, and Jeffrey S. Seewald
Biogeosciences, 19, 4459–4477, https://doi.org/10.5194/bg-19-4459-2022, https://doi.org/10.5194/bg-19-4459-2022, 2022
Short summary
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Cited articles
Aboglila, S., Grice, K., Trinajstic, K., Dawson, D., and Williford, K. H.: Use of biomarker distributions and compound specific isotopes of carbon and hydrogen to delineate hydrocarbon characteristics in the East Sirte Basin (Libya), Org. Geochem., 41, 1249–1258,
https://doi.org/10.1016/j.orggeochem.2010.05.011, 2010.
Alexander, K., J. Meissner, K., and Bralower, T. J.: Sudden spreading of
corrosive bottom water during the Palaeocene–Eocene Thermal Maximum, Nat.
Geosci., 8, 458–461, https://doi.org/10.1038/ngeo2430, 2015.
Barnet, J. S. K., Littler, K., Westerhold, T., Kroon, D., Leng, M. J.,
Bailey, I., Röhl, U., and Zachos, J. C.: A high-fidelity benthic stable
isotope record of Late Cretaceous–early Eocene climate change and
carbon-cycling, Paleoceanography and Paleoclimatology, 34, 672–691, https://doi.org/10.1029/2019pa003556, 2019.
Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A.,
Klein, T., Pérez-Díaz, L., and Frank, M.: Major intensification of
Atlantic overturning circulation at the onset of Paleogene greenhouse
warmth, Nat. Commun., 9, 4954, https://doi.org/10.1038/s41467-018-07457-7, 2018.
Beck, R. A., Burbank, D. W., Sercombe, W. J., Olson, T. L., and Khan, A. M.:
Organic carbon exhumation and global warming during the early Himalayan
collision, Geology, 23, 387–390, https://doi.org/10.1130/0091-7613(1995)023<0387:OCEAGW>2.3.CO;2, 1995.
Bernaola, G., Baceta, J. I., Orue-Etxebarria, X., Alegret, L.,
Martín-Rubio, M., Arostegui, J., and Dinarès-Turell, J.: Evidence
of an abrupt environmental disruption during the mid-Paleocene biotic event
(Zumaia section, western Pyrenees), Geol. Soc. Am. Bull.,
119, 785–795, https://doi.org/10.1130/b26132.1, 2007.
Bertoni, C., Gan, Y., Paganoni, M., Mayer, J., Cartwright, J., Martin, J.,
Van Rensbergen, P., Wunderlich, A., and Clare, A.: Late Paleocene pipe swarm
in the Great South – Canterbury Basin (New Zealand), Mar. Petrol. Geol., 107, 451–466, https://doi.org/10.1016/j.marpetgeo.2019.05.039, 2019.
Bidigare, R. R., Fluegge, A., Freeman, K. H., Hanson, K. L., Hayes, J. M.,
Hollander, D., Jasper, J. P., King, L. L., Laws, E. A., Milder, J., Millero,
F. J., Pancost, R., Popp, B. N., Steinberg, P. A., and Wakeham, S. G.:
Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae, Global Biogeochem. Cy., 11, 279–292, https://doi.org/10.1029/96GB03939, 1997.
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., and
Brinkhuis, H.: Early Palaeogene temperature evolution of the southwest
Pacific Ocean, Nature, 461, 776–779, 2009.
Bijl, P. K., Frieling, J., Cramwinckel, M. J., Boschman, C., Sluijs, A., and Peterse, F.: Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172, Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, 2021.
Brune, S., Williams, S. E., and Müller, R. D.: Potential links between
continental rifting, CO2 degassing and climate change through time, Nat.
Geosci., 10, 941–946, https://doi.org/10.1038/s41561-017-0003-6, 2017.
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A.,
Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A.,
Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.:
Hydrological and associated biogeochemical consequences of rapid global
warming during the Paleocene-Eocene Thermal Maximum, Global Planet.
Change, 157, 114–138, https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Clyde, W. C., Tong, Y., Snell, K. E., Bowen, G. J., Ting, S., Koch, P. L.,
Li, Q., Wang, Y., and Meng, J.: An integrated stratigraphic record from the
Paleocene of the Chijiang Basin, Jiangxi Province (China): Implications for
mammalian turnover and Asian block rotations, Earth Planet. Sc. Lett., 269, 554–564, https://doi.org/10.1016/j.epsl.2008.03.009, 2008.
Contreras, L., Pross, J., Bijl, P. K., O'Hara, R. B., Raine, J. I., Sluijs, A., and Brinkhuis, H.: Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau), Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, 2014.
Cook, R. A., Sutherland, R., and Zhu, H.: Cretaceous – Cenozoic geology and
petroleum systems of the Great South Basin, New Zealand, Institute of
Geological & Nuclear Sciences monograph, Institute of Geological &
Nuclear Sciences, Lower Hutt, 190 pp., ISBN 0478096488, 1999.
Corfield, R. M. and Cartlidge, J. E.: Oceanographic and climatic
implications of the Palaeocene carbon isotope maximum, Terra Nova, 4,
443–455, 1992.
Corfield, R. M. and Norris, R. D.: Deep water circulation in the Paleocene
Ocean, in: Correlation of the early Paleogene in Northwest Europe, edited
by: Knox, R. W. O. B., Corfield, R. M., and Dunay, R. E., Geological Society
Special Publication No. 101, 443–456, https://doi.org/10.1144/GSL.SP.1996.101.01.21, 1996.
Crouch, E. M., Willumsen, P. S., Kulhanek, D. K., and Gibbs, S. J.: A
revised Paleocene (Teurian) dinoflagellate cyst zonation from eastern New
Zealand, Rev. Palaeobot. Palyno., 202, 47–79,
https://doi.org/10.1016/j.revpalbo.2013.12.004, 2014.
Cui, Y. and Schubert, B. A.: Quantifying uncertainty of past pCO2
determined from changes in C3 plant carbon isotope fractionation, Geochim. Cosmochim. Ac., 172, 127–138,
https://doi.org/10.1016/j.gca.2015.09.032, 2016.
Cui, Y. and Schubert, B. A.: Atmospheric pCO2 reconstructed across five
early Eocene global warming events, Earth Planet. Sc. Lett.,
478, 225–233, https://doi.org/10.1016/j.epsl.2017.08.038, 2017.
Cui, Y. and Schubert, B. A.: Towards determination of the source and
magnitude of atmospheric pCO2 change across the early Paleogene
hyperthermals, Global Planet. Change, 170, 120–125,
https://doi.org/10.1016/j.gloplacha.2018.08.011, 2018.
Dawson, D., Grice, K., and Alexander, R.: Effect of maturation on the
indigenous δD signatures of individual hydrocarbons in sediments and
crude oils from the Perth Basin (Western Australia), Org. Geochem.,
36, 95–104, https://doi.org/10.1016/j.orggeochem.2004.06.020, 2005.
DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang,
T., Pollard, D., and Beerling, D. J.: Past extreme warming events linked to
massive carbon release from thawing permafrost, Nature, 484, 87–91,
https://doi.org/10.1038/nature10929, 2012.
Dickens, G. R.: Rethinking the global carbon cycle with a large, dynamic and
microbially mediated gas hydrate capacitor, Earth Planet. Sc. Lett., 213, 169–183, 2003.
Diefendorf, A. F., Freeman, K. H., Wing, S. L., Currano, E. D., and Mueller,
K. E.: Paleogene plants fractionated carbon isotopes similar to modern
plants, Earth Planet. Sc. Lett., 429, 33–44, https://doi.org/10.1016/j.epsl.2015.07.029, 2015.
Erez, J. and Luz, B.: Experimental paleotemperature equation for planktonic foraminifera, Geochim. Cosmochim. Ac., 47, 1025–1031, https://doi.org/10.1016/0016-7037(83)90232-6, 1983.
Farquhar, G. D., Ehleringer, J. R, and Hubick, K. T.: Carbon Isotope
Discrimination and Photosynthesis, Annu. Rev. Plant Phys., 40, 503–537, https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989.
Fernandez, I., Mahieu, N., and Cadisch, G.: Carbon isotopic fractionation
during decomposition of plant materials of different quality, Global Biogeochem. Cy., 17, 1075, https://doi.org/10.1029/2001GB001834, 2003.
Field, B. D. and Browne, G.: Cretaceous Cenozoic sedimentary basins
and geological evolution of the Canterbury region, South Island, New
Zealand, New Zealand Geological Survey basin studies, vol. 2, New Zealand
Geological Survey, Lower Hutt, 94 pp., ISBN 0477025439, 1989.
Field, B. D. and Uruski, C. I.: Cretaceous-Cenozoic geology and
petroleum systems of the East Coast Region, Institute of Geological and
Nuclear Sciences monograph 19, Institute of Geological and Nuclear Sciences
Limited, Lower Hutt, 301 pp., ISBN 0478096100, 1997.
Field, B. D., Naeher, S., Clowes, C. D., Shepherd, C. L., Hollis, C. J.,
Sykes, R., Ventura, G. T., Pascher, K. M., and Griffin, A. C.: Depositional
Influences on the Petroleum Potential of the Waipawa Formation in the
Orui-1A Drillhole, Wairarapa, GNS Science Report 2017/49, 75 pp., https://doi.org/10.21420/G2MM18, 2018.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by
phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cy., 6, 185–198, 1992.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The Geologic Time
Scale 2012, Elsevier, Amsterdam, 1176 pp., ISBN 978-0-444-59425-9, 2012.
Grice, K., Mesmay, R. D., Glucina, A., and Wang, S.: An improved and rapid
5A molecular sieve method for gas chromatography isotope ratio mass
spectrometry of n-alkanes (C8–C30+), Org. Geochem., 39,
284–288, https://doi.org/10.1016/j.orggeochem.2007.12.009, 2008.
Gröcke, D. R.: Carbon isotope analyses of fossil plants as a
chemostratigraphic and palaeoenvironmental tool, Lethaia, 31, 1–13, 1998.
Gröcke, D. R., Hesselbo, S. P., and Jenkyns, H. C.:
Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere
chemistry and relation to sea-level change, Geology, 27, 155–158, 1999.
Hardenbol, J., Thierry, J., Farley, M. B., de Graciansky, P.-C., and Vail,
P. R.: Mesozoic and Cenozoic sequence chronostratigraphic framework of
European basins, in: Mesozoic and Cenozoic sequence stratigraphy of European
basins, SEPM Special Publication 60, edited by: de Graciansky, P.-C.,
Hardenbol, J., Jacquin, T., and Vail, P. R., Society for Sedimentary Geology, 3–13, https://doi.org/10.2110/pec.98.02.0003, 1998.
Harris, A. D., Miller, K. G., Browning, J. V., Sugarman, P. J., Olsson, R.
K., Cramer, B. S., and Wright, J. D.: Integrated stratigraphic studies of
Paleocene-lowermost Eocene sequences, New Jersey Coastal Plain: Evidence for
glacioeustatic control, Paleoceanography, 25, PA3211, https://doi.org/10.1029/2009pa001800, 2010.
Hedges, J. I., Cowie, G. L., Ertel, J. R., James Barbour, R., and Hatcher,
P. G.: Degradation of carbohydrates and lignins in buried woods, Geochim. Cosmochim. Ac., 49, 701–711, https://doi.org/10.1016/0016-7037(85)90165-6, 1985.
Hill, P. J. and Exon, N. F.: Tectonics and Basin Development of the Offshore
Tasmanian Area Incorporating Results from Deep Ocean Drilling, in: The
Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change
Between Australia and Antarctica, Geophysical Monograph 151, American Geophysical Union, Washington, DC, 19–42, https://doi.org/10.1029/151GM03,
2004.
Hilting, A. K., Kump, L. R., and Bralower, T. J.: Variations in the oceanic
vertical carbon isotope gradient and their implications for the
Paleocene-Eocene biological pump, Paleoceanography, 23, PA3222, https://doi.org/10.1029/2007pa001458, 2008.
Hines, B. R., Gazley, M. F., Collins, K. S., Bland, K. J., Crampton, J. S.,
and Ventura, G. T.: Chemostratigraphic resolution of widespread reducing
conditions in the southwest Pacific Ocean during the Late Paleocene,
Chem. Geol., 504, 236–252, https://doi.org/10.1016/j.chemgeo.2018.11.020, 2019.
Hollis, C. J., Dickens, G. R., Field, B. D., Jones, C. J., and Strong, C.
P.: The Paleocene-Eocene transition at Mead Stream, New Zealand: a southern
Pacific record of early Cenozoic global change, Palaeogeogr.
Palaeocl., 215, 313–343, 2005.
Hollis, C. J., Field, B. D., Crouch, E. M., and Sykes, R.: How good a source
rock is the Waipawa (black shale) Formation beyond the East Coast Basin? An
outcrop-based case study from Northland, in: New Zealand Petroleum
Conference 2006, 5–8 March 2006, Auckland, New Zealand, PR5007, 8 pp., 2006.
Hollis, C. J., Taylor, K. W. T., Handley, L., Pancost, R. D., Huber, M.,
Creech, J., Hines, B., Crouch, E. M., Morgans, H. E. G., Crampton, J. S.,
Gibbs, S., Pearson, P., and Zachos, J. C.: Early Paleogene temperature
history of the Southwest Pacific Ocean: reconciling proxies and models,
Earth Planet. Sc. Lett., 349–350, 53–66, 2012.
Hollis, C. J., Tayler, M. J. S., Andrew, B., Taylor, K. W., Lurcock, P.,
Bijl, P. K., Kulhanek, D. K., Crouch, E. M., Nelson, C. S., Pancost, R. D.,
Huber, M., Wilson, G. S., Ventura, G. T., Crampton, J. S., Schiøler, P.,
and Phillips, A.: Organic-rich sedimentation in the South Pacific Ocean
associated with Late Paleocene climatic cooling, Earth-Sci. Rev., 134,
81–97, https://doi.org/10.1016/j.earscirev.2014.03.006, 2014.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Hollis, C. J., Pascher, K. M., Sanfilippo, A., Nishimura, A., Kamikuri, S.-I., and Shepherd, C. L.: An Austral radiolarian biozonation for the Paleogene, Stratigraphy, 17, 213–278, https://doi.org/10.29041/strat.17.4.213-278, 2020.
Hyland, E. G., Sheldon, N. D., and Cotton, J. M.: Terrestrial evidence for a
two-stage mid-Paleocene biotic event, Palaeogeogr. Palaeocl., 417, 371–378, https://doi.org/10.1016/j.palaeo.2014.09.031, 2015.
Inglis, G. N., Rohrssen, M., Kennedy, E. M., Crouch, E. M., Raine, J. I., Strogen, D. P., Naafs, B. D. A., Collinson, M. E., and Pancost, R. D.: Terrestrial methane cycle perturbations during the onset of the Paleocene-Eocene Thermal Maximum, Geology, 49, 520–524, https://doi.org/10.1130/g48110.1, 2021.
Isaac, M. J., Herzer, R. H., Brook, F. J., and Hayward, B. W.: Cretaceous
and Cenozoic sedimentary basins of Northland, New Zealand, Institute of
Geological & Nuclear Sciences Monograph, vol. 8, 230 pp., ISBN 0478088078, 1994.
Killops, S. D., Hollis, C. J., Morgans, H. E. G., Sutherland, R., Field, B.
D., and Leckie, D. A.: Paleoceanographic significance of Late Paleocene
dysaerobia at the shelf/slope break around New Zealand, Palaeogeogr.
Palaeocl., 156, 51–70, 2000.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
King, P. R., Naish, T. R., Browne, G. H., Field, B. D., and Edbrooke, S. W.:
Cretaceous to Recent sedimentary patterns in New Zealand, Institute of
Geological and Nuclear Sciences folio series 1, Institute of Geological and
Nuclear Sciences folio series 1, 35 pp., ISBN 0478096526, 1999.
Komar, N., Zeebe, R. E., and Dickens, G. R.: Understanding long-term carbon
cycle trends: The late Paleocene through the early Eocene, Paleoceanography,
28, 650–662, https://doi.org/10.1002/palo.20060, 2013.
Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintseva,
S., and Scotese, C. R.: Late Cretaceous to Miocene sea-level estimates from
the New Jersey and Delaware coastal plain coreholes: an error analysis,
Basin Res., 20, 211–226, https://doi.org/10.1111/j.1365-2117.2008.00354.x, 2008.
Körner, C., Farquhar, G. D., and Roksandic, Z.: A global survey of
carbon isotope discrimination in plants from high altitude, Oecologia, 74,
623–632, https://doi.org/10.1007/BF00380063, 1988.
Kulhanek, D. K., Crouch, E. M., Tayler, M. J. S., and Hollis, C. J.:
Paleocene calcareous nannofossils from East Coast, New Zealand:
Biostratigraphy and paleoecology, Journal of Nannoplankton Research, 35,
155–176, 2015.
Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., and Paytan, A.:
Early Cenozoic decoupling of the global carbon and sulfur cycles,
Paleoceanography, 18, 1090, https://doi.org/10.1029/2003PA000908, 2003.
Littler, K., Röhl, U., Westerhold, T., and Zachos, J. C.: A
high-resolution benthic stable-isotope record for the South Atlantic:
Implications for orbital-scale changes in Late Paleocene–Early Eocene
climate and carbon cycling, Earth Planet. Sc. Lett., 401, 18–30,
https://doi.org/10.1016/j.epsl.2014.05.054, 2014.
Lomax, B. H., Lake, J. A., Leng, M. J., and Jardine, P. E.: An experimental
evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2, Geochim. Cosmochim. Ac., 247, 162–174,
https://doi.org/10.1016/j.gca.2018.12.026, 2019.
Moore, P. R.: Stratigraphy, composition, and environment of deposition of
the Whangai Formation and associated Late Cretaceous-Paleocene rocks,
eastern North Island, New Zealand, New Zealand Geological Survey Bulletin
100, 82 pp., ISSN 0077-9628, 1988.
Murray, A. P., Summons, R. E., Boreham, C. J., and Dowling, L. M.: Biomarker
and n-alkane isotope profiles for Tertiary oils: relationship to source rock depositional setting, Org. Geochem., 22, 521–526,
https://doi.org/10.1016/0146-6380(94)90124-4, 1994.
Naeher, S., Smittenberg, R. H., Gilli, A., Kirilova, E. P., Lotter, A. F., and Schubert, C. J.: Impact of recent lake eutrophication on microbial
community changes as revealed by high resolution lipid biomarkers in Rotsee
(Switzerland), Org. Geochem., 49, 86–95, 2012.
Naeher, S., Niemann, H., Peterse, F., Smittenberg, R. H., Zigah, P. K., and
Schubert, C. J.: Tracing the methane cycle with lipid biomarkers in
Lake Rotsee (Switzerland), Org. Geochem., 66, 174–181, 2014.
Naeher, S., Hollis, C. J., Clowes, C. D., Ventura, G. T., Shepherd, C. L.,
Crouch, E. M., Morgans, H. E. G., Bland, K. J., Strogen, D. P., and Sykes,
R.: Depositional and organofacies influences on the petroleum potential of
an unusual marine source rock: Waipawa Formation (Paleocene) in southern
East Coast Basin, New Zealand, Mar. Petrol. Geol., 104, 468–488, https://doi.org/10.1016/j.marpetgeo.2019.03.035, 2019.
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35, 699–702, https://doi.org/10.1130/G23648A.1, 2007.
Pancost, R. D., Freeman, K. H., and Patzkowsky, M. E.: Organic-matter source
variation and the expression of a late Middle Ordovician carbon isotope
excursion, Geology, 27, 1015–1018, 1999.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The biomarker guide: 1.
Biomarkers and isotopes in the environment and human history, Cambridge
University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511524868, 2005.
Raine, J. I., Strong, C. P., and Wilson, G. J.: Biostratigraphic revision of
petroleum exploration wells, Great South Basin, New Zealand. Institute of
Geological & Nuclear Sciences Science Report, 93-32, 146 pp., ISBN 0478070667, 1993.
Röhl, U., Brinkhuis, H., Sluijs, A., and Fuller, M.: On the search for
the Paleocene/Eocene boundary in the Southern Ocean: exploring ODP Leg 189
Holes 1171D and 1172D, Tasman Sea, in: The Cenozoic Southern Ocean:
Tectonics, Sedimentation, and Climate Change Between Australia and
Antarctica, edited by: Exon, N. F., Kennett, J. P., and Malone, M. J., AGU,
Washington, DC, 113–126, https://doi.org/10.1029/151GM08, 2004.
Rosenberg, Y. O., Kutuzov, I., and Amrani, A.: Sulfurization as a
preservation mechanism for the δ13C of biomarkers, Org. Geochem., 125, 66–69, https://doi.org/10.1016/j.orggeochem.2018.08.010, 2018.
Rotich, E. K., Handler, M. R., Naeher, S., Selby, D., Hollis, C. J., and
Sykes, R.: Re-Os geochronology and isotope systematics, and organic and
sulfur geochemistry of the middle–late Paleocene Waipawa Formation, New
Zealand: Insights into early Paleogene seawater Os isotope composition,
Chem. Geol., 536, 119473, https://doi.org/10.1016/j.chemgeo.2020.119473, 2020.
Saller, A., Lin, R., and Dunham, J.: Leaves in turbidite sands: The main
source of oil and gas in the deep-water Kutei Basin, Indonesia, AAPG
Bull., 90, 1585–1608, https://doi.org/10.1306/04110605127, 2006.
Schiøler, P.: Palynofacies and sequence stratigraphy of the Late Cretaceous to Paleogene succession in the Galleon-1 and Resolution-1 wells, Canterbury Basin, New Zealand, GNS Science Consultancy Report (New Zealand Petroleum Report, PR4366), 2011/123, GNS Science, Lower Hutt, 38 pp., 2011.
Schiøler, P., Rogers, K., Sykes, R., Hollis, C. J., Ilg, B., Meadows, D.,
Roncaglia, L., and Uruski, C.: Palynofacies, organic geochemistry and
depositional environment of the Tartan Formation (Late Paleocene), a
potential source rock in the Great South Basin, New Zealand, Mar. Petrol. Geol., 27, 351–369, https://doi.org/10.1016/j.marpetgeo.2009.09.006, 2010.
Schlanser, K., Diefendorf, A. F., Greenwood, D. R., Mueller, K. E., West, C.
K., Lowe, A. J., Basinger, J. F., Currano, E. D., Flynn, A. G., Fricke, H.
C., Geng, J., Meyer, H. W., and Peppe, D. J.: On geologic timescales, plant
carbon isotope fractionation responds to precipitation similarly to modern
plants and has a small negative correlation with pCO2, Geochim. Cosmochim. Ac., 270, 264–281, https://doi.org/10.1016/j.gca.2019.11.023, 2020.
Schleser, G. H., Frielingsdorf, J., and Blair, A.: Carbon isotope behaviour
in wood and cellulose during artificial aging, Chem. Geol., 158,
121–130, https://doi.org/10.1016/S0009-2541(99)00024-8, 1999.
Schouten, S., Woltering, M., Rijpstra, W. I. C., Sluijs, A., Brinkhuis, H.,
and Sinninghe Damsté, J. S.: The Paleocene–Eocene carbon isotope
excursion in higher plant organic matter: Differential fractionation of
angiosperms and conifers in the Arctic, Earth Planet. Sc. Lett.,
258, 581–592, https://doi.org/10.1016/j.epsl.2007.04.024, 2007.
Schubert, B. A. and Jahren, A. H.: The effect of atmospheric CO2
concentration on carbon isotope fractionation in C3 land plants, Geochim. Cosmochim. Ac., 96, 29–43, https://doi.org/10.1016/j.gca.2012.08.003, 2012.
Schubert, B. A. and Jahren, A. H.: Incorporating the effects of
photorespiration into terrestrial paleoclimate reconstruction, Earth-Sci. Rev., 177, 637–642, https://doi.org/10.1016/j.earscirev.2017.12.008, 2018.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P.
R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins,
G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M.,
Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl,
C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A.,
Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E.,
Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T.,
Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.
T., and Willumsen, P. S.: The Chicxulub asteroid impact and mass extinction
at the Cretaceous-Paleogene Boundary, Science, 327, 1214–1218, https://doi.org/10.1126/science.1177265, 2010.
Schweizer, M., Fear, J., and Cadisch, G.: Isotopic (13C) fractionation
during plant residue decomposition and its implications for soil organic
matter studies, Rapid Commun. Mass Spectrom., 13, 1284–1290, 1999.
Sexton, P. F., Norris, R. D., Wilson, P. A., Palike, H., Westerhold, T.,
Rohl, U., Bolton, C. T., and Gibbs, S.: Eocene global warming events driven
by ventilation of oceanic dissolved organic carbon, Nature, 471, 349–352,
2011.
Sinha, A. and Stott, L. D.: New atmospheric pCO2 estimates from palesols
during the late Paleocene/early Eocene global warming interval, Global Planet. Change, 9, 297–307, https://doi.org/10.1016/0921-8181(94)00010-7, 1994.
Sinninghe Damsté , J. S., Kok, M. D., Köster, J., and Schouten, S.:
Sulfurized carbohydrates: an important sedimentary sink for organic carbon?,
Earth Planet. Sc. Lett., 164, 7–13, 1998.
Slotnick, B. S., Dickens, G. R., Nicolo, M., Hollis, C. J., Crampton, J. S.,
Zachos, J. C., and Sluijs, A.: Numerous large amplitude variations in carbon
cycling and terrestrial weathering throughout the latest Paleocene and
earliest Eocene, J. Geol., 120, 487–505, 2012.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early
Paleogene carbon cycle perturbations, Global Biogeochem. Cy., 26,
GB4005, https://doi.org/10.1029/2011gb004224, 2012.
Sofer, Z.: Stable Carbon Isotope Compositions of Crude Oils: Application to
Source Depositional Environments and Petroleum Alteration, AAPG Bull.,
68, 31–49, https://doi.org/10.1306/ad460963-16f7-11d7-8645000102c1865d, 1984.
Speijer, R. P., Pälike, H., Hollis, C. J., Hooker, J. J., and Ogg, J.
G.: Chapter 28 – The Paleogene Period, in: Geologic Time Scale 2020, edited
by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier,
1087–1140, https://doi.org/10.1016/B978-0-12-824360-2.00028-0, 2020.
Stagpoole, V., Browne, G. H., Ilg, B., Herzer, R., Reid, E., Bland, K. J.,
Griffin, A. G., and Uruski, C.: Petroleum prospectivity of Reinga Basin, New Zealand, GNS Science Consultancy Report (New Zealand Petroleum Report, PR5042), 105 pp., 2009.
Sykes, R. and Zink, K.-G.: The New Zealand Source Rock Extracts Database. GNS Science Data Series 14c, New Zealand Petroleum Report, PR4516, 2012.
Sykes, R., Rogers, K. M., Phillips, A., Zink, K.-G., and Ventura, G. T.: The New Zealand Petroleum Carbon and Hydrogen Isotope Database. GNS Science Data Series 14d, New Zealand Petroleum Report, PR4517, 2012.
Taylor, K.: Paleocene climate and carbon cycle: insights into an unstable
greenhouse from a biomarker and compound specific carbon isotope approach,
PhD thesis, University of Bristol, Bristol, 310 pp., 2011.
Taylor, K. W. R., Willumsen, P. S., Hollis, C. J., and Pancost, R. D.: South
Pacific evidence for the long-term climate impact of the
Cretaceous/Paleogene boundary event, Earth-Sci. Rev., 179, 287–302,
https://doi.org/10.1016/j.earscirev.2018.02.012, 2018.
Tipple, B. J., Meyers, S. R., and Pagani, M.: Carbon isotope ratio of
Cenozoic CO2: A comparative evaluation of available geochemical
proxies, Paleoceanography, 25, PA3202, https://doi.org/10.1029/2009pa001851, 2010.
Urban, M. A., Nelson, D. M., Jiménez-Moreno, G., Châteauneuf, J.-J.,
Pearson, A., and Hu, F. S.: Isotopic evidence of C4 grasses in southwestern
Europe during the Early Oligocene–Middle Miocene, Geology, 38, 1091–1094, https://doi.org/10.1130/g31117.1, 2010.
van Bergen, P. F. and Poole, I.: Stable carbon isotopes of wood: a clue to
palaeoclimate?, Palaeogeogr. Palaeocl., 182, 31–45, https://doi.org/10.1016/S0031-0182(01)00451-5, 2002.
van Kaam-Peters, H. M. E., Schouten, S., Köster, J., and Sinninghe
Damstè, J. S.: Controls on the molecular and carbon isotopic composition
of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence
for preservation of carbohydrates through sulfurisation, Geochim. Cosmochim. Ac., 62, 3259–3283, https://doi.org/10.1016/S0016-7037(98)00231-2, 1998.
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale,
V., Bowles, J., and Evans, H. F.: Astronomical calibration of the Paleocene
time, Palaeogeogr. Palaeocl., 257, 377–403, 2008.
Westerhold, T., Röhl, U., Donner, B., McCarren, H. K., and Zachos, J.
C.: A complete high-resolution Paleocene benthic stable isotope record for
the central Pacific (ODP Site 1209), Paleoceanography, 26, PA2216, https://doi.org/10.1029/2010pa002092, 2011.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global extent
of early Eocene hyperthermal events: A new Pacific benthic foraminiferal
isotope record from Shatsky Rise (ODP Site 1209), Paleoceanography and
Paleoclimatology, 33, 626–642, https://doi.org/10.1029/2017PA003306, 2018.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A.,
Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren,
H., and Kroon, D.: Rapid Acidification of the Ocean During the
Paleocene-Eocene Thermal Maximum, Science, 308, 1611–1615, https://doi.org/10.1126/science.1109004, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451,
279–283, 2008.
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Previous studies of Paleogene greenhouse climates identified short-lived global warming events,...