Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Christopher J. Hollis
CORRESPONDING AUTHOR
GNS Science, Lower Hutt, 5040, New Zealand
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
GNS Science, Lower Hutt, 5040, New Zealand
Christopher D. Clowes
GNS Science, Lower Hutt, 5040, New Zealand
B. David A. Naafs
Organic Geochemistry Unit, School of Chemistry, School of Earth
Sciences and Cabot Institute for the Environment, University of Bristol,
Bristol, UK
Richard D. Pancost
Organic Geochemistry Unit, School of Chemistry, School of Earth
Sciences and Cabot Institute for the Environment, University of Bristol,
Bristol, UK
Kyle W. R. Taylor
Organic Geochemistry Unit, School of Chemistry, School of Earth
Sciences and Cabot Institute for the Environment, University of Bristol,
Bristol, UK
Jenny Dahl
GNS Science, Lower Hutt, 5040, New Zealand
Xun Li
GNS Science, Lower Hutt, 5040, New Zealand
G. Todd Ventura
GNS Science, Lower Hutt, 5040, New Zealand
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, Canada
Richard Sykes
GNS Science, Lower Hutt, 5040, New Zealand
Related authors
No articles found.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Caitlyn R. Witkowski, Vittoria Lauretano, Alex Farnsworth, Shufeng Li, Shi-Hu Li, Jan Peter Mayser, B. David A. Naafs, Robert A. Spicer, Tao Su, He Tang, Zhe-Kun Zhou, Paul J. Valdes, and Richard D. Pancost
EGUsphere, https://doi.org/10.5194/egusphere-2023-373, https://doi.org/10.5194/egusphere-2023-373, 2023
Preprint archived
Short summary
Short summary
Untangling the complex tectonic evolution in the Tibetan region can help us understand its impacts on climate, the Asian monsoon system, and the development of major biodiversity hotspots. We show that this “missing link” site between high elevation Tibet and low elevation coastal China had a dynamic environment but no temperature change, meaning its been at its current-day elevation for the past 34 million years.
Jeremy N. Bentley, Gregory T. Ventura, Clifford C. Walters, Stefan M. Sievert, and Jeffrey S. Seewald
Biogeosciences, 19, 4459–4477, https://doi.org/10.5194/bg-19-4459-2022, https://doi.org/10.5194/bg-19-4459-2022, 2022
Short summary
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
David J. Wilton, Marcus P. S. Badger, Euripides P. Kantzas, Richard D. Pancost, Paul J. Valdes, and David J. Beerling
Geosci. Model Dev., 12, 1351–1364, https://doi.org/10.5194/gmd-12-1351-2019, https://doi.org/10.5194/gmd-12-1351-2019, 2019
Short summary
Short summary
Methane is an important greenhouse gas naturally produced in wetlands (areas of land inundated with water). Models of the Earth's past climate need estimates of the amounts of methane wetlands produce; and in order to calculate those we need to model wetlands. In this work we develop a method for modelling the fraction of an area of the Earth that is wetland, repeat this over all the Earth's land surface and apply this to a study of the Earth as it was around 50 million years ago.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Richard H. Levy, Gavin B. Dunbar, Marcus J. Vandergoes, Jamie D. Howarth, Tony Kingan, Alex R. Pyne, Grant Brotherston, Michael Clarke, Bob Dagg, Matthew Hill, Evan Kenton, Steve Little, Darcy Mandeno, Chris Moy, Philip Muldoon, Patrick Doyle, Conrad Raines, Peter Rutland, Delia Strong, Marianna Terezow, Leise Cochrane, Remo Cossu, Sean Fitzsimons, Fabio Florindo, Alexander L. Forrest, Andrew R. Gorman, Darrell S. Kaufman, Min Kyung Lee, Xun Li, Pontus Lurcock, Nicholas McKay, Faye Nelson, Jennifer Purdie, Heidi A. Roop, S. Geoffrey Schladow, Abha Sood, Phaedra Upton, Sharon L. Walker, and Gary S. Wilson
Sci. Dril., 24, 41–50, https://doi.org/10.5194/sd-24-41-2018, https://doi.org/10.5194/sd-24-41-2018, 2018
Short summary
Short summary
A new annually resolvable sedimentary record of southern hemisphere climate has been recovered from Lake Ohau, South Island, New Zealand. The Lake Ohau Climate History (LOCH) Project acquired cores from two sites that preserve an 80 m thick sequence of laminated mud that accumulated since the lake formed ~ 17 000 years ago. Cores were recovered using a purpose-built barge and drilling system designed to recover soft sediment from relatively thick sedimentary sequences at water depths up to 100 m.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Pedro Alejandro Ruiz-Ortiz, José Manuel Castro, Ginés Alfonso de Gea, Ian Jarvis, José Miguel Molina, Luis Miguel Nieto, Richard David Pancost, María Luisa Quijano, Matías Reolid, Peter William Skelton, and Helmut Jürg Weissert
Sci. Dril., 21, 41–46, https://doi.org/10.5194/sd-21-41-2016, https://doi.org/10.5194/sd-21-41-2016, 2016
Short summary
Short summary
The Cretaceous was punctuated by several episodes of accelerated global change, defined as Oceanic Anoxic Events (OAE), that reflect abrupt changes in global carbon cycling. In this progress report, we present a new drill core recovering an Aptian section spanning OAE1a in southern Spain. The Cau section is located in the easternmost part of the Prebetic Zone (Betic Cordillera). All the studies performed reveal that the Cau section represents an excellent site to further investigate OAE1a.
Daniel J. Lunt, Alex Farnsworth, Claire Loptson, Gavin L. Foster, Paul Markwick, Charlotte L. O'Brien, Richard D. Pancost, Stuart A. Robinson, and Neil Wrobel
Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, https://doi.org/10.5194/cp-12-1181-2016, 2016
Short summary
Short summary
We explore the influence of changing geography from the period ~ 150 million years ago to ~ 35 million years ago, using a set of 19 climate model simulations. We find that without any CO2 change, the global mean temperature is remarkably constant, but that regionally there are significant changes in temperature which we link back to changes in ocean circulation. Finally, we explore the implications of our findings for the interpretation of geological indicators of past temperatures.
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
S. Naeher, M. Geraga, G. Papatheodorou, G. Ferentinos, H. Kaberi, and C. J. Schubert
Biogeosciences, 9, 5081–5094, https://doi.org/10.5194/bg-9-5081-2012, https://doi.org/10.5194/bg-9-5081-2012, 2012
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Precise dating of deglacial Laptev Sea sediments via 14C and authigenic 10Be∕9Be – assessing local 14C reservoir ages
Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change
Variations in the Biological Pump through the Miocene: Evidence from organic carbon burial in Pacific Ocean sediments
Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)
Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum
Astronomical calibration of the geological timescale: closing the middle Eocene gap
Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean
A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum
Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
Clim. Past, 20, 2617–2628, https://doi.org/10.5194/cp-20-2617-2024, https://doi.org/10.5194/cp-20-2617-2024, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age–depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Mitchell Lyle and Annette Olivarez Lyle
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-34, https://doi.org/10.5194/cp-2024-34, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Studies of past warm intervals show that greenhouse gases are a key factor to warm the earth. However, feedbacks are needed to maintain warm periods. We investigate whether changes in the ocean degradation depth for plankton-produced organic matter might change ocean carbon storage. Low Corg burial in sediments of the Miocene Climate Optimum (MCO) warm interval relative to more recent periods fits with less efficient Corg transfer to the abyss, maintaining a higher level of MCO atmospheric CO2.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
Claudia Agnini, David J. A. Spofforth, Gerald R. Dickens, Domenico Rio, Heiko Pälike, Jan Backman, Giovanni Muttoni, and Edoardo Dallanave
Clim. Past, 12, 883–909, https://doi.org/10.5194/cp-12-883-2016, https://doi.org/10.5194/cp-12-883-2016, 2016
Short summary
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
G. R. Dickens
Clim. Past, 7, 831–846, https://doi.org/10.5194/cp-7-831-2011, https://doi.org/10.5194/cp-7-831-2011, 2011
A. Sluijs, P. K. Bijl, S. Schouten, U. Röhl, G.-J. Reichart, and H. Brinkhuis
Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, https://doi.org/10.5194/cp-7-47-2011, 2011
R. E. M. Rickaby, J. Henderiks, and J. N. Young
Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, https://doi.org/10.5194/cp-6-771-2010, 2010
Cited articles
Aboglila, S., Grice, K., Trinajstic, K., Dawson, D., and Williford, K. H.: Use of biomarker distributions and compound specific isotopes of carbon and hydrogen to delineate hydrocarbon characteristics in the East Sirte Basin (Libya), Org. Geochem., 41, 1249–1258,
https://doi.org/10.1016/j.orggeochem.2010.05.011, 2010.
Alexander, K., J. Meissner, K., and Bralower, T. J.: Sudden spreading of
corrosive bottom water during the Palaeocene–Eocene Thermal Maximum, Nat.
Geosci., 8, 458–461, https://doi.org/10.1038/ngeo2430, 2015.
Barnet, J. S. K., Littler, K., Westerhold, T., Kroon, D., Leng, M. J.,
Bailey, I., Röhl, U., and Zachos, J. C.: A high-fidelity benthic stable
isotope record of Late Cretaceous–early Eocene climate change and
carbon-cycling, Paleoceanography and Paleoclimatology, 34, 672–691, https://doi.org/10.1029/2019pa003556, 2019.
Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A.,
Klein, T., Pérez-Díaz, L., and Frank, M.: Major intensification of
Atlantic overturning circulation at the onset of Paleogene greenhouse
warmth, Nat. Commun., 9, 4954, https://doi.org/10.1038/s41467-018-07457-7, 2018.
Beck, R. A., Burbank, D. W., Sercombe, W. J., Olson, T. L., and Khan, A. M.:
Organic carbon exhumation and global warming during the early Himalayan
collision, Geology, 23, 387–390, https://doi.org/10.1130/0091-7613(1995)023<0387:OCEAGW>2.3.CO;2, 1995.
Bernaola, G., Baceta, J. I., Orue-Etxebarria, X., Alegret, L.,
Martín-Rubio, M., Arostegui, J., and Dinarès-Turell, J.: Evidence
of an abrupt environmental disruption during the mid-Paleocene biotic event
(Zumaia section, western Pyrenees), Geol. Soc. Am. Bull.,
119, 785–795, https://doi.org/10.1130/b26132.1, 2007.
Bertoni, C., Gan, Y., Paganoni, M., Mayer, J., Cartwright, J., Martin, J.,
Van Rensbergen, P., Wunderlich, A., and Clare, A.: Late Paleocene pipe swarm
in the Great South – Canterbury Basin (New Zealand), Mar. Petrol. Geol., 107, 451–466, https://doi.org/10.1016/j.marpetgeo.2019.05.039, 2019.
Bidigare, R. R., Fluegge, A., Freeman, K. H., Hanson, K. L., Hayes, J. M.,
Hollander, D., Jasper, J. P., King, L. L., Laws, E. A., Milder, J., Millero,
F. J., Pancost, R., Popp, B. N., Steinberg, P. A., and Wakeham, S. G.:
Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae, Global Biogeochem. Cy., 11, 279–292, https://doi.org/10.1029/96GB03939, 1997.
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., and
Brinkhuis, H.: Early Palaeogene temperature evolution of the southwest
Pacific Ocean, Nature, 461, 776–779, 2009.
Bijl, P. K., Frieling, J., Cramwinckel, M. J., Boschman, C., Sluijs, A., and Peterse, F.: Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172, Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, 2021.
Brune, S., Williams, S. E., and Müller, R. D.: Potential links between
continental rifting, CO2 degassing and climate change through time, Nat.
Geosci., 10, 941–946, https://doi.org/10.1038/s41561-017-0003-6, 2017.
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A.,
Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A.,
Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.:
Hydrological and associated biogeochemical consequences of rapid global
warming during the Paleocene-Eocene Thermal Maximum, Global Planet.
Change, 157, 114–138, https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Clyde, W. C., Tong, Y., Snell, K. E., Bowen, G. J., Ting, S., Koch, P. L.,
Li, Q., Wang, Y., and Meng, J.: An integrated stratigraphic record from the
Paleocene of the Chijiang Basin, Jiangxi Province (China): Implications for
mammalian turnover and Asian block rotations, Earth Planet. Sc. Lett., 269, 554–564, https://doi.org/10.1016/j.epsl.2008.03.009, 2008.
Contreras, L., Pross, J., Bijl, P. K., O'Hara, R. B., Raine, J. I., Sluijs, A., and Brinkhuis, H.: Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau), Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, 2014.
Cook, R. A., Sutherland, R., and Zhu, H.: Cretaceous – Cenozoic geology and
petroleum systems of the Great South Basin, New Zealand, Institute of
Geological & Nuclear Sciences monograph, Institute of Geological &
Nuclear Sciences, Lower Hutt, 190 pp., ISBN 0478096488, 1999.
Corfield, R. M. and Cartlidge, J. E.: Oceanographic and climatic
implications of the Palaeocene carbon isotope maximum, Terra Nova, 4,
443–455, 1992.
Corfield, R. M. and Norris, R. D.: Deep water circulation in the Paleocene
Ocean, in: Correlation of the early Paleogene in Northwest Europe, edited
by: Knox, R. W. O. B., Corfield, R. M., and Dunay, R. E., Geological Society
Special Publication No. 101, 443–456, https://doi.org/10.1144/GSL.SP.1996.101.01.21, 1996.
Crouch, E. M., Willumsen, P. S., Kulhanek, D. K., and Gibbs, S. J.: A
revised Paleocene (Teurian) dinoflagellate cyst zonation from eastern New
Zealand, Rev. Palaeobot. Palyno., 202, 47–79,
https://doi.org/10.1016/j.revpalbo.2013.12.004, 2014.
Cui, Y. and Schubert, B. A.: Quantifying uncertainty of past pCO2
determined from changes in C3 plant carbon isotope fractionation, Geochim. Cosmochim. Ac., 172, 127–138,
https://doi.org/10.1016/j.gca.2015.09.032, 2016.
Cui, Y. and Schubert, B. A.: Atmospheric pCO2 reconstructed across five
early Eocene global warming events, Earth Planet. Sc. Lett.,
478, 225–233, https://doi.org/10.1016/j.epsl.2017.08.038, 2017.
Cui, Y. and Schubert, B. A.: Towards determination of the source and
magnitude of atmospheric pCO2 change across the early Paleogene
hyperthermals, Global Planet. Change, 170, 120–125,
https://doi.org/10.1016/j.gloplacha.2018.08.011, 2018.
Dawson, D., Grice, K., and Alexander, R.: Effect of maturation on the
indigenous δD signatures of individual hydrocarbons in sediments and
crude oils from the Perth Basin (Western Australia), Org. Geochem.,
36, 95–104, https://doi.org/10.1016/j.orggeochem.2004.06.020, 2005.
DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang,
T., Pollard, D., and Beerling, D. J.: Past extreme warming events linked to
massive carbon release from thawing permafrost, Nature, 484, 87–91,
https://doi.org/10.1038/nature10929, 2012.
Dickens, G. R.: Rethinking the global carbon cycle with a large, dynamic and
microbially mediated gas hydrate capacitor, Earth Planet. Sc. Lett., 213, 169–183, 2003.
Diefendorf, A. F., Freeman, K. H., Wing, S. L., Currano, E. D., and Mueller,
K. E.: Paleogene plants fractionated carbon isotopes similar to modern
plants, Earth Planet. Sc. Lett., 429, 33–44, https://doi.org/10.1016/j.epsl.2015.07.029, 2015.
Erez, J. and Luz, B.: Experimental paleotemperature equation for planktonic foraminifera, Geochim. Cosmochim. Ac., 47, 1025–1031, https://doi.org/10.1016/0016-7037(83)90232-6, 1983.
Farquhar, G. D., Ehleringer, J. R, and Hubick, K. T.: Carbon Isotope
Discrimination and Photosynthesis, Annu. Rev. Plant Phys., 40, 503–537, https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989.
Fernandez, I., Mahieu, N., and Cadisch, G.: Carbon isotopic fractionation
during decomposition of plant materials of different quality, Global Biogeochem. Cy., 17, 1075, https://doi.org/10.1029/2001GB001834, 2003.
Field, B. D. and Browne, G.: Cretaceous Cenozoic sedimentary basins
and geological evolution of the Canterbury region, South Island, New
Zealand, New Zealand Geological Survey basin studies, vol. 2, New Zealand
Geological Survey, Lower Hutt, 94 pp., ISBN 0477025439, 1989.
Field, B. D. and Uruski, C. I.: Cretaceous-Cenozoic geology and
petroleum systems of the East Coast Region, Institute of Geological and
Nuclear Sciences monograph 19, Institute of Geological and Nuclear Sciences
Limited, Lower Hutt, 301 pp., ISBN 0478096100, 1997.
Field, B. D., Naeher, S., Clowes, C. D., Shepherd, C. L., Hollis, C. J.,
Sykes, R., Ventura, G. T., Pascher, K. M., and Griffin, A. C.: Depositional
Influences on the Petroleum Potential of the Waipawa Formation in the
Orui-1A Drillhole, Wairarapa, GNS Science Report 2017/49, 75 pp., https://doi.org/10.21420/G2MM18, 2018.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by
phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cy., 6, 185–198, 1992.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The Geologic Time
Scale 2012, Elsevier, Amsterdam, 1176 pp., ISBN 978-0-444-59425-9, 2012.
Grice, K., Mesmay, R. D., Glucina, A., and Wang, S.: An improved and rapid
5A molecular sieve method for gas chromatography isotope ratio mass
spectrometry of n-alkanes (C8–C30+), Org. Geochem., 39,
284–288, https://doi.org/10.1016/j.orggeochem.2007.12.009, 2008.
Gröcke, D. R.: Carbon isotope analyses of fossil plants as a
chemostratigraphic and palaeoenvironmental tool, Lethaia, 31, 1–13, 1998.
Gröcke, D. R., Hesselbo, S. P., and Jenkyns, H. C.:
Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere
chemistry and relation to sea-level change, Geology, 27, 155–158, 1999.
Hardenbol, J., Thierry, J., Farley, M. B., de Graciansky, P.-C., and Vail,
P. R.: Mesozoic and Cenozoic sequence chronostratigraphic framework of
European basins, in: Mesozoic and Cenozoic sequence stratigraphy of European
basins, SEPM Special Publication 60, edited by: de Graciansky, P.-C.,
Hardenbol, J., Jacquin, T., and Vail, P. R., Society for Sedimentary Geology, 3–13, https://doi.org/10.2110/pec.98.02.0003, 1998.
Harris, A. D., Miller, K. G., Browning, J. V., Sugarman, P. J., Olsson, R.
K., Cramer, B. S., and Wright, J. D.: Integrated stratigraphic studies of
Paleocene-lowermost Eocene sequences, New Jersey Coastal Plain: Evidence for
glacioeustatic control, Paleoceanography, 25, PA3211, https://doi.org/10.1029/2009pa001800, 2010.
Hedges, J. I., Cowie, G. L., Ertel, J. R., James Barbour, R., and Hatcher,
P. G.: Degradation of carbohydrates and lignins in buried woods, Geochim. Cosmochim. Ac., 49, 701–711, https://doi.org/10.1016/0016-7037(85)90165-6, 1985.
Hill, P. J. and Exon, N. F.: Tectonics and Basin Development of the Offshore
Tasmanian Area Incorporating Results from Deep Ocean Drilling, in: The
Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change
Between Australia and Antarctica, Geophysical Monograph 151, American Geophysical Union, Washington, DC, 19–42, https://doi.org/10.1029/151GM03,
2004.
Hilting, A. K., Kump, L. R., and Bralower, T. J.: Variations in the oceanic
vertical carbon isotope gradient and their implications for the
Paleocene-Eocene biological pump, Paleoceanography, 23, PA3222, https://doi.org/10.1029/2007pa001458, 2008.
Hines, B. R., Gazley, M. F., Collins, K. S., Bland, K. J., Crampton, J. S.,
and Ventura, G. T.: Chemostratigraphic resolution of widespread reducing
conditions in the southwest Pacific Ocean during the Late Paleocene,
Chem. Geol., 504, 236–252, https://doi.org/10.1016/j.chemgeo.2018.11.020, 2019.
Hollis, C. J., Dickens, G. R., Field, B. D., Jones, C. J., and Strong, C.
P.: The Paleocene-Eocene transition at Mead Stream, New Zealand: a southern
Pacific record of early Cenozoic global change, Palaeogeogr.
Palaeocl., 215, 313–343, 2005.
Hollis, C. J., Field, B. D., Crouch, E. M., and Sykes, R.: How good a source
rock is the Waipawa (black shale) Formation beyond the East Coast Basin? An
outcrop-based case study from Northland, in: New Zealand Petroleum
Conference 2006, 5–8 March 2006, Auckland, New Zealand, PR5007, 8 pp., 2006.
Hollis, C. J., Taylor, K. W. T., Handley, L., Pancost, R. D., Huber, M.,
Creech, J., Hines, B., Crouch, E. M., Morgans, H. E. G., Crampton, J. S.,
Gibbs, S., Pearson, P., and Zachos, J. C.: Early Paleogene temperature
history of the Southwest Pacific Ocean: reconciling proxies and models,
Earth Planet. Sc. Lett., 349–350, 53–66, 2012.
Hollis, C. J., Tayler, M. J. S., Andrew, B., Taylor, K. W., Lurcock, P.,
Bijl, P. K., Kulhanek, D. K., Crouch, E. M., Nelson, C. S., Pancost, R. D.,
Huber, M., Wilson, G. S., Ventura, G. T., Crampton, J. S., Schiøler, P.,
and Phillips, A.: Organic-rich sedimentation in the South Pacific Ocean
associated with Late Paleocene climatic cooling, Earth-Sci. Rev., 134,
81–97, https://doi.org/10.1016/j.earscirev.2014.03.006, 2014.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Hollis, C. J., Pascher, K. M., Sanfilippo, A., Nishimura, A., Kamikuri, S.-I., and Shepherd, C. L.: An Austral radiolarian biozonation for the Paleogene, Stratigraphy, 17, 213–278, https://doi.org/10.29041/strat.17.4.213-278, 2020.
Hyland, E. G., Sheldon, N. D., and Cotton, J. M.: Terrestrial evidence for a
two-stage mid-Paleocene biotic event, Palaeogeogr. Palaeocl., 417, 371–378, https://doi.org/10.1016/j.palaeo.2014.09.031, 2015.
Inglis, G. N., Rohrssen, M., Kennedy, E. M., Crouch, E. M., Raine, J. I., Strogen, D. P., Naafs, B. D. A., Collinson, M. E., and Pancost, R. D.: Terrestrial methane cycle perturbations during the onset of the Paleocene-Eocene Thermal Maximum, Geology, 49, 520–524, https://doi.org/10.1130/g48110.1, 2021.
Isaac, M. J., Herzer, R. H., Brook, F. J., and Hayward, B. W.: Cretaceous
and Cenozoic sedimentary basins of Northland, New Zealand, Institute of
Geological & Nuclear Sciences Monograph, vol. 8, 230 pp., ISBN 0478088078, 1994.
Killops, S. D., Hollis, C. J., Morgans, H. E. G., Sutherland, R., Field, B.
D., and Leckie, D. A.: Paleoceanographic significance of Late Paleocene
dysaerobia at the shelf/slope break around New Zealand, Palaeogeogr.
Palaeocl., 156, 51–70, 2000.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
King, P. R., Naish, T. R., Browne, G. H., Field, B. D., and Edbrooke, S. W.:
Cretaceous to Recent sedimentary patterns in New Zealand, Institute of
Geological and Nuclear Sciences folio series 1, Institute of Geological and
Nuclear Sciences folio series 1, 35 pp., ISBN 0478096526, 1999.
Komar, N., Zeebe, R. E., and Dickens, G. R.: Understanding long-term carbon
cycle trends: The late Paleocene through the early Eocene, Paleoceanography,
28, 650–662, https://doi.org/10.1002/palo.20060, 2013.
Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintseva,
S., and Scotese, C. R.: Late Cretaceous to Miocene sea-level estimates from
the New Jersey and Delaware coastal plain coreholes: an error analysis,
Basin Res., 20, 211–226, https://doi.org/10.1111/j.1365-2117.2008.00354.x, 2008.
Körner, C., Farquhar, G. D., and Roksandic, Z.: A global survey of
carbon isotope discrimination in plants from high altitude, Oecologia, 74,
623–632, https://doi.org/10.1007/BF00380063, 1988.
Kulhanek, D. K., Crouch, E. M., Tayler, M. J. S., and Hollis, C. J.:
Paleocene calcareous nannofossils from East Coast, New Zealand:
Biostratigraphy and paleoecology, Journal of Nannoplankton Research, 35,
155–176, 2015.
Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., and Paytan, A.:
Early Cenozoic decoupling of the global carbon and sulfur cycles,
Paleoceanography, 18, 1090, https://doi.org/10.1029/2003PA000908, 2003.
Littler, K., Röhl, U., Westerhold, T., and Zachos, J. C.: A
high-resolution benthic stable-isotope record for the South Atlantic:
Implications for orbital-scale changes in Late Paleocene–Early Eocene
climate and carbon cycling, Earth Planet. Sc. Lett., 401, 18–30,
https://doi.org/10.1016/j.epsl.2014.05.054, 2014.
Lomax, B. H., Lake, J. A., Leng, M. J., and Jardine, P. E.: An experimental
evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2, Geochim. Cosmochim. Ac., 247, 162–174,
https://doi.org/10.1016/j.gca.2018.12.026, 2019.
Moore, P. R.: Stratigraphy, composition, and environment of deposition of
the Whangai Formation and associated Late Cretaceous-Paleocene rocks,
eastern North Island, New Zealand, New Zealand Geological Survey Bulletin
100, 82 pp., ISSN 0077-9628, 1988.
Murray, A. P., Summons, R. E., Boreham, C. J., and Dowling, L. M.: Biomarker
and n-alkane isotope profiles for Tertiary oils: relationship to source rock depositional setting, Org. Geochem., 22, 521–526,
https://doi.org/10.1016/0146-6380(94)90124-4, 1994.
Naeher, S., Smittenberg, R. H., Gilli, A., Kirilova, E. P., Lotter, A. F., and Schubert, C. J.: Impact of recent lake eutrophication on microbial
community changes as revealed by high resolution lipid biomarkers in Rotsee
(Switzerland), Org. Geochem., 49, 86–95, 2012.
Naeher, S., Niemann, H., Peterse, F., Smittenberg, R. H., Zigah, P. K., and
Schubert, C. J.: Tracing the methane cycle with lipid biomarkers in
Lake Rotsee (Switzerland), Org. Geochem., 66, 174–181, 2014.
Naeher, S., Hollis, C. J., Clowes, C. D., Ventura, G. T., Shepherd, C. L.,
Crouch, E. M., Morgans, H. E. G., Bland, K. J., Strogen, D. P., and Sykes,
R.: Depositional and organofacies influences on the petroleum potential of
an unusual marine source rock: Waipawa Formation (Paleocene) in southern
East Coast Basin, New Zealand, Mar. Petrol. Geol., 104, 468–488, https://doi.org/10.1016/j.marpetgeo.2019.03.035, 2019.
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35, 699–702, https://doi.org/10.1130/G23648A.1, 2007.
Pancost, R. D., Freeman, K. H., and Patzkowsky, M. E.: Organic-matter source
variation and the expression of a late Middle Ordovician carbon isotope
excursion, Geology, 27, 1015–1018, 1999.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The biomarker guide: 1.
Biomarkers and isotopes in the environment and human history, Cambridge
University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511524868, 2005.
Raine, J. I., Strong, C. P., and Wilson, G. J.: Biostratigraphic revision of
petroleum exploration wells, Great South Basin, New Zealand. Institute of
Geological & Nuclear Sciences Science Report, 93-32, 146 pp., ISBN 0478070667, 1993.
Röhl, U., Brinkhuis, H., Sluijs, A., and Fuller, M.: On the search for
the Paleocene/Eocene boundary in the Southern Ocean: exploring ODP Leg 189
Holes 1171D and 1172D, Tasman Sea, in: The Cenozoic Southern Ocean:
Tectonics, Sedimentation, and Climate Change Between Australia and
Antarctica, edited by: Exon, N. F., Kennett, J. P., and Malone, M. J., AGU,
Washington, DC, 113–126, https://doi.org/10.1029/151GM08, 2004.
Rosenberg, Y. O., Kutuzov, I., and Amrani, A.: Sulfurization as a
preservation mechanism for the δ13C of biomarkers, Org. Geochem., 125, 66–69, https://doi.org/10.1016/j.orggeochem.2018.08.010, 2018.
Rotich, E. K., Handler, M. R., Naeher, S., Selby, D., Hollis, C. J., and
Sykes, R.: Re-Os geochronology and isotope systematics, and organic and
sulfur geochemistry of the middle–late Paleocene Waipawa Formation, New
Zealand: Insights into early Paleogene seawater Os isotope composition,
Chem. Geol., 536, 119473, https://doi.org/10.1016/j.chemgeo.2020.119473, 2020.
Saller, A., Lin, R., and Dunham, J.: Leaves in turbidite sands: The main
source of oil and gas in the deep-water Kutei Basin, Indonesia, AAPG
Bull., 90, 1585–1608, https://doi.org/10.1306/04110605127, 2006.
Schiøler, P.: Palynofacies and sequence stratigraphy of the Late Cretaceous to Paleogene succession in the Galleon-1 and Resolution-1 wells, Canterbury Basin, New Zealand, GNS Science Consultancy Report (New Zealand Petroleum Report, PR4366), 2011/123, GNS Science, Lower Hutt, 38 pp., 2011.
Schiøler, P., Rogers, K., Sykes, R., Hollis, C. J., Ilg, B., Meadows, D.,
Roncaglia, L., and Uruski, C.: Palynofacies, organic geochemistry and
depositional environment of the Tartan Formation (Late Paleocene), a
potential source rock in the Great South Basin, New Zealand, Mar. Petrol. Geol., 27, 351–369, https://doi.org/10.1016/j.marpetgeo.2009.09.006, 2010.
Schlanser, K., Diefendorf, A. F., Greenwood, D. R., Mueller, K. E., West, C.
K., Lowe, A. J., Basinger, J. F., Currano, E. D., Flynn, A. G., Fricke, H.
C., Geng, J., Meyer, H. W., and Peppe, D. J.: On geologic timescales, plant
carbon isotope fractionation responds to precipitation similarly to modern
plants and has a small negative correlation with pCO2, Geochim. Cosmochim. Ac., 270, 264–281, https://doi.org/10.1016/j.gca.2019.11.023, 2020.
Schleser, G. H., Frielingsdorf, J., and Blair, A.: Carbon isotope behaviour
in wood and cellulose during artificial aging, Chem. Geol., 158,
121–130, https://doi.org/10.1016/S0009-2541(99)00024-8, 1999.
Schouten, S., Woltering, M., Rijpstra, W. I. C., Sluijs, A., Brinkhuis, H.,
and Sinninghe Damsté, J. S.: The Paleocene–Eocene carbon isotope
excursion in higher plant organic matter: Differential fractionation of
angiosperms and conifers in the Arctic, Earth Planet. Sc. Lett.,
258, 581–592, https://doi.org/10.1016/j.epsl.2007.04.024, 2007.
Schubert, B. A. and Jahren, A. H.: The effect of atmospheric CO2
concentration on carbon isotope fractionation in C3 land plants, Geochim. Cosmochim. Ac., 96, 29–43, https://doi.org/10.1016/j.gca.2012.08.003, 2012.
Schubert, B. A. and Jahren, A. H.: Incorporating the effects of
photorespiration into terrestrial paleoclimate reconstruction, Earth-Sci. Rev., 177, 637–642, https://doi.org/10.1016/j.earscirev.2017.12.008, 2018.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P.
R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins,
G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M.,
Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl,
C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A.,
Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E.,
Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T.,
Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.
T., and Willumsen, P. S.: The Chicxulub asteroid impact and mass extinction
at the Cretaceous-Paleogene Boundary, Science, 327, 1214–1218, https://doi.org/10.1126/science.1177265, 2010.
Schweizer, M., Fear, J., and Cadisch, G.: Isotopic (13C) fractionation
during plant residue decomposition and its implications for soil organic
matter studies, Rapid Commun. Mass Spectrom., 13, 1284–1290, 1999.
Sexton, P. F., Norris, R. D., Wilson, P. A., Palike, H., Westerhold, T.,
Rohl, U., Bolton, C. T., and Gibbs, S.: Eocene global warming events driven
by ventilation of oceanic dissolved organic carbon, Nature, 471, 349–352,
2011.
Sinha, A. and Stott, L. D.: New atmospheric pCO2 estimates from palesols
during the late Paleocene/early Eocene global warming interval, Global Planet. Change, 9, 297–307, https://doi.org/10.1016/0921-8181(94)00010-7, 1994.
Sinninghe Damsté , J. S., Kok, M. D., Köster, J., and Schouten, S.:
Sulfurized carbohydrates: an important sedimentary sink for organic carbon?,
Earth Planet. Sc. Lett., 164, 7–13, 1998.
Slotnick, B. S., Dickens, G. R., Nicolo, M., Hollis, C. J., Crampton, J. S.,
Zachos, J. C., and Sluijs, A.: Numerous large amplitude variations in carbon
cycling and terrestrial weathering throughout the latest Paleocene and
earliest Eocene, J. Geol., 120, 487–505, 2012.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early
Paleogene carbon cycle perturbations, Global Biogeochem. Cy., 26,
GB4005, https://doi.org/10.1029/2011gb004224, 2012.
Sofer, Z.: Stable Carbon Isotope Compositions of Crude Oils: Application to
Source Depositional Environments and Petroleum Alteration, AAPG Bull.,
68, 31–49, https://doi.org/10.1306/ad460963-16f7-11d7-8645000102c1865d, 1984.
Speijer, R. P., Pälike, H., Hollis, C. J., Hooker, J. J., and Ogg, J.
G.: Chapter 28 – The Paleogene Period, in: Geologic Time Scale 2020, edited
by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier,
1087–1140, https://doi.org/10.1016/B978-0-12-824360-2.00028-0, 2020.
Stagpoole, V., Browne, G. H., Ilg, B., Herzer, R., Reid, E., Bland, K. J.,
Griffin, A. G., and Uruski, C.: Petroleum prospectivity of Reinga Basin, New Zealand, GNS Science Consultancy Report (New Zealand Petroleum Report, PR5042), 105 pp., 2009.
Sykes, R. and Zink, K.-G.: The New Zealand Source Rock Extracts Database. GNS Science Data Series 14c, New Zealand Petroleum Report, PR4516, 2012.
Sykes, R., Rogers, K. M., Phillips, A., Zink, K.-G., and Ventura, G. T.: The New Zealand Petroleum Carbon and Hydrogen Isotope Database. GNS Science Data Series 14d, New Zealand Petroleum Report, PR4517, 2012.
Taylor, K.: Paleocene climate and carbon cycle: insights into an unstable
greenhouse from a biomarker and compound specific carbon isotope approach,
PhD thesis, University of Bristol, Bristol, 310 pp., 2011.
Taylor, K. W. R., Willumsen, P. S., Hollis, C. J., and Pancost, R. D.: South
Pacific evidence for the long-term climate impact of the
Cretaceous/Paleogene boundary event, Earth-Sci. Rev., 179, 287–302,
https://doi.org/10.1016/j.earscirev.2018.02.012, 2018.
Tipple, B. J., Meyers, S. R., and Pagani, M.: Carbon isotope ratio of
Cenozoic CO2: A comparative evaluation of available geochemical
proxies, Paleoceanography, 25, PA3202, https://doi.org/10.1029/2009pa001851, 2010.
Urban, M. A., Nelson, D. M., Jiménez-Moreno, G., Châteauneuf, J.-J.,
Pearson, A., and Hu, F. S.: Isotopic evidence of C4 grasses in southwestern
Europe during the Early Oligocene–Middle Miocene, Geology, 38, 1091–1094, https://doi.org/10.1130/g31117.1, 2010.
van Bergen, P. F. and Poole, I.: Stable carbon isotopes of wood: a clue to
palaeoclimate?, Palaeogeogr. Palaeocl., 182, 31–45, https://doi.org/10.1016/S0031-0182(01)00451-5, 2002.
van Kaam-Peters, H. M. E., Schouten, S., Köster, J., and Sinninghe
Damstè, J. S.: Controls on the molecular and carbon isotopic composition
of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence
for preservation of carbohydrates through sulfurisation, Geochim. Cosmochim. Ac., 62, 3259–3283, https://doi.org/10.1016/S0016-7037(98)00231-2, 1998.
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale,
V., Bowles, J., and Evans, H. F.: Astronomical calibration of the Paleocene
time, Palaeogeogr. Palaeocl., 257, 377–403, 2008.
Westerhold, T., Röhl, U., Donner, B., McCarren, H. K., and Zachos, J.
C.: A complete high-resolution Paleocene benthic stable isotope record for
the central Pacific (ODP Site 1209), Paleoceanography, 26, PA2216, https://doi.org/10.1029/2010pa002092, 2011.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global extent
of early Eocene hyperthermal events: A new Pacific benthic foraminiferal
isotope record from Shatsky Rise (ODP Site 1209), Paleoceanography and
Paleoclimatology, 33, 626–642, https://doi.org/10.1029/2017PA003306, 2018.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A.,
Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren,
H., and Kroon, D.: Rapid Acidification of the Ocean During the
Paleocene-Eocene Thermal Maximum, Science, 308, 1611–1615, https://doi.org/10.1126/science.1109004, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451,
279–283, 2008.
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Previous studies of Paleogene greenhouse climates identified short-lived global warming events,...