Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-675-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-675-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atlantic hurricane response to Saharan greening and reduced dust emissions during the mid-Holocene
Samuel Dandoy
CORRESPONDING AUTHOR
Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada
now at: Canadian Meteorological Aviation Centre, Environment and Climate Change Canada, Montreal, Quebec, Canada
Francesco S. R. Pausata
Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada
Suzana J. Camargo
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
René Laprise
Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada
Katja Winger
Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada
Kerry Emanuel
Program in Atmospheres, Oceans, and Climate, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
Related authors
No articles found.
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Manos Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, and Romualdo Romero
EGUsphere, https://doi.org/10.5194/egusphere-2024-3387, https://doi.org/10.5194/egusphere-2024-3387, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storms strongly resembling hurricanes are sometime observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become locally much colder than the underlying ocean, creating the conditions for hurricanes to form, but only over small areas and for short times. We call the resulting storms "cyclops".
Aude Garin, Francesco S. R. Pausata, Mathieu Boudreault, and Roberto Ingrosso
EGUsphere, https://doi.org/10.5194/egusphere-2024-3435, https://doi.org/10.5194/egusphere-2024-3435, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
As tropical cyclones move poleward, they can transform into extratropical cyclones, a process known as extratropical transition. These storms can pose serious risks to human lives and cause damage to infrastructure along the northeastern coasts of the U.S. & Canada. Our study investigates the impacts of climate change on the frequency, intensity, and location of extratropical transitions, revealing that transitioning storms may become more destructive in the future but may not be more frequent.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
François Roberge, Alejandro Di Luca, René Laprise, Philippe Lucas-Picher, and Julie Thériault
Geosci. Model Dev., 17, 1497–1510, https://doi.org/10.5194/gmd-17-1497-2024, https://doi.org/10.5194/gmd-17-1497-2024, 2024
Short summary
Short summary
Our study addresses a challenge in dynamical downscaling using regional climate models, focusing on the lack of small-scale features near the boundaries. We introduce a method to identify this “spatial spin-up” in precipitation simulations. Results show spin-up distances up to 300 km, varying by season and driving variable. Double nesting with comprehensive variables (e.g. microphysical variables) offers advantages. Findings will help optimize simulations for better climate projections.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Olivier Asselin, Martin Leduc, Dominique Paquin, Katja Winger, Alejandro Di Luca, Melissa Bukovsky, Biljana Music, and Michel Giguère
EGUsphere, https://doi.org/10.5194/egusphere-2022-291, https://doi.org/10.5194/egusphere-2022-291, 2022
Preprint archived
Short summary
Short summary
Planting trees cools the climate by removing CO2 from the atmosphere, but may also cool or warm the climate by altering the albedo, roughness and evapotranspiration efficiency of the surface. To quantify these biogeophysical effects, we ran regional climate models over two idealized worlds, FOREST and GRASS, respectively representing maximum and minimum tree cover over North America and Europe. We find that these effects must be taken into account to successfully mitigate climate change.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Julien Chartrand and Francesco S. R. Pausata
Weather Clim. Dynam., 1, 731–744, https://doi.org/10.5194/wcd-1-731-2020, https://doi.org/10.5194/wcd-1-731-2020, 2020
Short summary
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
Lorenzo M. Polvani and Suzana J. Camargo
Atmos. Chem. Phys., 20, 13687–13700, https://doi.org/10.5194/acp-20-13687-2020, https://doi.org/10.5194/acp-20-13687-2020, 2020
Short summary
Short summary
On the basis of questionable early studies, it is widely believed that low-latitude volcanic eruptions cause winter warming over Eurasia. However, we here demonstrate that the winter warming over Eurasia following the 1883 Krakatau eruption was unremarkable and, in all likelihood, unrelated to that eruption. Confirming similar findings for the 1991 Pinatubo eruption, the new research demonstrates that no detectable Eurasian winter warming is to be expected after eruptions of similar magnitude.
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
F. S. R. Pausata, M. Gaetani, G. Messori, S. Kloster, and F. J. Dentener
Atmos. Chem. Phys., 15, 1725–1743, https://doi.org/10.5194/acp-15-1725-2015, https://doi.org/10.5194/acp-15-1725-2015, 2015
Short summary
Short summary
our study suggests that future aerosol abatement may be the primary driver of increased blocking events over the western Mediterranean. This modification of the atmospheric circulation over the Euro-Atlantic sector leads to more stagnant weather conditions that favour air pollutant accumulation especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments.
Related subject area
Subject: Atmospheric Dynamics | Archive: Modelling only | Timescale: Holocene
Influence of the representation of convection on the mid-Holocene West African Monsoon
The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model
Greenland accumulation and its connection to the large-scale atmospheric circulation in ERA-Interim and paleoclimate simulations
Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium
Leonore Jungandreas, Cathy Hohenegger, and Martin Claussen
Clim. Past, 17, 1665–1684, https://doi.org/10.5194/cp-17-1665-2021, https://doi.org/10.5194/cp-17-1665-2021, 2021
Short summary
Short summary
We investigate the impact of explicitly resolving convection on the mid-Holocene West African Monsoon rain belt by employing the ICON climate model in high resolution. While the spatial distribution and intensity of the precipitation are improved by this technique, the monsoon extents further north and the mean summer rainfall is higher in the simulation with parameterized convection.
Christopher M. Colose, Allegra N. LeGrande, and Mathias Vuille
Clim. Past, 12, 961–979, https://doi.org/10.5194/cp-12-961-2016, https://doi.org/10.5194/cp-12-961-2016, 2016
Short summary
Short summary
Volcanic forcing is the most important source of forced variability during the preindustrial component of the last millennium (~ 850-1850 CE) and is important during the last century.
Here, we focus on the climate impact over South America in a model-based study. Emphasis is given to temperature, precipitation, and oxygen isotope variability (allowing for potential contact made with paleoclimate-based observations)
Here, we focus on the climate impact over South America in a model-based study. Emphasis is given to temperature, precipitation, and oxygen isotope variability (allowing for potential contact made with paleoclimate-based observations)
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
J. J. Gómez-Navarro, J. P. Montávez, P. Jiménez-Guerrero, S. Jerez, R. Lorente-Plazas, J. F. González-Rouco, and E. Zorita
Clim. Past, 8, 25–36, https://doi.org/10.5194/cp-8-25-2012, https://doi.org/10.5194/cp-8-25-2012, 2012
Cited articles
Albani, S. and Mahowald, N. M.: Paleodust insights into dust impacts on climate, J. Climate, 32, 7897–7913, 2019.
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto‐Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Sy., 6, 541–570, 2014.
Bélair, S., Mailhot, J., Girard, C., and Vaillancourt, P.: Boundary
layer and shallow cumulus clouds in a medium-range forecast of a large-scale
weather system, Mon. Weather Rev., 133, 1938–1960, https://doi.org/10.1175/MWR2958.1, 2005.
Bell, G. D., Halpert, M. S., Schnell, R. C., Higgins, R. W., Lawrimore, J.,
Kousky, V. E., Tinker, R., Thiaw, W., Chelliah, M., and Artusa, A.: Climate
Assessment for 1999, B. Am. Meteorol. Soc., 81, 1–50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2, 2000.
Biasutti, M.: Forced Sahel rainfall trends in the CMIP5 archive,
J. Geophys. Res.-Atmos., 118, 1613–1623, https://doi.org/10.1002/jgrd.50206, 2013.
Bister, M. and Emanuel, K. A.: Dissipative heating and hurricane
intensity, Meteorol. Atmos. Phys., 65, 233–240,
https://doi.org/10.1007/BF01030791, 1998.
Bister, M. and Emanuel, K. A.: Low frequency variability of tropical
cyclone potential intensity, 1. Interannual to interdecadal variability, J. Geophys. Res.-Atmos., 107, 4801, https://doi.org/10.1029/2001JD000776, 2002.
Blender, R. and Schubert, M.: Cyclone tracking in different spatial and
temporal resolutions, Mon. Weather Rev., 128, 377–384,
https://doi.org/10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2, 2000.
Blender, R., Fraedrich, K., and Lunkeit, F.: Identification of
cyclone-track regimes in the North Atlantic, Q. J. Roy. Meteor. Soc., 123,
727–741, https://doi.org/10.1256/smsqj.53909, 1997.
Camargo, S. J. and Wing, A. A.: Tropical cyclones in climate models,
Wires Clim. Change, 7, 211–237, https://doi.org/10.1002/wcc.373, 2016.
Camargo, S. J., Sobel, A. H., Barnston, A. G., and Emanuel, K. A.: Tropical
cyclone genesis potential index in climate models, Tellus A, 59, 428–443,
https://doi.org/10.1111/j.1600-0870.2007.00238.x, 2007.
Caron, L. P. and Jones, C. G.: Understanding and simulating the link
between African easterly waves and Atlantic tropical cyclones using a
regional climate model: The role of domain size and lateral boundary
conditions, Clim. Dynam., 39, 113–135, https://doi.org/10.1007/s00382-011-1160-8, 2012.
Donnelly, J. P. and Woodruff, J. D.: Intense hurricane activity over the
past 5000 years controlled by El Niño and the West African monsoon,
Nature, 447, 465–468, https://doi.org/10.1038/nature05834, 2007.
Dunion, J. P. and Velden, C. S.: The impact of the Saharan air layer on
Atlantic tropical cyclone activity, B. Am. Meteorol. Soc., 85, 353–366,
https://doi.org/10.1175/BAMS-85-3-353, 2004.
Emanuel, K.: Climate and tropical cyclone activity: A new model downscaling
approach, J. Climate, 19, 4797–4802, https://doi.org/10.1175/JCLI3908.1, 2006.
Emanuel, K.: Tropical cyclone activity downscaled from NOAACIRES Reanalysis, 1908–1958, J. Adv. Model. Earth Sy., 2, 1, https://doi.org/10.3894/james.2010.2.1, 2010.
Emanuel, K. and Nolan, D. S.: Tropical cyclone activity and the global climate system, in: 26th Conference on Hurricanes and Tropical Meteorology, 3–7 May 2004, 240–241, 2004.
Emanuel, K. and Sobel, A.: Response of tropical sea surface temperature,
precipitation, and tropical cyclone-related variables to changes in global
and local forcing, J. Adv. Model. Earth Sy., 5, 447–458,
https://doi.org/10.1002/jame.20032, 2013.
Emanuel, K., Sundararajan, R., and Williams, J.: Hurricanes and Global
Warming: Results from Downscaling IPCC AR4 Simulations,
B. Am. Meteorol. Soc., 89, 347–368, https://doi.org/10.1175/BAMS-89-3-347, 2008.
Emanuel, K. A.: Sensitivity of Tropical Cyclones to Surface Exchange
Coefficients and a Revised Steady-State Model Incorporating Eye Dynamics,
J. Atmos. Sci., 52, 3969–3976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2, 1995.
Evan, A. T., Dunion, J., Foley, J. A., Heidinger, A. K., and Velden, C. S.:
New evidence for a relationship between Atlantic tropical cyclone activity
and African dust outbreaks, Geophys. Res. Lett., 33, L19813,
https://doi.org/10.1029/2006GL026408, 2006.
Evan, A. T., Flamant, C., Gaetani, M., and Guichard, F.: The past, present
and future of African dust, Nature, 531, 493–495,
https://doi.org/10.1038/nature17149, 2016.
Frank, W. M. and Roundy, P. E.: The Role of Tropical Waves in Tropical
Cyclogenesis, Mon. Weather Rev., 134, 2397–2417,
https://doi.org/10.1175/mwr3204.1, 2006.
Gaetani, M., Messori, G., Zhang, Q., Flamant, C., and Pausata, F. S. R.:
Understanding the mechanisms behind the northward extension of the West
African monsoon during the mid-holocene, J. Climate, 30, 7621–7642,
https://doi.org/10.1175/JCLI-D-16-0299.1, 2017.
Giannini, A. and Kaplan, A.: The role of aerosols and greenhouse gases in
Sahel drought and recovery, Climatic Change, 152, 449–466,
https://doi.org/10.1007/s10584-018-2341-9, 2019.
Girard, C., Plante, A., Desgagné, M., Mctaggart-Cowan, R., Côté,
J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered vertical discretization of the canadian environmental multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type, Mon. Weather Rev., 142, 1183–1196, https://doi.org/10.1175/MWR-D-13-00255.1, 2014.
Gray, W. M.: Tropical Cyclone Genesis, PhD thesis, Dept. of Atmos. Sci.,
Colarado State University, Fort Collins, Colarado, USA, 121 pp., 1975.
Gray, W. M.: Hurricanes: Their formation, structure and likely role in the tropical circulation, in: Meteorology Over Tropical Oceans, edited by: Shaw, D. B., Roy. Meteor. Soc., Bracknell, Berkshire, UK, 155–218, 1979.
Greer, L. and Swart, P. K.: Decadal cyclicity of regional mid-Holocene
precipitation: Evidence from Dominican coral proxies, Paleoceanography, 21,
PA2020, https://doi.org/10.1029/2005PA001166, 2006.
Gualdi, S., Scoccimarro, E., and Navarra, A.: Changes in tropical cyclone
activity due to global warming: Results from a high-resolution coupled
general circulation model, J. Climate, 21, 5204–5228,
https://doi.org/10.1175/2008JCLI1921.1, 2008.
Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R.,
Sterl, A., Wyser, K., Semmler, T., Yang, S., van den Hurk, B., van Noije, T., van der Linden, E., and van der Wiel, K.: EC-Earth V2.2: Description and
validation of a new seamless earth system prediction model, Clim. Dynam., 39,
2611–2629, https://doi.org/10.1007/s00382-011-1228-5, 2012.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.bd0915c6, 2018.
Hodges, K., Cobb, A., and Vidale, P. L.: How well are tropical cyclones
represented in reanalysis datasets?, J. Climate, 30, 5243–5264, https://doi.org/10.1175/JCLI-D-16-0557.1, 2017.
Holmes, J. A.: Ecology, How the Sahara became dry?, Science, 320, 752–753,
https://doi.org/10.1126/science.1158105, 2008.
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entertaining/Detraining
Plume Model and Its Application in Convective Parametrization, J. Atmos.
Sci., 47, 2784–2280, 1990.
Kim, D., Moon, Y., Camargo, S. J., Wing, A. A., Sobel, A. H., Murakami, H., Vecchi, G. A., Zhao, M., and Page, E.: Process-oriented diagnosis of tropical cyclones in high-resolution GCMs, J. Climate, 31, 1685–1702, 2018.
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical Cyclones and Climate Change Assessment: Part II, Projected Response to Anthropogenic Warming, B. Am. Meteorol. Soc., 101, E303–E322, https://doi.org/10.1175/bams-d-18-0194.1, 2020.
Knutson, T. R., Sirutis, J. J., Vecchi, G. A., Garner, S., Zhao, M., Kim, H.
S., Bender, M., Tuleya, R. E., Held, I. M., and Villarini, G.: Dynamical downscaling projections of twenty-first-century atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios, J. Climate, 26, 6591–6617,
https://doi.org/10.1175/JCLI-D-12-00539.1, 2013.
Koh, J. H. and Brierley, C. M.: Tropical cyclone genesis potential across palaeoclimates, Clim. Past, 11, 1433–1451, https://doi.org/10.5194/cp-11-1433-2015, 2015.
Korty, R. L., Camargo, S. J., and Galewsky, J.: Variations in tropical
cyclone genesis factors in simulations of the Holocene epoch, J. Climate, 25,
8196–8211, https://doi.org/10.1175/JCLI-D-12-00033.1, 2012.
Kowalski, K., van Neer, W., Bocheński, Z., Młynarski, M.,
Rzebik-Kowalska, B., Szyndlar, Z., Gautier, A., Schild, R., Close, A. E., and Wendorf, F.: A last interglacial fauna from the Eastern Sahara, Quaternary Res., 32, 335–341, https://doi.org/10.1016/0033-5894(89)90099-9, 1989.
Kuo, H. L.: On Formation and Intensification of Tropical Cyclones Through
Latent Heat Release by Cumulus Convection, J. Atmos. Sci., 22, 40–63, 1965.
Landman, W. A., Seth, A., and Camargo, S. J.: The effect of regional
climate model domain choice on the simulation of tropical cyclone-like
vortices in the southwestern Indian Ocean, J. Climate, 18, 1263–1274,
https://doi.org/10.1175/JCLI3324.1, 2005.
Landsea, C.: FAQ E17) How many hurricanes have there been in each month?, retrieved: 29 August 2019, aoml.noaa.gov, available at: https://www.aoml.noaa.gov/hrd/tcfaq/E17.html (last access: 15 February 2020), 2014.
Landsea, C. W.: A Climatology of Intense (or Major) Atlantic Hurricanes,
Mon. Weather Rev., 121, 1703–1713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2, 1993.
Landsea, C. W. and Franklin, J. L.: Atlantic hurricane database
uncertainty and presentation of a new database format, Mon. Weather Rev.,
141, 3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013.
Lau, K. M., Kim, K. M., Sud, Y. C., and Walker, G. K.: A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing, Ann. Geophys., 27, 4023–4037, https://doi.org/10.5194/angeo-27-4023-2009, 2009.
Liu, K. B. and Fearn, M. L.: Reconstruction of prehistoric landfall
frequencies of catastrophic hurricanes in Northwestern Florida from lake
sediment records, Quaternary Res., 54, 238–245,
https://doi.org/10.1006/qres.2000.2166, 2000.
Martynov, A., Sushama, L., Laprise, R., Winger, K., and Dugas, B.:
Interactive lakes in the Canadian Regional Climate Model, version 5: the
role of lakes in the regional climate of North America, Tellus A, 64, 16226,
https://doi.org/10.3402/tellusa.v64i0.16226, 2012.
McTaggart-Cowan, R., Vaillancourt, P. A., Zadra, A., Chamberland, S.,
Charron, M., Corvec, S., Milbrandt, J. A., Paquin‐Ricard, D., Patoine, A., Roch, M., Separovic L., and Yang, J.: Modernization of
atmospheric physics parameterization in Canadian NWP,
J. Adv. Model. Earth Sy., 11, 3593–3635, https://doi.org/10.1029/2019MS001781, 2019.
Menkes, C. E., Lengaigne, M., Marchesiello, P., Jourdain, N. C., Vincent, E. M., Lefèvre, J., Chauvin, F., and Royer, J. F.: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales, Clim. Dynam., 38, 301–321, https://doi.org/10.1007/s00382-011-1126-x, 2012.
Merlis, T. M., Zhao, M., and Held, I. M.: The sensitivity of hurricane
frequency to ITCZ changes and radiatively forced warming in aquaplanet
simulations, Geophys. Res. Lett., 40, 4109–4114,
https://doi.org/10.1002/grl.50680, 2013.
Mironov, D. V.: Parametrization of Lakes in Numerical Weather Prediction: Description of a Lake Model, COSMO Tech. Rep. No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany, 41 pp., 2008.
Murakami, H.: Tropical cyclones in reanalysis data sets, Geophys. Res.
Lett., 41, 2133–2141, https://doi.org/10.1002/2014GL059519, 2014.
Murray, R. J. and Simmonds, I.: A numerical scheme for tracking cyclone
centres from digital data, Part II: Application to January and July general
circulation model simulations, Aust. Meteorol. Mag., 39, 167–180, 1991.
Patricola, C. M., Saravanan, R., and Chang, P.: The Response of Atlantic
Tropical Cyclones to Suppression of African Easterly Waves, Geophys. Res.
Lett., 45, 471–479, https://doi.org/10.1002/2017GL076081, 2018.
Pausata, F. S. R., Messori, G., and Zhang, Q.: Impacts of dust reduction on
the northward expansion of the African monsoon during the Green Sahara
period, Earth Planet. Sc. Lett., 434, 298–307,
https://doi.org/10.1016/j.epsl.2015.11.049, 2016.
Pausata, F. S. R., Emanuel, K. A., Chiacchio, M., Diro, G. T., Zhang, Q.,
Sushama, L., Stager, J. C., and Donnelly, J. P.: Tropical cyclone activity
enhanced by Sahara greening and reduced dust emissions during the African
Humid Period, P. Natl. Acad. Sci. USA, 114, 6221–6226, https://doi.org/10.1073/pnas.1619111114, 2017.
Reed, K. A., Bacmeister, J. T., Huff, J. J. A., Wu, X., Bates, S. C., and
Rosenbloom, N. A.: Exploring the Impact of Dust on North Atlantic Hurricanes
in a High-Resolution Climate Model, Geophys. Res. Lett., 46, 1105–1112,
https://doi.org/10.1029/2018GL080642, 2019.
Rohling, E. J., Sprovieri, M., Cane, T., Casford, J. S. L., Cooke, S.,
Bouloubassi, I., Emeis, K. C., Schiebel, R., Rogerson, M., Hayes, A., Jorissen, F. J., and Kroon, D.: Reconstructing past planktic
foraminiferal habitats using stable isotope data: a case history for
Mediterranean sapropel S5, Mar. Micropaleontol., 50, 89–123,
https://doi.org/10.1016/S0377-8398(03)00068-9, 2004.
Russell, J. O., Aiyyer, A., White, J. D., and Hannah, W.: Revisiting the
connection between African Easterly Waves and Atlantic tropical
cyclogenesis, Geophys. Res. Lett., 44, 587–595,
https://doi.org/10.1002/2016GL071236, 2017.
Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics of
the intertropical convergence zone, Nature, 513, 45–53,
https://doi.org/10.1038/nature13636, 2014.
Schubert, M., Perlwitz, J., Blender, R., Fraedrich, K., and Lunkeit, F.:
North Atlantic cyclones in CO2-induced warm climate simulations: Frequency, intensity, and tracks, Clim. Dynam., 14, 827–837,
https://doi.org/10.1007/s003820050258, 1998.
Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini,
E., Vichi, M., Oddo, P., and Navarra, A.: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model, J. Climate, 24, 4368–4384, https://doi.org/10.1175/2011JCLI4104.1, 2011.
Scoccimarro, E., Fogli, P. G., Reed, K. A., Gualdi, S., Masina, S., and
Navarra, A.: Tropical cyclone interaction with the ocean: The role of
high-frequency (subdaily) coupled processes, J. Climate, 30, 145–162,
https://doi.org/10.1175/JCLI-D-16-0292.1, 2017.
Seth, A., Giannini, A., Rojas, M., Rauscher, S. A., Bordoni, S., Singh, D.,
and Camargo, S. J.: Monsoon responses to climate changes – connecting past,
present and future, Current Climate Change Reports, 5, 63–79,
https://doi.org/10.1007/s40641-019-00125-y, 2019.
Shaevitz, D. A., Camargo, S. J., Sobel, A. H., Jonas, J. A., Kim, D., Kumar,
A., La Row, T. E., Lim, Y.‐K., Murakami, H., Reed, K. A., Roberts, M. J., Scoccimarro, E., Vidale, P. L., Wang, H., Wehner, M. F., Zhao, M., and Henderson, N.: Characteristics of tropical cyclones in
high-resolution models in the present climate, J. Adv. Model. Earth Sy., 6, 1154–1172, https://doi.org/10.1002/2014MS000372, 2014.
Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J.
E., Dettman, D. L., Peck, J. A., Scholz, C. A., and King, J. W.: Atlantic forcing of persistent drought in West Africa, Science, 324, 377–380,
https://doi.org/10.1126/science.1166352, 2009.
Sinclair, M. R.: Objective identification of cyclones and their circulation
intensity, and climatology, Weather Forecast., 12, 595–612,
https://doi.org/10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2, 1997.
Strachan, J., Vidale, P. L., Hodges, K., Roberts, M., and Demory, M. E.:
Investigating global tropical cyclone activity with a hierarchy of AGCMs:
The role of model resolution, J. Climate, 26, 133–152,
https://doi.org/10.1175/JCLI-D-12-00012.1, 2013.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thompson, A. J., Skinner, C. B., Poulsen, C. J., and Zhu, J.: Modulation of
mid-Holocene African rainfall by dust aerosol direct and indirect
effects, Geophys. Res. Lett., 46, 3917–3926, https://doi.org/10.1029/2018GL081225, 2019.
Thorncroft, C. and Hodges, K.: African easterly wave variability and its
relationship to Atlantic tropical cyclone activity, J. Climate, 14,
1166–1179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2, 2001.
Tippett, M. K., Camargo, S. J., and Sobel, A. H.: A poisson regression
index for tropical cyclone genesis and the role of large-scale vorticity in
genesis, J. Climate, 24, 2335–2357, https://doi.org/10.1175/2010JCLI3811.1,
2011.
Toomey, M. R., Curry, W. B., Donnelly, J. P., and Van Hengstum, P. J.:
Reconstructing 7000 years of North Atlantic hurricane variability using
deep-sea sediment cores from the western Great Bahama Bank,
Paleoceanography, 28, 31–41, https://doi.org/10.1002/palo.20012, 2013.
Vecchi, G. A., Delworth, T. L., Murakami, H., Underwood, S. D., Wittenberg, A. T., Zeng, F., Zhang W., Baldwin, J. W., Bhatia, K. T., Cooke, W., He, J., Kapnick, S. B., Knutson, T. R., Villarini, G., van der Wiel, K., Anderson, W., Balaji, V., Chen, J-H., Dixon, K. W., Gudgel, R., Harris, L. M., Jia, L., Johnson, N. C., Lin, S-J., Liu, M., Ng, C. H. J., Rosati, A., Smith, J. A., and Yang, X.: Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes, Clim. Dynam., 53, 5999–6033,
https://doi.org/10.1007/s00382-019-04913-y, 2019.
Verseghy, D. L.: CLASS – The Canadian Land Surface Scheme (Version 3.4), Technical Documentation, Version 1.1, Climate Research Division, Science and Technology Branch, Environment Canada, 180 pp., available at: http://www.usask.ca/ip3/download/CLASS_v3_4_Documentation_v1_1.pdf, (last access: 1 March 2021), 2009.
Verseghy, D. L.: The Canadian land surface scheme (CLASS): Its history and
future, Atmos. Ocean, 38, 1–13,
https://doi.org/10.1080/07055900.2000.9649637, 2000.
Walsh, K.: Objective detection of tropical cyclones in high-resolution
analyses, Mon. Weather Rev., 125, 1767–1779,
https://doi.org/10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO;2, 1997.
Walsh, K., Lavender, S., Scoccimarro, E., and Murakami, H.: Resolution
dependence of tropical cyclone formation in CMIP3 and finer resolution
models, Clim. Dynam., 40, 585–599, https://doi.org/10.1007/s00382-012-1298-z,
2013.
Walsh, K. J. E., Fiorino, M., Landsea, C. W., and McInnes, K. L.:
Objectively determined resolution-dependent threshold criteria for the
detection of tropical cyclones in climate models and reanalyses, J. Climate,
20, 2307–2314, https://doi.org/10.1175/JCLI4074.1, 2007.
Walsh, K. J. E., Mcbride, J. L., Klotzbach, P. J., Balachandran, S.,
Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T.-C., Sobel, A., and Sugi, M.: Tropical cyclones and climate change, WIRES. Clim. Change, 7, 65–89, https://doi.org/10.1002/wcc.371, 2016.
Wing, A. A., Camargo, S. J., Sobel, A. H., Kim, D., Moon, Y., Murakami, H.,
Reed, K. A., Vecchi, G. A., Wehner, M. F., Zarzycki, C., and Zhao, M.: Moist Static Energy Budget Analysis of Tropical Cyclone Intensification in High-Resolution Climate Models, J. Climate, 32, 6071–6095, https://doi.org/10.1175/JCLI-D-18-0599.1, 2019.
Zarzycki, C. M. and Ullrich, P. A.: Assessing sensitivities in algorithmic
detection of tropical cyclones in climate data, Geophys. Res. Lett., 44,
1141–1149, https://doi.org/10.1002/2016GL071606, 2017.
Short summary
This study analyzes the impacts of changing vegetation and atmospheric dust concentrations over an area that is currently desert (the Sahara) to investigate their impacts on tropical cyclone activity during a warm climate state, the mid-Holocene. Our results suggest a significant change in Atlantic TC frequency, intensity and seasonality when considering the effects of a warmer climate in a greener world. They also highlight the importance of considering these factors in future climate studies.
This study analyzes the impacts of changing vegetation and atmospheric dust concentrations over...