Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-469-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-469-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361)
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
now at: Institute of Geosciences, Goethe University Frankfurt,
60438 Frankfurt am Main, Germany
Sebastian Steinig
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel,
Germany
now at: School of Geographical Sciences, University of Bristol,
Bristol, BS8 1SS, UK
Peter Hofmann
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Matthias Lenz
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Stephanie Kusch
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Sascha Flögel
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel,
Germany
Jens Olaf Herrle
Institute of Geosciences, Goethe University Frankfurt, 60438 Frankfurt am
Main, Germany
Christian Hallmann
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
MARUM, University of Bremen, 28359 Bremen, Germany
Janet Rethemeyer
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Haino Uwe Kasper
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Thomas Wagner
Lyell Centre, School of Energy, Geoscience, Infrastructure and
Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK
Related authors
No articles found.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Boehmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-74, https://doi.org/10.5194/cp-2024-74, 2024
Preprint under review for CP
Short summary
Short summary
The strong ecosystem response to the Last Interglacial warming, reflected in the high diversity of proxies, shows the sensitivity of permafrost regions to rising temperatures. In particular, the development of thermokarst landscapes created a mosaic of terrestrial, wetland, and aquatic habitats, fostering an increase in biodiversity. This biodiversity is evident in the rich variety of terrestrial insects, vegetation, and aquatic invertebrates preserved in these deposits.
Sebastian Steinig, Wolf Dummann, Peter Hofmann, Martin Frank, Wonsun Park, Thomas Wagner, and Sascha Flögel
Clim. Past, 20, 1537–1558, https://doi.org/10.5194/cp-20-1537-2024, https://doi.org/10.5194/cp-20-1537-2024, 2024
Short summary
Short summary
The opening of the South Atlantic Ocean, starting ~ 140 million years ago, had the potential to influence the global carbon cycle and climate trends. We use 36 climate model experiments to simulate the evolution of ocean circulation in this narrow basin. We test different combinations of palaeogeographic and atmospheric CO2 reconstructions with geochemical data to not only quantify the influence of individual processes on ocean circulation but also to find nonlinear interactions between them.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Jens O. Herrle, Cornelia Spiegel, Andreas Läufer, and Jean-Pierre Paul de Vera
Polarforschung, 89, 51–55, https://doi.org/10.5194/polf-89-51-2021, https://doi.org/10.5194/polf-89-51-2021, 2021
Short summary
Short summary
The Geology and Geophysics working group is one the largest within the German Society of Polar Research. Here, we present an overview of the development of major scientific German polar research programs and locations as well as important white papers from the last decades. This work is based on the contributions of members and institutions, including the Alfred Wegener Institute, the Federal Institute for Geosciences and Natural Resources and German Universities with polar research programs.
James F. Spray, Thomas Wagner, Juliane Bischoff, Sara Trojahn, Sevda Norouzi, Walter Hill, Julian Brasche, Leroy James, and Ryan Pereira
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-92, https://doi.org/10.5194/bg-2021-92, 2021
Manuscript not accepted for further review
Short summary
Short summary
Sunlight and microbial activity break down river dissolved organic matter (DOM), releasing greenhouse gases, but are poorly understood in tropical headwaters. We incubated water in light and darkness, using novel methods to quantify changes in DOM concentration and character. Light removed up to 9 % of DOM, but microbial activity had a varied response. Importantly, light affected DOM compounds considered photo-resistant; likewise microbial activity degraded compounds thought to be bio-resistant.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Ulrike Hanz, Claudia Wienberg, Dierk Hebbeln, Gerard Duineveld, Marc Lavaleye, Katriina Juva, Wolf-Christian Dullo, André Freiwald, Leonardo Tamborrino, Gert-Jan Reichart, Sascha Flögel, and Furu Mienis
Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019, https://doi.org/10.5194/bg-16-4337-2019, 2019
Short summary
Short summary
Along the Namibian and Angolan margins, low oxygen conditions do not meet environmental ranges for cold–water corals and hence are expected to be unsuitable habitats. Environmental conditions show that tidal movements deliver water with more oxygen and high–quality organic matter, suggesting that corals compensate unfavorable conditions with availability of food. With the expected expansion of oxygen minimum zones in the future, this study provides an example how ecosystems cope with extremes.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
J. Holtvoeth, D. Rushworth, H. Copsey, A. Imeri, M. Cara, H. Vogel, T. Wagner, and G. A. Wolff
Biogeosciences, 13, 795–816, https://doi.org/10.5194/bg-13-795-2016, https://doi.org/10.5194/bg-13-795-2016, 2016
Short summary
Short summary
Lake Ohrid is situated in the southern Balkans between Albania and Macedonia. It is a unique ecosystem with remarkable biodiversity and a sediment record of past climates that goes back more than a million years. Detailed reconstructions of past climate development and human alteration of the environment require underpinned and so in this study we go the present-day lake vegetation and catchment soils and test new proxies over one of the known recent cooling events of the region 8200 years ago.
Stephan John, Gerrit Angst, Kristina Kirfel, Sebastian Preusser, Carsten W. Mueller, Christoph Leuschner, Ellen Kandeler, and Janet Rethemeyer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-11, https://doi.org/10.5194/bg-2016-11, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this manuscript we investigate chemical, biological and physical soil parameters and their influence on 14C contents and distribution in three nearby soil profiles under beech forest. We found a large heterogeneity in 14C contents in the profiles, mainly caused by the abundance of roots. Our results indicate that 14C analysis of individual soil profiles – as it is done in most studies – may lead to misleading assumptions of SOM turnover in soils when extrapolated on larger areas.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
J. Raddatz, A. Rüggeberg, S. Flögel, E. C. Hathorne, V. Liebetrau, A. Eisenhauer, and W.-Chr. Dullo
Biogeosciences, 11, 1863–1871, https://doi.org/10.5194/bg-11-1863-2014, https://doi.org/10.5194/bg-11-1863-2014, 2014
V. Foerster, A. Junginger, A. Asrat, H. F. Lamb, M. Weber, J. Rethemeyer, U. Frank, M. C. Brown, M. H. Trauth, and F. Schaebitz
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-977-2014, https://doi.org/10.5194/cpd-10-977-2014, 2014
Revised manuscript not accepted
S. Höfle, J. Rethemeyer, C. W. Mueller, and S. John
Biogeosciences, 10, 3145–3158, https://doi.org/10.5194/bg-10-3145-2013, https://doi.org/10.5194/bg-10-3145-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pre-Cenozoic
Warming drove the expansion of marine anoxia in the equatorial Atlantic during the Cenomanian leading up to Oceanic Anoxic Event 2
Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic
Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian
Bridging the Faraoni and Selli oceanic anoxic events: late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
James S. Eldrett, Paul Dodsworth, Steven C. Bergman, Milly Wright, and Daniel Minisini
Clim. Past, 13, 855–878, https://doi.org/10.5194/cp-13-855-2017, https://doi.org/10.5194/cp-13-855-2017, 2017
Short summary
Short summary
This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes for the Cenomanian to Coniacian stages of the Late Cretaceous, along a north–south transect from the Cretaceous Western Interior Seaway to the equatorial western Atlantic and Southern Ocean. Distinct palynological assemblages and geochemical signatures allow insights into palaeoenvironmental conditions and water-mass evolution during this greenhouse climate period.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
M. Wagreich
Clim. Past, 8, 1447–1455, https://doi.org/10.5194/cp-8-1447-2012, https://doi.org/10.5194/cp-8-1447-2012, 2012
K. B. Föllmi, M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann, and J. E. Spangenberg
Clim. Past, 8, 171–189, https://doi.org/10.5194/cp-8-171-2012, https://doi.org/10.5194/cp-8-171-2012, 2012
Cited articles
Algeo, T. J. and Maynard, J. B.: Trace-element behavior and redox facies in
core shales of Upper Pennsylvanian Kansas-type cyclothems, Chem. Geol.,
206, 289–318, https://doi.org/10.1016/j.chemgeo.2003.12.009, 2004.
Algeo, T. J. and Maynard, J. B.: Trace-metal covariation as a guide to
water-mass conditions in ancient anoxic marine environments, Geosphere, 4,
872–887, https://doi.org/10.1130/GES00174.1, 2008.
Arthur, M. A. and Natland, J. H.: Carbonaceous sediments in the North and
South Atlantic: The Role of Salinity in Stable Stratification of Early
Cretaceous Basins, in: Deep Drilling Results in the Atlantic Ocean:
Continental Margins and Paleoenvironment, edited by: Talwani, M., Hay, W.
W., and Ryan, W. B. F., Maurice Ewing Series, 3, American Geophysical Union,
Washington DC (USA), 375–401, https://doi.org/10.1029/me003p0375, 1979.
Arthur, M. A. and Sageman, B. B.: Marine Black Shales: Depositional
Mechanisms and Environments of Ancient Deposits, Annu. Rev. Earth
Planet. Sci., 22, 499–551, https://doi.org/10.1146/annurev.ea.22.050194.002435, 1994.
Beckmann, B., Flögel, S., Hofmann, P., Schulz, M., and Wagner, T.:
Orbital forcing of Cretaceous river discharge in tropical Africa and ocean
response, Nature, 437, 241–244, https://doi.org/10.1038/nature03976, 2005.
Behrooz, L., Naafs, B. D. A., Dickson, A. J., Love, G. D., Batenburg, S. J.,
and Pancost, R. D.: Astronomically driven variations in depositional
environments in the South Atlantic during the Early Cretaceous,
Paleoceanogr. Paleoclim., 33, 894–912,
https://doi.org/10.1029/2018pa003338, 2018.
Berger, A.: Long-term variations of daily insolation and Quaternary climatic
changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Berner, R. A. and Raiswell, R.: Burial of organic carbon and pyrite sulfur
in sediments over Phanerozoic time: a new theory, Geochim. Cosmochim. Ac., 47, 855–862, https://doi.org/10.1016/0016-7037(83)90151-5, 1983.
Bhatia, M. R. and Crook, K. A.: Trace element characteristics of graywackes
and tectonic setting discrimination of sedimentary basins, Contrib.
Mineral. Petr., 92, 181–193, https://doi.org/10.1007/bf00375292,
1986.
Birch, G.: The distribution of clay minerals on the continental margin off
the West Coast of South Africa, T. Geol. Soc. South Africa, 81, 23–24, 1978.
Böning, P., Shaw, T., Pahnke, K., and Brumsack, H.-J.: Nickel as
indicator of fresh organic matter in upwelling sediments, Geochim. Cosmochim.
Ac., 162, 99–108, https://doi.org/10.1016/j.gca.2015.04.027, 2015.
Boucot, A. J., Xu, C., Scotese, C. R., and Morley, R. J.: Phanerozoic
Paleoclimate: An Atlas of Lithologic Indicators of Climate, SEPM Society for Sedimentary Geology, Tulsa, USA, 30 pp., https://doi.org/10.2110/sepmcsp.11, 2013.
Bralower, T. J. and Thierstein, H. R.: Low productivity and slow deep-water
circulation in mid-Cretaceous oceans, Geology, 12, 614–618,
https://doi.org/10.1130/0091-7613(1984)12<614:LPASDC>2.0.CO;2, 1984.
Bray, E. and Evans, E.: Distribution of n-paraffins as a clue to
recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15,
https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Cao, W., Zahirovic, S., Flament, N., Williams, S., Golonka, J., and Müller, R. D.: Improving global paleogeography since the late Paleozoic using paleobiology, Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, 2017.
Cao, W., Williams, S., Flament, N., Zahirovic, S., Scotese, C., and
Müller, R. D.: Palaeolatitudinal distribution of lithologic indicators
of climate in a palaeogeographic framework, Geol. Mag., 156,
331–354, https://doi.org/10.1017/s0016756818000110, 2019.
Caron, D. A.: The rise of Rhizaria, Nature, 532, 444–445,
https://doi.org/10.1038/nature17892, 2016.
Chaboureau, A.-C., Donnadieu, Y., Sepulchre, P., Robin, C., Guillocheau, F., and Rohais, S.: The Aptian evaporites of the South Atlantic: a climatic paradox?, Clim. Past, 8, 1047–1058, https://doi.org/10.5194/cp-8-1047-2012, 2012.
Chumakov, N. M., Zharkov, M. A., Herman, A. B., Doludenko, M. P.,
Kalandadze, N. N., Lebedev, E. L., Ponomarenko, A. G., and Rautian, A. S.:
Climatic belts of the mid-Cretaceous time, Stratigr. Geol.
Correl., 3, 241–260, 1995.
Coccioni, R., Erba, E., and Premoli-Silva, I.: Barremian-Aptian calcareous
plankton biostratigraphy from the Gorgo Cerbara section (Marche, central
Italy) and implications for plankton evolution, Cretaceous Res., 13,
517–537, https://doi.org/10.1016/0195-6671(92)90015-I, 1992.
Croudace, I. W. and Rothwell, R. G.: Micro-XRF Studies of Sediment Cores:
Applications of a non-destructive tool for the environmental sciences,
Springer, Heidelberg, Germany, 650 pp., 2015.
Crowley, T. J., Yip, K. J. J., and Baum, S. K.: Milankovitch cycles and
Carboniferous climate, Geophys. Res. Lett., 20, 1175–1178,
https://doi.org/10.1029/93GL01119, 1993.
Dean, W. E., and Arthur, M. A.: Iron-sulfur-carbon relationships in
organic-carbon-rich sequences I: Cretaceous Western Interior Seaway,
Am. J. Sci., 289, 708–743, https://doi.org/10.2475/ajs.289.6.708, 1989.
Degens, E. T., Emeis, K. C., Mycke, B., and Wiesner, M. G.: Turbidites, the
principal mechanism yielding black shales in the early deep Atlantic Ocean,
in: North Atlantic Palaeoceanography, edited by: Summerhayes, C. P. and
Shackleton, N. J., Special Publications, 21, Geological Society of London,
London, UK, 361–376, https://doi.org/10.1144/gsl.sp.1986.021.01.26, 1986.
De Wit, M.: Post-Gondwana drainage and the development of diamond placers in
western South Africa, Econ. Geol., 94, 721–740,
https://doi.org/10.2113/gsecongeo.94.5.721, 1999.
Dickson, A. J., Leng, M. J., Maslin, M. A., and Röhl, U.: Oceanic,
atmospheric and ice-sheet forcing of South East Atlantic Ocean productivity
and South African monsoon intensity during MIS-12 to 10, Quaternary Sci.
Rev., 29, 3936–3947, https://doi.org/10.1016/j.quascirev.2010.09.014,
2010.
Dingle, R. V. and Hendry, Q. B.: Late Mesozoic and Tertiary sediment supply
to the eastern Cape Basin (SE Atlantic) and palaeo-drainage systems in
southwestern Africa, Mar. Geol., 56, 13–26, 1984.
Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck,
J.-F.: A better-ventilated ocean triggered by Late Cretaceous changes in
continental configuration, Nat. Commun., 7, 10316,
https://doi.org/10.1038/ncomms10316, 2016.
Dulski, P.: Reference materials for geochemical studies: New analytical data
by ICP-MS and critical discussion of reference values, Geostandard.
Newslett., 25, 87–125, https://doi.org/10.1111/j.1751-908x.2001.tb00790.x,
2001.
Dummann, W., Steinig, S., Hofmann, P., Flögel, S., Osborne, A. H.,
Frank, M., Herrle, J. O., Bretschneider, L., Sheward, R. M., and Wagner, T.:
The impact of Early Cretaceous gateway evolution on ocean circulation and
organic carbon burial in the emerging South Atlantic and Southern Ocean
basins, Earth Planet. Sci. Lett., 530, 115890,
https://doi.org/10.1016/j.epsl.2019.115890, 2020.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156,
1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Erba, E.: Nannofossils and superplumes: the early Aptian “nannoconid
crisis”, Paleoceanography, 9, 483–501, https://doi.org/10.1029/94PA00258,
1994.
Forster, A., Kuypers, M. M., Turgeon, S. C., Brumsack, H.-J., Petrizzo, M.
R., and Sinninghe Damsté, J. S.: The Cenomanian/Turonian oceanic anoxic
event in the South Atlantic: New insights from a geochemical study of DSDP
Site 530A, Palaeogeogr., Palaeoclim. Palaeoecol., 267, 256–283,
https://doi.org/10.1016/j.palaeo.2008.07.006, 2008.
Garver, J. I., Royce, P. R., and Smick, T. A.: Chromium and nickel in shale
of the Taconic foreland; a case study for the provenance of fine-grained
sediments with an ultramafic source, J. Sediment. Res., 66,
100–106, https://doi.org/10.1306/d42682c5-2b26-11d7-8648000102c1865d, 1996.
Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., and Villa, I.
M.: Provenance versus weathering control on the composition of tropical
river mud (southern Africa), Chem. Geol., 366, 61–74,
https://doi.org/10.1016/j.chemgeo.2013.12.016, 2014.
Govindaraju, K.: 1994 Compilation of working values and sample description
for 383 geostandards, Geostandard. Newslett., 18, 1–158,
https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1, 1994.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The Geologic Time
Scale 2012, Elsevier, Amsterdam, the Netherlands, 1176 pp.,
https://doi.org/10.1016/c2011-1-08249-8, 2012.
Hahn, A., Compton, J. S., Meyer-Jacob, C., Kirsten, K. L., Lucasssen, F.,
Mayo, M. P., Schefuß, E., and Zabel, M.: Holocene paleo-climatic record
from the South African Namaqualand mudbelt: A source to sink approach,
Quaternary Int., 404, 121–135,
https://doi.org/10.1016/j.quaint.2015.10.017, 2016.
Han, J. and Calvin, M.: Hydrocarbon distribution of algae and bacteria, and
microbiological activity in sediments, P. Natl. Acad.
Sci. USA, 64, 436–443, https://doi.org/10.1073/pnas.64.2.436, 1969.
Hartwig, A., di Primio, R., Anka, Z., and Horsfield, B.: Source rock
characteristics and compositional kinetic models of Cretaceous organic rich
black shales offshore southwestern Africa, Org. Geochem., 51, 17–34,
https://doi.org/10.1016/j.orggeochem.2012.07.008, 2012.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/jcli3990.1, 2006.
Herbin, J. P., Muller, C., de Graciansky, P. C., Jacquin, T.,
Magniez-Jannin, F., and Unternehr, P.: Cretaceous anoxic events in the South
Atlantic, Rev. Bras. Geoci., 17, 92–99,
https://doi.org/10.25249/0375-7536.19879299, 1987.
Herrle, J. O., Pross, J., Friedrich, O., Kößler, P., and Hemleben,
C.: Forcing mechanisms for mid-Cretaceous black shale formation: evidence
from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France),
Palaeogeogr. Palaeoclimatol. Palaeoecol., 190, 399–426,
https://doi.org/10.1016/S0031-0182(02)00616-8, 2003.
Hofmann, P. and Wagner, T.: ITCZ controls on Late Cretaceous black shale
sedimentation in the tropical Atlantic Ocean, Paleoceanogr.
Paleoclimatol., 26, PA4223, https://doi.org/10.1029/2011pa002154, 2011.
Huang, W.-Y. and Meinschein, W.: Sterols as ecological indicators, Geochim.
Cosmochim. Ac., 43, 739–745, https://doi.org/10.1016/0016-7037(79)90257-6,
1979.
Izett, J. G. and Fennel, K.: Estimating the Cross-Shelf Export of Riverine
Materials: Part 1. General Relationships From an Idealized Numerical Model,
Global Biogeochem. Cy., 32, 160–175,
https://doi.org/10.1002/2017gb005667, 2018.
Jacquin, T. and De Graciansky, P. C.: Cyclic fluctuations of anoxia during
Cretaceous time in the South Atlantic Ocean, Mar. Petrol. Geol.,
5, 359–369, 1988.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem.
Geophys. Geosy., 11, 1–30, https://doi.org/10.1029/2009gc002788,
2010.
Jing, D. and Bainian, S.: Early Cretaceous atmospheric CO2 estimates based
on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from
southeast China, Cretaceous Res., 85, 232–242,
https://doi.org/10.1016/j.cretres.2017.08.011, 2018.
Kagami, H.: Sedimentary features of Cape Basin and Angola Basin sediments,
DSDP Leg 40, Initial Reports of the Deep Sea Drilling Project, 40, 525, https://doi.org/10.2973/dsdp.proc.40.108.1978, 1978.
Kolonic, S., Wagner, T., Forster, A., Sinninghe Damsté, J. S.,
Walsworth-Bell, B., Erba, E., Turgeon, S., Brumsack, H. J., Chellai, E. H.,
and Tsikos, H.: Black shale deposition on the northwest African Shelf during
the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global
organic carbon burial, Paleoceanogr., 20, PA1006,
https://doi.org/10.1029/2003pa000950, 2005.
Koopmans, M. P., Köster, J., Van Kaam-Peters, H. M. E., Kenig, F.,
Schouten, S., Hartgers, W. A., de Leeuw, J. W., and Sinninghe Damsté, J.
S.: Diagenetic and catagenetic products of isorenieratene: molecular
indicators for photic zone anoxia, Geochim. Cosmochim. Ac., 60, 4467–4496,
https://doi.org/10.1016/s0016-7037(96)00238-4, 1996.
Kounov, A., Viola, G., De Wit, M., and Andreoli, M.: A Mid Cretaceous
paleo-Karoo River valley across the Knersvlakte plain (northwestern coast of
South Africa): Evidence from apatite fission-track analysis, S. Afr.
J. Geol., 111, 409–420, https://doi.org/10.2113/gssajg.111.4.409,
2008.
Lampitt, R., Salter, I., and Johns, D.: Radiolaria: Major exporters of
organic carbon to the deep ocean, Global Biogeochem. Cy., 23, GB1010,
https://doi.org/10.1029/2008gb003221, 2009.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital
solution for the long-term motion of the Earth, Astron. Astrophys.,
532, A89, https://doi.org/10.1051/0004-6361/201116836, 2011.
Leventhal, J. S.: An interpretation of carbon and sulfur relationships in
Black Sea sediments as indicators of environments of deposition, Geochim.
Cosmochim. Ac., 47, 133–137, https://doi.org/10.1016/0016-7037(83)90097-2,
1983.
Little, S. H., Vance, D., Lyons, T. W., and McManus, J.: Controls on trace
metal authigenic enrichment in reducing sediments: insights from modern
oxygen-deficient settings, Am. J. Sci., 315, 77–119,
https://doi.org/10.2475/02.2015.01, 2015.
Macdonald, D., Gomez-Perez, I., Franzese, J., Spalletti, L., Lawver, L.,
Gahagan, L., Dalziel, I., Thomas, C., Trewin, N., and Hole, M.: Mesozoic
break-up of SW Gondwana: implications for regional hydrocarbon potential of
the southern South Atlantic, Mar. Petrol. Geol., 20, 287–308,
https://doi.org/10.1016/s0264-8172(03)00045-x, 2003.
Madec, G. V.: NEMO Ocean engine, Note du Pôle de modélisation No. 27, Institut Pierre-Simon Laplace (IPSL), Paris, France, 2008.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M.,
and Müller, R. D.: Global plate boundary evolution and kinematics since
the late Paleozoic, Global Planet. Change, 146, 226–250,
https://doi.org/10.1016/j.gloplacha.2016.10.002, 2016.
McAnena, A., Flögel, S., Hofmann, P., Herrle, J. O., Griesand, A.,
Pross, J., Talbot, H. M., Rethemeyer, J., Wallmann, K., and Wagner, T.:
Atlantic cooling associated with a marine biotic crisis during the
mid-Cretaceous period, Nat. Geosci., 6, 558–561,
https://doi.org/10.1038/ngeo1850, 2013.
McLennan, S., Hemming, S., McDaniel, D., and Hanson, G.: Geochemical
approaches to sedimentation, provenance, and tectonics, in: Processes
Controlling the Composition of Clastic Sediments, edited by: Johnsson, M.,
and Basu, A., GSA Special Papers, 284, Geological Society of America,
Boulder, USA, 21–40, https://doi.org/10.1130/spe284-p21, 1993.
Melguen, M.: Facies evolution, carbonate dissolution cycles in sediments
from the eastern South Atlantic (DSDP Leg 40) since the Early Cretaceous,
in: Initial Reports of the Deep Sea Drilling Project, Volume 40, edited by:
Bolli, H. M. and Ryan, W. B. F., U.S. Government Printing Office,
Washington, DC, USA, 981–1024, https://doi.org/10.2973/dsdp.proc.40.129.1978, 1978.
Menegatti, A. P., Weissert, H., Brown, R. S., Tyson, R. V., Farrimond, P.,
Strasser, A., and Caron, M.: High-resolution δ13C stratigraphy
through the early Aptian “Livello Selli” of the Alpine Tethys,
Paleoceanogr., 13, 530–545, https://doi.org/10.1029/98pa01793, 1998.
Meyer, K. M. and Kump, L. R.: Oceanic Euxinia in Earth History: Causes and
Consequences, Annu. Rev. Earth Planet. Sci., 36, 251–288,
https://doi.org/10.1146/annurev.earth.36.031207.124256, 2008.
Moldowan, J. M., Seifert, W. K., and Gallegos, E. J.: Relationship between
petroleum composition and depositional environment of petroleum source
rocks, AAPG Bull., 69, 1255–1268,
https://doi.org/10.1306/ad462bc8-16f7-11d7-8645000102c1865d, 1985.
Moldowan, J. M., Fago, F. J., Lee, C. Y., Jacobson, S. R., Watt, D. S.,
Slougui, N. E., Jeganathan, A., and Young, D. C.: Sedimentary
24-n-Propylcholestanes, Molecular Fossils Diagnostic of Marine Algae,
Science, 247, 309–312, https://doi.org/10.1126/science.247.4940.309, 1990.
Moore, A., Blenkinsop, T., and Cotterill, F.: Southern African topography
and erosion history: plumes or plate tectonics?, Terra Nova, 21, 310–315,
https://doi.org/10.1111/j.1365-3121.2009.00887.x, 2009.
Naafs, B. D. A. and Pancost, R. D.: Environmental conditions in the South
Atlantic (Angola Basin) during the Early Cretaceous, Org. Geochem., 76,
184–193, https://doi.org/10.1016/j.orggeochem.2014.08.005, 2014.
Naafs, B. D. A., Castro, J. M., De Gea, G. A., Quijano, M. L., Schmidt, D.
N., and Pancost, R. D.: Gradual and sustained carbon dioxide release during
Aptian Oceanic Anoxic Event 1a, Nat. Geosci., 9, 135–139,
https://doi.org/10.1038/ngeo2627, 2016.
Natland, J. H.: Composition, provenance, and diagenesis of Cretaceous
clastic sediments drilled on the Atlantic continental rise off Southern
Africa, DSDP Site 361; implications for the early circulation of the South
Atlantic, in: Initial Reports of the Deep Sea Drilling Project, Volume 40,
edited by: Bolli, H. M. and Ryan, W. B. F., U.S. Government Printing
Office, Washington, DC, USA, 1025–1061,
https://doi.org/10.2973/dsdp.proc.40.130.1978, 1978.
Nettersheim, B. J., Brocks, J. J., Schwelm, A., Hope, J. M., Not, F., Lomas,
M., Schmidt, C., Schiebel, R., Nowack, E. C., and De Deckker, P.: Putative
sponge biomarkers in unicellular Rhizaria question an early rise of animals,
Nat. Ecol. Evol., 3, 577,
https://doi.org/10.1038/s41559-019-0806-5, 2019.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J.
S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., and
Brassell, S. C.: Cretaceous sea-surface temperature evolution: Constraints
from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev.
172, 224–247, https://doi.org/10.1130/abs/2018am-323378, 2017.
Park, W., Keenlyside, N., Latif, M., Ströh, A., Redler, R., Roeckner,
E., and Madec, G.: Tropical Pacific climate and its response to global
warming in the Kiel Climate Model, J. Climate, 22, 71–92,
https://doi.org/10.1175/2008jcli2261.1, 2009.
Partridge, T. C. and Maud, R. R.: Geomorphic evolution of southern Africa
since the Mesozoic, S. Afr. J. Geol., 90, 179–208, 1987.
Pedersen, T. and Calvert, S.: Anoxia vs. Productivity: What Controls the
Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks?, AAPG
Bull., 74, 454–466, https://doi.org/10.1306/0c9b232b-1710-11d7-8645000102c1865d, 1990.
Pérez-Díaz, L. and Eagles, G.: South Atlantic paleobathymetry
since early Cretaceous, Sci. Rep.-UK, 7, 11819,
https://doi.org/10.1038/s41598-017-11959-7, 2017.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The Biomarker Guide:
Volume 2, Biomarkers and Isotopes in Petroleum Exploration and Earth
History, Cambridge University Press, New York City, USA, 1155 pp., 2007.
Proto Decima, F., Medizza, F., and Todesco, L.: Southeastern Atlantic Leg 40
calcareous nannofossils, in: Initial Reports of the Deep Sea Drilling
Project, Volume 40, edited by: Bolli, H. M. and Ryan, W. B. F., 40, US
Government Printing Office, Washington, DC, USA, 571–634, 1978.
Raiswell, R., Buckley, F., Berner, R. A., and Anderson, T. F.: Degree of
pyritization of iron as a paleoenvironmental indicator of bottom-water
oxygenation, J. Sediment. Res., 58, 812–819,
https://doi.org/10.1306/212f8e72-2b24-11d7-8648000102c1865d, 1988.
Ravnås, R. and Steel, R.: Architecture of marine rift-basin
successions, AAPG Bulletin, 82, 110–146,
https://doi.org/10.1306/1d9bc3a9-172d-11d7-8645000102c1865d, 1998.
Raynaud, J. F. and Robert, P.: Microscopical survey of organic matter from
DSDP sites 361, 362, and 364, in: Initial reports of the Deep Sea Drilling
Project, Volume 40, edited by: Bolli, H. M. and Ryan, W. B. F., US
Government Printing Office, Washington, DC, USA, 663–669,
https://doi.org/10.2973/dsdp.proc.38394041s.306.1978, 1978.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M.,
Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E.,
Rhodin, A., Schlese, U., Schulzweida, A., and Tompkins, A.: The atmospheric
general circulation model ECHAM 5. PART I: Model description, Max Planck
Institute for Meteorology, Hamburg (Germany), Report No. 349, 2003.
Schlanger, S. O. and Jenkyns, H. C.: Cretaceous oceanic anoxic events:
causes and consequences, Geol. Mijnbouw, 55, 179–184, 1976.
Sewall, J. O., van de Wal, R. S. W., van der Zwan, K., van Oosterhout, C., Dijkstra, H. A., and Scotese, C. R.: Climate model boundary conditions for four Cretaceous time slices, Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, 2007.
Sharples, J., Middelburg, J. J., Fennel, K., and Jickells, T. D.: What
proportion of riverine nutrients reaches the open ocean?, Global
Biogeochem. Cy., 31, 39–58, https://doi.org/10.1002/2016gb005483,
2017.
Sinninghe Damsté, J. S., Kuypers, M. M. M., Schouten, S., Schulte, S.,
and Rullkötter, J.: The lycopane/C31 n-alkane ratio as a proxy to assess
palaeoxicity during sediment deposition, Earth. Planet. Sc. Lett., 209, 215–226,
https://doi.org/10.1016/s0012-821x(03)00066-9, 2003.
Stein, R., Rullkötter, J., and Welte, D. H.: Accumulation of
organic-carbon-rich sediments in the Late Jurassic and Cretaceous Atlantic
Ocean—A synthesis, Chem. Geol., 56, 1–32,
https://doi.org/10.1016/0009-2541(86)90107-5, 1986.
Steinig, S., Dummann, W., Park, W., Latif, M., Kusch, S., Hofmann, P., and
Flögel, S.: Evidence for a regional warm bias in the Early Cretaceous
TEX86 record, Earth Planet. Sc. Lett., 539, 116184,
https://doi.org/10.1016/j.epsl.2020.116184, 2020.
The Shipboard Scientific Party: Cape Basin continental rise; Sites 360
and 361, in: Initial Reports of the Deep Sea Drilling Project, Volume 40,
edited by: Bolli, H. M. and Ryan, W. B. F., US Government Printing
Office, Washington, DC, USA, 29–182, https://doi.org/10.2973/dsdp.proc.40.102.1978, 1978.
Thiede, J. and Van Andel, T. H.: The paleoenvironment of anaerobic
sediments in the late Mesozoic South Atlantic Ocean, Earth Planet. Sc. Lett.,
33, 301–309, https://doi.org/10.1016/0012-821x(77)90082-6, 1977.
Trabucho-Alexandre, J., Hay, W. W., and de Boer, P. L.: Phanerozoic environments of black shale deposition and the Wilson Cycle, Solid Earth, 3, 29–42, https://doi.org/10.5194/se-3-29-2012, 2012.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: an update, Chem. Geol.,
232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Twining, B. S., Baines, S. B., Vogt, S., and Nelson, D. M.: Role of diatoms
in nickel biogeochemistry in the ocean, Global Biogeochem. Cy., 26,
GB4001, https://doi.org/10.1029/2011gb004233, 2012.
Tyson, R.: The ”productivity versus preservation” controversy: cause, flaws,
and resolution, in: The Deposition of Organic-Carbon-Rich Sediments: Models,
Mechanisms, and Consequences, edited by: Harris, N., SEPM Special
Publication, 82, SEPM Society for Sedimentary Geology, Tulsa, USA, 17–33,
https://doi.org/10.2110/pec.05.82.0017, 2005.
Van Andel, T. H., Thiede, J., Sclater, J. G., and Hay, W. W.: Depositional
history of the South Atlantic Ocean during the last 125 million years,
J. Geol., 85, 651–698, https://doi.org/10.1086/628357, 1977.
Wagner, T. and Pletsch, T.: Tectono-sedimentary controls on Cretaceous
black shale deposition along the opening Equatorial Atlantic Gateway (ODP
Leg 159), in: The Oil and Gas Habitats of the South Atlantic, edited by:
Cameron, N. R., Bate, R. H., and Clure, V. S., Special Publications, 153,
Geological Society of London, London, UK, 241–265,
https://doi.org/10.1144/GSL.SP.1999.153.01.15, 1999.
Wagner, T., Hofmann, P., and Flögel, S.: Marine black shale deposition
and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic
Ocean, Mar. Petrol. Geol., 43, 222–238,
https://doi.org/10.1016/j.marpetgeo.2013.02.005, 2013.
Wanty, R. B. and Goldhaber, M. B.: Thermodynamics and kinetics of reactions
involving vanadium in natural systems: Accumulation of vanadium in
sedimentary rocks, Geochim. Cosmochim. Ac., 56, 1471–1483,
https://doi.org/10.1016/0016-7037(92)90217-7, 1992.
Weaver, C. E. and Pollard, L. D.: The Chemistry of Clay Minerals,
Developments in Sedimentology, 15, Elsevier, Amsterdam, the Netherlands, 212 pp., 1973.
Wedepohl, K. H.: Environmental influences on the chemical composition of
shales and clays, Phys. Chem. Earth, 8, 307–333,
https://doi.org/10.1016/0079-1946(71)90020-6, 1971.
Wedepohl, K. H.: The Composition of Earth's Upper Crust, Natural Cycles of
Elements, Natural Resources, in: Metals and Their Compounds in the
Environment, edited by: Merian, E., Anke, M., Ihnat, M., and Stoeppler, M.,
Wiley-VCH, Weinheim, Germany, 3–17, 2004.
Weissert, H., Lini, A., Föllmi, K. B., and Kuhn, O.: Correlation of
Early Cretaceous carbon isotope stratigraphy and platform drowning events: a
possible link?, Palaeogeogr. Palaeoclim. Palaeoecol., 137,
189–203, https://doi.org/10.1016/S0031-0182(97)00109-0, 1998.
Zimmerman, H. B., Boersma, A., and McCoy, F. W.: Carbonaceous sediments and
palaeoenvironment of the Cretaceous South Atlantic Ocean, in: Marine
Petroleum Source Rocks, edited by: Brooks, J., and Fleet, A. J., Special
Publications, 26, Geological Society of London, Oxford, UK, 271–286,
https://doi.org/10.1144/gsl.sp.1987.026.01.19, 1987.
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
This study investigates the climatic mechanism that controlled the deposition of organic matter...