Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The transient impact of the African monsoon on Plio-Pleistocene Mediterranean sediments
Bas de Boer
Earth and Climate Cluster, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Marit Peters
Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
now at: United Experts cvba, Beringen, Belgium
Lucas J. Lourens
CORRESPONDING AUTHOR
Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Related authors
No articles found.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Henry Hooghiemstra, Gustavo Sarmiento Pérez, Vladimir Torres Torres, Juan-Carlos Berrío, Lucas Lourens, and Suzette G. A. Flantua
Sci. Dril., 30, 1–15, https://doi.org/10.5194/sd-30-1-2022, https://doi.org/10.5194/sd-30-1-2022, 2022
Short summary
Short summary
This is a brief overview of long continental fossil pollen records globally in relationship with marine records. Specifically, the Northern Andes is a key area in developing and testing hypotheses in the fields of ecology, paleobiogeography, and climate change in tropical regions. We review 60 years of deep drilling experience in this region that have led to landmark records. We also highlight the early development of long continental pollen records from unique, deep, sediment-filled basins.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Lennert B. Stap, Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja, and Lucas J. Lourens
Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, https://doi.org/10.5194/cp-13-1243-2017, 2017
Short summary
Short summary
We show the results of transient simulations with a coupled climate–ice sheet model over the past 38 million years. The CO2 forcing of the model is inversely obtained from a benthic δ18O stack. These simulations enable us to study the influence of ice sheet variability on climate change on long timescales. We find that ice sheet–climate interaction strongly enhances Earth system sensitivity and polar amplification.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
J. H. C. Bosmans, F. J. Hilgen, E. Tuenter, and L. J. Lourens
Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, https://doi.org/10.5194/cp-11-1335-2015, 2015
Short summary
Short summary
Our study shows that the influence of obliquity (the tilt of Earth's rotational axis) can be explained through changes in the insolation gradient across the tropics. This explanation is fundamentally different from high-latitude mechanisms that were previously often inferred to explain obliquity signals in low-latitude paleoclimate records, for instance glacial fluctuations. Our study is based on state-of-the-art climate model experiments.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Pleistocene
Insolation evolution and ice volume legacies determine interglacial and glacial intensity
Bispectra of climate cycles show how ice ages are fuelled
Land–sea coupling of early Pleistocene glacial cycles in the southern North Sea exhibit dominant Northern Hemisphere forcing
A distal 140 kyr sediment record of Nile discharge and East African monsoon variability
Takahito Mitsui, Polychronis C. Tzedakis, and Eric W. Wolff
Clim. Past, 18, 1983–1996, https://doi.org/10.5194/cp-18-1983-2022, https://doi.org/10.5194/cp-18-1983-2022, 2022
Short summary
Short summary
We provide simple quantitative models for the interglacial and glacial intensities over the last 800 000 years. Our results suggest that the memory of previous climate states and the time course of the insolation in both hemispheres are crucial for understanding interglacial and glacial intensities. In our model, the shift in interglacial intensities at the Mid-Brunhes Event (~430 ka) is ultimately attributed to the amplitude modulation of obliquity.
Diederik Liebrand and Anouk T. M. de Bakker
Clim. Past, 15, 1959–1983, https://doi.org/10.5194/cp-15-1959-2019, https://doi.org/10.5194/cp-15-1959-2019, 2019
Short summary
Short summary
We present a new analysis and interpretation of a well-established climate record that spans the past 5 million years. We describe how the energy the Earth receives from the Sun is transferred among climate cycles with different duration. This analysis offers new insights into the complex evolution of the global climate system and land-ice volumes during this time. Furthermore, it provides a more complete solution to the long-standing 40 000- and ~100 000-year problems of the ice ages.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Werner Ehrmann, Gerhard Schmiedl, Martin Seidel, Stefan Krüger, and Hartmut Schulz
Clim. Past, 12, 713–727, https://doi.org/10.5194/cp-12-713-2016, https://doi.org/10.5194/cp-12-713-2016, 2016
Cited articles
Bailey, I., Hole, G. M., Foster, G. L., Wilson, P. A., Storey, C. D., Trueman, C. N., and Raymo, M. E.: An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris, Quaternary Sci. Rev., 75, 181–194, 2013. a
Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations,
Paleoceanography, 26, PA4213, https://doi.org/10.1029/2010PA002055, 2011. a, b
Bauer, E. and Ganopolski, A.: Aeolian dust modeling over the past four glacial cycles with CLIMBER-2, Global Planet. Change, 74, 49–60, 2010. a
Berends, C. J., de Boer, B., and van de Wal, R. S. W.: Reconstructing the Evolution of Ice Sheets, Sea Level and Atmospheric CO2 During the Past 3.6 Million Years, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2020-52, accepted, 2021. a
Bintanja, R. and van de Wal, R. S. W.: North American ice-sheet dynamics and the onset of 100 000-year glacial cycles, Nature, 454, 869–872,
https://doi.org/10.1038/nature07158, 2008. a
Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J., and Lourens,
L. J.: Response of the North African summer monsoon to precession and
obliquity forcings in the EC-Earth GCM, Clim. Dynam., 44, 279–297,
https://doi.org/10.1007/s00382-014-2260-z, 2015a. a
Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J., Lourens,
L. J., and Rohling, E. J.: Precession and obliquity forcing of the freshwater
budget over the Mediterranean, Quaternary Sci. Rev., 123, 16–30,
https://doi.org/10.1016/j.quascirev.2015.06.008, 2015b. a, b
Brigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P., DeConto, R., Koenig, S., Nowaczyk, N., Wennrich, V., Rosén, P., Haltia, E., Cook, T., Gebhardt, C., Meyer-Jacob, C., Snyder, J., and Herzschuh, U.: Pliocene Warmth, Polar Amplification, and Stepped Pleistocene Cooling Recorded in NE Arctic Russia, Science, 340, 1421–1427, https://doi.org/10.1126/science.1233137, 2013. a
Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A continuous climate-vegetation
classification for use in climate-biosphere studies, Ecol. Model., 101,
251–261, 1997. a
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L.,
Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., Jimenez-Espejo,
F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry,
S. J., Charlier, K., Wary, M., Gourves, P.-Y., Billy, I., and Giraudeau, J.:
A 2 million year-long hydroclimatic context for hominin evolution in
southeastern Africa, Nature, 560, 76–79, 2018. a
de Boer, B., Lourens, L. J., and van de Wal, R. S. W.: Persistent 400 000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene, Nat. Commun., 5, 2999,
https://doi.org/10.1038/ncomms3999, 2014. a, b, c, d
de Boer, B., Peters, M., and Lourens, L. J.: The transient impact of the African monsoon on Plio-Pleistocene Mediterranean sediments, available at: https://doi.org/10.34894/HD6E9I, last access: 27 January 2021. a
de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., and Foster, G. L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation, Sci. Rep., 10, 11002, https://doi.org/10.1038/s41598-020-67154-8, 2020. a
deMenocal, P. B.: Plio-Pleistocene African Climate, Science, 270, 53–59, https://doi.org/10.1126/science.270.5233.53, 1995. a
DiMaggio, E., Campisano, C., Rowan, J., Dupont-Nivet, G., Deino, A., Bibi, F., Lewis, M., Souron, A., Garello, D., Werdelin, L., Reed, K., and Arrowsmith, J.: Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia, Science, 347, 1355–1359, https://doi.org/10.1126/science.aaa1415, 2015. a
Donges, J. F., Donner, R. V., Trauth, M. H., Marwan, N., Schellnhuber, H.-J.,
and Kurths, J.: Nonlinear detection of paleoclimate-variability transitions
possibly related to human evolution, P. Natl. Acad. Sci. USA, 108, 20422–20427, 2011. a
Emeis, K., Robertson, A., and Richter, C.: Proceedings of the Ocean Drilling
Program (ODP), Initial Reports, College Station, Texas, 160, https://doi.org/10.2973/odp.proc.ir.160.1996, 1996. a
Flesche Kleiven, H., Jansen, E., Fronval, T., and Smith, T.: Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma) – ice-rafted detritus evidence, Palaeogeogr. Palaeocl., 184, 213–223, https://doi.org/10.1016/S0031-0182(01)00407-2, 2002. a
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011. a
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a
Hays, J., Imbrie, J., and Shackleton, N.: Variation in the Earth's orbit:
pacemakers of the ice ages, Science, 194, 1121–1132, 1976. a
Herbert, T. D., Peterson, L. C., Lawrence, K. T., and Liu, Z.: Tropical Ocean
Temperatures Over the Past 3.5 Million Years, Science, 328, 1530–1534,
https://doi.org/10.1126/science.1185435, 2010. a
Joordens, J. C. A., Feibel, C. S., Vonhof, H. B., Schulp, A. S., and Kroon, D.: Relevance of the eastern African coastal forest for early hominin
biogeography, J. Hum. Evol., 131, 176–202,
https://doi.org/10.1016/j.jhevol.2019.03.012, 2019. a, b, c, d
Konijnendijk, T., Ziegler, M., and Lourens, L.: Chronological constraints on
Pleistocene spropel depositions from high-resoution geochemical records of
ODP Sites 967 and 968, Newsl. Stratigr., 47, 263–282,
https://doi.org/10.1127/0078-0421/2014/0047, 2014. a
Kroon, D., Alexander, I., Little, M., Lourens, L. J., Matthewson, A.,
Robertson, A. H. F., and Sakamoto, T.: Oxygen isotope and sapropel
stratigraphy in the eastern Mediterranean during the last 3.2 million years,
Proceedings of the Ocean Drilling Program, Scientific Results, 160, 181–189,
1998. a, b, c
Kuechler, R. R., Dupont, L. M., and Schefuß, E.: Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa, Clim. Past, 14, 73–84, https://doi.org/10.5194/cp-14-73-2018, 2018. a
Lisiecki, L. and Raymo, M.: Plio-Pleistocene climate evolution: trends and
transitions in glacial cycle dynamics, Quaternary Sci. Rev., 26, 56–69, 2007. a
Lourens, L. J., Antonarakou, A., Hilgen, F. J., Hoof, A. A. M. V.,
Vergnaud-Grazzini, C., and Zachariasse., W. J.: Evolution of the
Plio-Pleistocene astronomical timescale, Paleoceanography, 11, 391–413,
1996. a
Lourens, L. J., Becker, J., Bintanja, R., Hilgen, F. J., Tuenter, E., van de Wal, R. S. W., and Ziegler, M.: Linear and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the Milankovitch theory, Quaternary Sci. Rev., 29, 352–365,
https://doi.org/10.1016/j.quascirev.2009.10.018, 2010. a
Lupien, R. L., Russell, J. M., Feibel, C., Beck, C., Castañeda, I., Deino, A., and Cohen, A. S.: A leaf wax biomarker record of early Pleistocene
hydroclimate from West Turkana, Kenya, Quaternary Sci. Rev., 186,
225–235, 2018. a
Lüthi, D., Le Flock, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T.: High-resolution carbon dioxide concentration record
650 000–800 000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008. a
Martinez-Boti, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton,
P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D. N.:
Plio-Pleistocene climate sensitivity evaluated using high-resolution
CO2 records, Nature, 518, 49–54, 2015. a
Maslin, M. A., Brierley, C. M., Milner, A. M., Shultz, S., Trauth, M. H., and
Wilson., K. E.: East African climate pulses and early human evolution, Quaternary Sci. Rev., 101, 1–17, https://doi.org/10.1016/j.quascirev.2014.06.012, 2014. a
Mounier, A. and Mirazón Lahr, M.: Deciphering African late middle
Pleistocene hominin diversity and the origin of our species, Nat. Commun., 10, 3406, https://doi.org/10.1038/s41467-019-11213-w, 2019. a
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs
time-series analysis, Eos Trans. AGU, 77, 379, https://doi.org/10.1029/96EO00259, 1996. a, b
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A.,
Kubatzki, C., and Rahmstorf., S.: CLIMBER-2: A climate system model of
intermediate complexity, part I: Model description and performance for
present climate, Clim. Dynam., 16, 1–17, https://doi.org/10.1007/PL00007919, 2000. a, b, c
Rose, C., Polissar, P. J., Tierney, J. E., Filley, T., and deMenocal, P. B.:
Changes in northeast African hydrology and vegetation associated with
Pliocene–Pleistocene sapropel cycles, Philos. T. Roy. Soc. B., 371, 20150243, https://doi.org/10.1098/rstb.2015.0243, 2016. a
Stap, L. B., van de Wal, R. S. W., de Boer, B., Bintanja, R., and Lourens, L. J.: Interaction of ice sheets and climate during the past 800 000 years, Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, 2014. a
Stap, L. B., de Boer, B., Ziegler, M., Bintanja, R., Lourens, L. J., and van de Wal, R. S. W.: CO2 over the past 5 million years: Continuous simulation
and new δ11B-based proxy data, Earth Planet. Sc. Lett.,
439, 1–10, 2016. a
Stap, L. B., van de Wal, R. S. W., de Boer, B., Köhler, P., Hoencamp,
J. H., Lohmann, G., Tuenter, E., and Lourens, L. J.: Modeled Influence of
Land Ice and CO2 on Polar Amplification and Paleoclimate Sensitivity
During the Past 5 Million Years, Paleoceanography and Paleoclimatology, 33,
381–394, https://doi.org/10.1002/2017PA003313, 2018. a, b, c, d, e, f, g
Stocker, T. F., Wright, D. G., and Mysak, L. A.: A zonally averaged, coupled
ocean-atmosphere model for paleoclimate studies, J. Climate, 5,
773–797, 1992. a
Tan, N., Ladant, J.-B., Ramstein, G., Dumas, C., Bachem, P., and Jansen, E.:
Dynamic Greenland ice sheet driven by pCO2 variations across the Pliocene Pleistocene transition, Nat. Commun., 9, 4755,
https://doi.org/10.1038/s41467-018-07206-w, 2018. a
Trauth, M., Maslin, M., Deino, A., Strecker, M., Bergner, A., and Duhnforth,
M.: High- and low-latitude forcing of Plio-Pleistocene East African climate
and human evolution, J. Hum. Evol., 53, 475–486, 2007. a
Tuenter, E., Weber, S. L., Hilgen, F. J., Lourens, L. J., and Ganopolski., A.: Simulation of climate phase lags in response to precession and obliquity
forcing and the role of vegetation., Clim. Dynam., 24, 279–295,
https://doi.org/10.1007/s00382-004-0490-1, 2005. a, b
Venti, N. L., Billups, K., and Herbert, T. D.: Increased sensitivity of the
Plio-Pleistocene northwest Pacific to obliquity forcing, Earth Planet. Sc. Lett., 384, 121–131, https://doi.org/10.1016/j.epsl.2013.10.007, 2013. a
Wagner, B., Vogel, H., Francke, A., Friedrich, T., Donders, T., Lacey, J. H.,
Leng, M. J., Regattieri, E., Sadori, L., Wilke, T., Zanchetta, G., Albrecht,
C., Bertini, A., Combourieu-Nebout, N., Cvetkoska, A., Giaccio, B.,
Grazhdani, A., Hauffe, T., Holtvoeth, J., Joannin, S., Jovanovska, E., Just,
J., Kouli, K., Kousis, I., Koutsodendris, A., Krastel, S., Lagos, M.,
Leicher, N., Levkov, Z., Lindhorst, K., Masi, A., Melles, M., Mercuri, A. M.,
Nomade, S., Nowaczyk, N., Panagiotopoulos, K., Peyron, O., Reed, J. M.,
Sagnotti, L., Sinopoli, G., Stelbrink, B., Sulpizio, R., Timmermann, A.,
Tofilovska, S., Torri, P., Wagner-Cremer, F., Wonik, T., and Zhang, X.:
Mediterranean winter rainfall in phase with African monsoons during the past
1.36 million years, Nature, 573, 256–260, https://doi.org/10.1038/s41586-019-1529-0,
2019.
a
Willeit, M., Ganopolski, A., Calov, R., Robinson, A., and Maslin, M.: The role
of CO2 decline for the onset of Northern Hemisphere glaciation, Quaternary Sci. Rev., 119, 22–34, https://doi.org/10.1016/j.quascirev.2015.04.015, 2015. a, b
Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-Pleistocene
transition in glacial cycles explained by declining CO2 and regolith
removal, Sci. Adv., 5, eaav7337, https://doi.org/10.1126/sciadv.aav7337, 2019. a, b