Articles | Volume 17, issue 6
https://doi.org/10.5194/cp-17-2451-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-2451-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Holocene cold snaps and their expression in the moraine record of the eastern European Alps
Sandra M. Braumann
CORRESPONDING AUTHOR
Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Peter Jordan-Str. 82, 1190 Vienna, Austria
Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
Joerg M. Schaefer
Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
Stephanie M. Neuhuber
Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Peter Jordan-Str. 82, 1190 Vienna, Austria
Christopher Lüthgens
Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Peter Jordan-Str. 82, 1190 Vienna, Austria
Alan J. Hidy
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Markus Fiebig
Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Peter Jordan-Str. 82, 1190 Vienna, Austria
Related authors
No articles found.
Caleb K. Walcott-George, Allie Balter-Kennedy, Jason P. Briner, Joerg M. Schaefer, and Nicolás E. Young
EGUsphere, https://doi.org/10.5194/egusphere-2024-2983, https://doi.org/10.5194/egusphere-2024-2983, 2024
Short summary
Short summary
Understanding the history and drivers of Greenland Ice Sheet change is important to forecast future ice sheet retreat. We combined geologic mapping and cosmogenic nuclide measurements to investigate how the Greenland Ice Sheet formed the landscape of Inglefield Land, northwest Greenland. We found that Inglefield Land was covered by warm- and cold-based ice during multiple glacial cycles and that much of Inglefield Land is an ancient landscape.
Allie Balter-Kennedy, Joerg M. Schaefer, Greg Balco, Meredith A. Kelly, Michael R. Kaplan, Roseanne Schwartz, Bryan Oakley, Nicolás E. Young, Jean Hanley, and Arianna M. Varuolo-Clarke
Clim. Past, 20, 2167–2190, https://doi.org/10.5194/cp-20-2167-2024, https://doi.org/10.5194/cp-20-2167-2024, 2024
Short summary
Short summary
We date sedimentary deposits showing that the southeastern Laurentide Ice Sheet was at or near its southernmost extent from ~ 26 000 to 21 000 years ago, when sea levels were at their lowest, with climate records indicating glacial conditions. Slow deglaciation began ~ 22 000 years ago, shown by a rise in modeled local summer temperatures, but significant deglaciation in the region did not begin until ~ 18 000 years ago, when atmospheric CO2 began to rise, marking the end of the last ice age.
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024, https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Short summary
We present an improved workflow for extracting and measuring chlorine isotopes in rocks and minerals. Experiments on seven geologic samples demonstrate that our workflow provides reliable results while offering several distinct advantages over traditional methods. Most notably, our workflow reduces the amount of isotopically enriched chlorine spike used per rock sample by up to 95 %, which will allow researchers to analyze more samples using their existing laboratory supplies.
Benjamin A. Keisling, Joerg M. Schaefer, Robert M. DeConto, Jason P. Briner, Nicolás E. Young, Caleb K. Walcott, Gisela Winckler, Allie Balter-Kennedy, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2427, https://doi.org/10.5194/egusphere-2024-2427, 2024
Short summary
Short summary
Understanding how much the Greenland ice sheet melted in response to past warmth helps better predicting future sea-level change. Here we present a framework for using numerical ice-sheet model simulations to provide constraints on how much mass the ice sheet loses before different areas become ice-free. As observations from subglacial archives become more abundant, this framework can guide subglacial sampling efforts to gain the most robust information about past ice-sheet geometries.
Joseph P. Tulenko, Jason P. Briner, Nicolás E. Young, and Joerg M. Schaefer
Clim. Past, 20, 625–636, https://doi.org/10.5194/cp-20-625-2024, https://doi.org/10.5194/cp-20-625-2024, 2024
Short summary
Short summary
We take advantage of a site in Alaska – where climate records are limited and a former alpine glacier deposited a dense sequence of moraines spanning the full deglaciation – to construct a proxy summer temperature record. Building on age constraints for moraines in the valley, we reconstruct paleo-glacier surfaces and estimate the summer temperatures (relative to the Little Ice Age) for each moraine. The record suggests that the influence of North Atlantic climate forcing extended to Alaska.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023, https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Short summary
Antarctic permafrost processes are not widely studied or understood in the McMurdo Dry Valleys. Our data show that near-surface permafrost sediments were deposited ~180 000 years ago in Pearse Valley, while in lower Wright Valley sediments are either vertically mixed after deposition or were deposited < 25 000 years ago. Our data also record Taylor Glacier retreat from Pearse Valley ~65 000–74 000 years ago and support antiphase dynamics between alpine glaciers and sea ice in the Ross Sea.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Adam C. Hawkins, Brian Menounos, Brent M. Goehring, Gerald Osborn, Ben M. Pelto, Christopher M. Darvill, and Joerg M. Schaefer
The Cryosphere, 17, 4381–4397, https://doi.org/10.5194/tc-17-4381-2023, https://doi.org/10.5194/tc-17-4381-2023, 2023
Short summary
Short summary
Our study developed a record of glacier and climate change in the Mackenzie and Selwyn mountains of northwestern Canada over the past several hundred years. We estimate temperature change in this region using several methods and incorporate our glacier record with models of climate change to estimate how glacier volume in our study area has changed over time. Models of future glacier change show that our study area will become largely ice-free by the end of the 21st century.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Jacob Hardt, Nadav Nir, Christopher Lüthgens, Thomas M. Menn, and Brigitta Schütt
E&G Quaternary Sci. J., 72, 37–55, https://doi.org/10.5194/egqsj-72-37-2023, https://doi.org/10.5194/egqsj-72-37-2023, 2023
Short summary
Short summary
We investigated the geomorphological and geological characteristics of the archaeological sites Hawelti–Melazo and the surroundings. We performed sedimentological analyses, as well as direct (luminescence) and indirect (radiocarbon) sediment dating, to reconstruct the palaeoenvironmental conditions, which we integrated into the wider context of Tigray.
Benjamin J. Stoker, Martin Margold, John C. Gosse, Alan J. Hidy, Alistair J. Monteath, Joseph M. Young, Niall Gandy, Lauren J. Gregoire, Sophie L. Norris, and Duane Froese
The Cryosphere, 16, 4865–4886, https://doi.org/10.5194/tc-16-4865-2022, https://doi.org/10.5194/tc-16-4865-2022, 2022
Short summary
Short summary
The Laurentide Ice Sheet was the largest ice sheet to grow and disappear in the Northern Hemisphere during the last glaciation. In northwestern Canada, it covered the Mackenzie Valley, blocking the migration of fauna and early humans between North America and Beringia and altering the drainage systems. We reconstruct the timing of ice sheet retreat in this region and the implications for the migration of early humans into North America, the drainage of glacial lakes, and past sea level rise.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Christopher Lüthgens and Jacob Hardt
DEUQUA Spec. Pub., 4, 29–39, https://doi.org/10.5194/deuquasp-4-29-2022, https://doi.org/10.5194/deuquasp-4-29-2022, 2022
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Christopher Lüthgens, Daniela Sauer, and Michael Zech
E&G Quaternary Sci. J., 69, 261–262, https://doi.org/10.5194/egqsj-69-261-2021, https://doi.org/10.5194/egqsj-69-261-2021, 2021
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Michal Ben-Israel, Ari Matmon, Alan J. Hidy, Yoav Avni, and Greg Balco
Earth Surf. Dynam., 8, 289–301, https://doi.org/10.5194/esurf-8-289-2020, https://doi.org/10.5194/esurf-8-289-2020, 2020
Short summary
Short summary
Early-to-mid Miocene erosion rates were inferred using cosmogenic 21Ne measured in chert pebbles transported by the Miocene Hazeva River (~ 18 Ma). Miocene erosion rates are faster compared to Quaternary rates in the region. Faster Miocene erosion rates could be due to a response to topographic changes brought on by tectonic uplift, wetter climate in the region during the Miocene, or a combination of both.
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Greg Balco, Kimberly Blisniuk, and Alan Hidy
Geochronology, 1, 1–16, https://doi.org/10.5194/gchron-1-1-2019, https://doi.org/10.5194/gchron-1-1-2019, 2019
Short summary
Short summary
This article applies a new geochemical dating method to determine the age of sedimentary deposits useful in reconstructing slip rates on a major fault system.
Maxwell T. Cunningham, Colin P. Stark, Michael R. Kaplan, and Joerg M. Schaefer
Earth Surf. Dynam., 7, 147–169, https://doi.org/10.5194/esurf-7-147-2019, https://doi.org/10.5194/esurf-7-147-2019, 2019
Short summary
Short summary
Glacial erosion is known to limit the height of midlatitude mountain ranges affected by substantial glaciation during cold periods. Our study examines this phenomenon in the tropics. A new form of hypsometric analysis, along with other evidence, of 10 tropical ranges reveals widespread signs of a perched glacial base level at the ELA. Although glacial influence is moderate to weak in these environments, the evidence suggests that glacial erosion acts to limit the height of tropical ranges.
Christopher Lüthgens and Margot Böse
E&G Quaternary Sci. J., 67, 85–86, https://doi.org/10.5194/egqsj-67-85-2019, https://doi.org/10.5194/egqsj-67-85-2019, 2019
Esther Hintersberger, Kurt Decker, Johanna Lomax, and Christopher Lüthgens
Nat. Hazards Earth Syst. Sci., 18, 531–553, https://doi.org/10.5194/nhess-18-531-2018, https://doi.org/10.5194/nhess-18-531-2018, 2018
Short summary
Short summary
The Vienna Basin is a low seismicity area, where historical data do not identify all potential earthquake sources. Despite observed Quaternary offset, there are no earthquakes along the Markgrafneusiedl Fault (MF). Results from 3 palaeoseismic trenches show evidence for 5–6 earthquakes with magnitudes up to M = 6.8 during the last 120 kyr. Therefore the MF should be considered as a seismic source, together with similar faults in the Vienna Basin, increasing the seismic potential close to Vienna.
Joshua M. Maurer, Summer B. Rupper, and Joerg M. Schaefer
The Cryosphere, 10, 2203–2215, https://doi.org/10.5194/tc-10-2203-2016, https://doi.org/10.5194/tc-10-2203-2016, 2016
Short summary
Short summary
Here we utilize declassified spy satellite imagery to quantify ice volume loss of glaciers in the eastern Himalayas over approximately the last three decades. Clean-ice and debris-covered glaciers show similar magnitudes of ice loss, while calving glaciers are contributing a disproportionately large amount to total ice loss. Results highlight important physical processes affecting the ice mass budget and associated water resources in the Himalayas.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
Using data and models to infer climate and environmental changes during the Little Ice Age in tropical West Africa
A multi-proxy perspective on millennium-long climate variability in the Southern Pyrenees
Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology
Anne-Marie Lézine, Maé Catrain, Julián Villamayor, and Myriam Khodri
Clim. Past, 19, 277–292, https://doi.org/10.5194/cp-19-277-2023, https://doi.org/10.5194/cp-19-277-2023, 2023
Short summary
Short summary
Data and climate simulations were used to discuss the West African Little Ice Age (LIA). We show a clear opposition between a dry Sahel–savannah zone and a humid equatorial sector. In the Sahel region, the LIA was characterized by a gradual drying trend starting in 1250 CE after two early warning signals since 1170 CE. A tipping point was reached at 1800 CE. Drying events punctuated the LIA, the largest of which dated to ca. 1600 CE and was also recorded in the savannah zone.
M. Morellón, A. Pérez-Sanz, J. P. Corella, U. Büntgen, J. Catalán, P. González-Sampériz, J. J. González-Trueba, J. A. López-Sáez, A. Moreno, S. Pla-Rabes, M. Á. Saz-Sánchez, P. Scussolini, E. Serrano, F. Steinhilber, V. Stefanova, T. Vegas-Vilarrúbia, and B. Valero-Garcés
Clim. Past, 8, 683–700, https://doi.org/10.5194/cp-8-683-2012, https://doi.org/10.5194/cp-8-683-2012, 2012
H. Beltrami, J. E. Smerdon, G. S. Matharoo, and N. Nickerson
Clim. Past, 7, 745–756, https://doi.org/10.5194/cp-7-745-2011, https://doi.org/10.5194/cp-7-745-2011, 2011
Cited articles
Adolphi, F., Muscheler, R., Svensson, A., Aldahan, A., Possnert, G., Beer,
J., Sjolte, J., Bjorck, S., Matthes, K., and Thieblemont, R.: Persistent
link between solar activity and Greenland climate during the Last Glacial
Maximum, Nat. Geosci., 7, 662–666, 2014.
Affolter, S., Hauselmann, A., Fleitmann, D., Edwards, R. L., Cheng, H., and
Leuenberger, M.: Central Europe temperature constrained by speleothem fluid
inclusion water isotopes over the past 14 000 years, Sci. Adv., 5, eaav3809, https://doi.org/10.1126/sciadv.aav3809, 2019.
Alley, R. B.: The Younger Dryas cold interval as viewed from central
Greenland, Quaternary Sci. Rev., 19, 213–226, 2000.
Alley, R. B. and Agustsdottir, A. M.: The 8k event: cause and consequences
of a major Holocene abrupt climate change, Quaternary Sci. Rev., 24,
1123–1149, 2005.
André, M. F.: Rates of postglacial rock weathering on glacially scoured
outcrops (Abisko-Riksgransen area, 68 degrees N), Geogr. Ann. A, 84A, 139–150,
2002.
Andrews, J. T., Jennings, A. E., Kerwin, M., Kirby, M., Manley, W., Miller,
G. H., Bond, G., and Maclean, B.: A Heinrich-Like Event, H-0 (Dc-0) –
Source(S) for Detrital Carbonate in the North-Atlantic during the Younger
Dryas Chronozone, Paleoceanography, 10, 943–952, 1995.
Andrews, J. T., Gibb, O. T., Jennings, A. E., and Simon, Q.: Variations in
the provenance of sediment from ice sheets surrounding Baffin Bay during MIS
2 and 3 and export to the Labrador Shelf Sea: site HU 2008029-0008 Davis
Strait, J. Quaternary Sci., 29, 3–13, 2014.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R.,
Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P.,
Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre,
O., Moisselin, J. M., Begert, M., Müller-Westermeier, G., Kveton, V.,
Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar,
T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and
Nieplova, E.: HISTALP – historical instrumental climatological surface time
series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, 2007.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from Be-10 and Al-26 measurements, Quat. Geochronol., 3, 174–195, 2008.
Bamberg, A., Rosenthal, Y., Paul, A., Heslop, D., Mulitza, S., Ruhlemann,
C., and Schulz, M.: Reduced North Atlantic Central Water formation in
response to early Holocene ice-sheet melting, Geophys. Res. Lett., 37, L17705, https://doi.org/10.1029/2010GL043878, 2010.
Barclay, D. J., Wiles, G. C., and Calkin, P. E.: Holocene glacier
fluctuations in Alaska, Quaternary Sci. Rev., 28, 2034–2048, 2009.
Baroni, C., Casale, S., Salvatore, M. C., Ivy-Ochs, S., Christl, M.,
Carturan, L., Seppi, R., and Carton, A.: Double response of glaciers in the
Upper Peio Valley (Rhaetian Alps, Italy) to the Younger Dryas climatic
deterioration, Boreas, 46, 783–798, 2017.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Bertle, H.: Zur Geologie des Fensters von Gargellen (Vorarlberg) und seines
Kristallinen Rahmens – Österreich, Mitt. Ges. Geol. Berbaustud., 22,
1–60, 1973.
Bichler, M. G., Reindl, M., Reitner, J. M., Drescher-Schneider, R., Wirsig,
C., Christl, M., Hajdas, I., and Ivy-Ochs, S.: Landslide deposits as
stratigraphical markers for a sequence-based glacial stratigraphy: a case
study of a Younger Dryas system in the Eastern Alps, Boreas, 45, 537–551,
2016.
Biette, M., Jomelli, V., Chenet, M., Braucher, R., Rinterknecht, V., Lane,
T., and Team, A.: Mountain glacier fluctuations during the Lateglacial and
Holocene on Clavering Island (northeastern Greenland) from(10)Be moraine
dating, Boreas, 49, 873–885, 2020.
Bjorck, S., Rundgren, M., Ingolfsson, O., and Funder, S.: The Preboreal
oscillation around the Nordic Seas: terrestrial and lacustrine responses, J.
Quaternary Sci., 12, 455–465, 1997.
BMLRT: eHYD – Hydrographisches Jahrbuch. BMNT, Abteilung I/3 –
Wasserhaushalt (HZB), Vienna, Austria [data set], available at: https://ehyd.gv.at/, last access: 16 September 2021.
BMNT: Hydrographisches Jahrbuch von Österreich. BMNT (Federal Minstry
for Sustainability and Tourism), Vienna, Austria, 2016.
Boch, R., Spötl, C., and Kramers, J.: High-resolution isotope records of
early Holocene rapid climate change from two coeval stalagmites of Katerloch
Cave, Austria, Quaternary Sci. Rev., 28, 2527–2538, 2009.
Bos, J. A. A., van Geel, B., van der Plicht, J., and Bohncke, S. J. P.:
Preboreal climate oscillations in Europe: Wiggle-match dating and synthesis
of Dutch high-resolution multi-proxy records, Quaternary Sci. Rev., 26,
1927–1950, 2007.
Boxleitner, M., Ivy-Ochs, S., Egli, M., Brandova, D., Christl, M., Dahms,
D., and Maisch, M.: The 10Be deglaciation chronology of the
Göschenertal, central Swiss Alps, and new insights into the
Göschenen Cold Phases, Boreas, 48, 867–878, 2019a.
Boxleitner, M., Ivy-Ochs, S., Egli, M., Brandova, D., Christl, M., and
Maisch, M.: Lateglacial and Early Holocene glacier stages – New dating
evidence from the Meiental in central Switzerland, Geomorphology, 340,
15–31, 2019b.
Braumann, S. M., Schaefer, J. M., Neuhuber, S. M., Reitner, J. M.,
Lüthgens, C., and Fiebig, M.: Holocene glacier change in the Silvretta
Massif (Austrian Alps) constrained by a new 10Be chronology, historical
records and modern observations, Quaternary Sci. Rev., 245, 1–21, 2020.
Briner, J. P., Svendsen, J. I., Mangerud, J., Lohne, O. S., and Young, N.
E.: A Be-10 chronology of south-western Scandinavian Ice Sheet history
during the Lateglacial period, J. Quaternary Sci., 29, 370–380, 2014.
Buizert, C., Keisling, B. A., Box, J. E., He, F., Carlson, A. E., Sinclair,
G., and DeConto, R. M.: Greenland-Wide Seasonal Temperatures During the Last
Deglaciation, Geophys. Res. Lett., 45, 1905–1914, 2018.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet,
V., Kaplan, J. O., Herzig, F., Heussner, K. U., Wanner, H., Luterbacher, J.,
and Esper, J.: 2500 Years of European Climate Variability and Human
Susceptibility, Science, 331, 578–582, 2011.
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo,
N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan,
J. O., de Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., and
Kirdyanov, A. V.: Cooling and societal change during the Late Antique Little
Ice Age from 536 to around 660 AD, Nat. Geosci., 9, 231–236, 2016.
Cheng, H., Zhang, H. W., Spotl, C., Baker, J., Sinha, A., Li, H. Y.,
Bartolome, M., Moreno, A., Kathayat, G., Zhao, J. Y., Dong, X. Y., Li, Y.
W., Ning, Y. F., Jia, X., Zong, B. Y., Brahim, Y. A., Perez-Mejias, C., Cai,
Y. J., Novello, V. F., Cruz, F. W., Severinghaus, J. P., An, Z. S., and
Edwards, R. L.: Timing and structure of the Younger Dryas event and its
underlying climate dynamics, P. Natl. Acad. Sci. USA, 117, 23408–23417, 2020.
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S.,
Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z. Y., Marchitto,
T. M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell,
J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M.,
Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J.,
Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., and Williams, J.
W.: Global climate evolution during the last deglaciation, P. Natl. Acad. Sci. USA, 109, E1134–E1142, 2012.
Clarke, G. K. C., Bush, A. B. G., and Bush, J. W. M.: Freshwater Discharge,
Sediment Transport, and Modeled Climate Impacts of the Final Drainage of
Glacial Lake Agassiz, J. Climate, 22, 2161–2180, 2009.
Claude, A., Ivy-Ochs, S., Kober, F., Antognini, M., Salcher, B., and Kubik,
P. W.: The Chironico landslide (Valle Leventina, southern Swiss Alps): age
and evolution, Swiss J. Geosci., 107, 273–291, 2014.
Corbett, L. B., Bierman, P. R., and Davis, P. T.: Glacial history and
landscape evolution of southern Cumberland Peninsula, Baffin Island, Canada,
constrained by cosmogenic Be-10 and Al-26, Geol. Soc. Am. Bull., 128, 1173–1192,
2016.
Cossart, E., Fort, M., Bourles, D., Braucher, R., Perrier, R., and Siame,
L.: Deglaciation pattern during the Lateglacial/Holocene transition in the
southern French Alps. Chronological data and geographical reconstruction
from the Claree Valley (upper Durance catchment, southeastern France),
Palaeogeogr. Palaeocl., 315, 109–123, 2012.
Deline, P. and Orombelli, G.: Glacier fluctuations in the western Alps
during the Neoglacial, as indicated by the Miage morainic amphitheatre (Mont
Blanc massif, Italy), Boreas, 34, 456–467, 2005.
Denton, G. H., Putnam, A. E., Russell, J. L., Barrell, D. J. A., Schaefer,
J. M., Kaplan, M. R., and Strand, P. D.: The Zealandia Switch: Ice age
climate shifts viewed from Southern Hemisphere moraines, Quaternary Sci. Rev., 257, 106771, https://doi.org/10.1016/j.quascirev.2020.106771, 2021.
Dietre, B., Walser, C., Lambers, K., Reitmaier, T., Hajdas, I., and Haas, J.
N.: Palaeoecological evidence for Mesolithic to Medieval climatic change and
anthropogenic impact on the Alpine flora and vegetation of the Silvretta
Massif (Switzerland/Austria), Quatern. Int., 353, 3–16, 2014.
Faedrich, R.: Spät- und postglaziale Gletscherschwankungen in der
Ferwallgruppe (Tirol/Vorarlberg), Dusseldorfer Geographische Schriften, 12,
1–161, 1979.
Farnsworth, W. R., Allaart, L., Ingolfsson, O., Alexanderson, H., Forwick,
M., Noormets, R., Retelle, M., and Schomacker, A.: Holocene glacial history
of Svalbard: Status, perspectives and challenges, Earth-Sci. Rev., 208, 103249, https://doi.org/10.1016/j.earscirev.2020.103249, 2020.
Federici, P. R., Granger, D. E., Pappalardo, M., Ribolini, A., Spagnolo, M.,
and Cyr, A. J.: Exposure age dating and Equilibrium Line Altitude
reconstruction of an Egesen moraine in the Maritime Alps, Italy, Boreas, 37,
245–253, 2008.
Finkel, R. C. and Nishiizumi, K.: Beryllium 10 concentrations in the
Greenland Ice Sheet Project 2 ice core from 3–40 ka, J. Geophys. Res.-Oceans,
102, 26699–26706, 1997.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015.
Fischer, A., Fickert, T., Schweizer, G., Patzelt, G., and Gross, G.:
Vegetation dynamics in Alpine glacier forelands tackled from space, Sci.
Rep.-UK, 9, 13918, https://doi.org/10.1038/s41598-019-50273-2, 2019.
Fischer, A., Schwaizer, G., Seiser, B., Helfricht, K., and Stocker-Waldhuber, M.: High-resolution inventory to capture glacier disintegration in the Austrian Silvretta, The Cryosphere, 15, 4637–4654, https://doi.org/10.5194/tc-15-4637-2021, 2021.
Fisher, T. G., Smith, D. G., and Andrews, J. T.: Preboreal oscillation
caused by a glacial Lake Agassiz flood, Quaternary Sci. Rev., 21, 873–878,
2002.
Fohlmeister, J., Vollweiler, N., Spotl, C., and Mangini, A.: COMNISPA II:
Update of a mid-European isotope climate record, 11 ka to present, Holocene,
23, 749–754, 2013.
Friebe, G.: Geologie der österreichischen Bundesländer – Vorarlberg,
Verlag der Geologischen Bundesanstalt (GBA), Vienna, Austria, 2007.
Fuchs, G. and Oberhauser, R.: 170 Galtür, Geologische Bundesanstalt,
Vienna, Austria, 1990.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps – A review,
Sci. Total Environ., 493, 1138–1151, 2014.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides:
theory and application, Quaternary Sci. Rev., 20, 1475–1560, 2001.
Gross, G., Kerschner, H., and Patzelt, G.: Methodische Untersuchungen
über die Schneegrenze in den alpinen Gletschergebieten, Zeitschrift
für Gletscherkunde und Glaziogeologie, 12, 223–251, 1978.
Grove, J. M.: Little ice ages: ancient and modern, Routledge, London, UK, New
York, USA, 2004.
Haas, J. N., Richoz, I., Tinner, W., and Wick, L.: Synchronous Holocene
climatic oscillations recorded on the Swiss Plateau and at timberline in the
Alps, Holocene, 8, 301–309, 1998.
Hald, M. and Hagen, S.: Early preboreal cooling in the Nordic seas region
triggered by meltwater, Geology, 26, 615–618, 1998.
Heiri, O., Wick, L., van Leeuwen, J. F. N., van der Knaap, W. O., and
Lotter, A. F.: Holocene tree immigration and the chironomid fauna of a small
Swiss subalpine lake (Hinterburgsee, 1515 m a.s.l.), Palaeogeogr. Palaeocl., 189,
35–53, 2003.
Heiri, O., Koinig, K. A., Spotl, C., Barrett, S., Brauer, A.,
Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher,
M., Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P.,
Schworer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate
records 60–8 ka in the Austrian and Swiss Alps and their forelands,
Quaternary Sci. Rev., 106, 186–205, 2014.
Helama, S., Jones, P. D., and Briffa, K. R.: Dark Ages Cold Period: A
literature review and directions for future research, Holocene, 27,
1600–1606, 2017.
Helama, S., Stoffel, M., Hall, R. J., Jones, P. D., Arppe, L., Matskovsky,
V. V., Timonen, M., Nojd, P., Mielikainen, K., and Oinonen, M.: Recurrent
transitions to Little Ice Age-like climatic regimes over the Holocene, Clim.
Dynam., 56, 3817–3833, https://doi.org/10.1007/s00382-021-05669-0, 2021.
Hertl, A.: Untersuchungen zur spätglazialen Gletscher- und
Klimageschichte der Österreichischen Silvrettagruppe, 2001. Doctoral
Thesis, 716, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria, 265 pp., 2001.
Hillaire-Marcel, C., de Vernal, A., and Piper, D. J. W.: Lake Agassiz final
drainage event in the northwest North Atlantic, Geophys. Res. Lett., 34, L15601, https://doi.org/10.1029/2007GL030396, 2007.
Hofmann, F. M., Alexanderson, H., Schoeneich, P., Mertes, J. R., Léanni,
L., and Team, A.: Post-Last Glacial Maximum glacier fluctuations in the
southern Écrins massif (westernmost Alps): insights from 10Be cosmic ray exposure dating Boreas, 48, 1019–1041, 2019.
Holzhauser, H., Magny, M., and Zumbühl, H. J.: Glacier and lake-level
variations in west-central Europe over the last 3500 years, Holocene, 15,
789–801, 2005.
Huston, A., Siler, N., Roe, G. H., Pettit, E., and Steiger, N. J.: Understanding drivers of glacier-length variability over the last millennium, The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, 2021.
Ilyashuk, B., Gobet, E., Heiri, O., Lotter, A. F., van Leeuwen, J. F. N.,
van der Knaap, W. O., Ilyashuk, E., Oberli, F., and Ammann, B.: Lateglacial
environmental and climatic changes at the Maloja Pass, Central Swiss Alps,
as recorded by chironomids and pollen, Quaternary Sci. Rev., 28, 1340–1353,
2009.
Ilyashuk, E. A., Heiri, O., Ilyashuk, B. P., Koinig, K. A., and Psenner, R.:
The Little Ice Age signature in a 700-year high-resolution chironomid record
of summer temperatures in the Central Eastern Alps, Clim. Dynam., 52,
6953–6967, 2019.
Ivy-Ochs, S.: Glacier Variations in the European Alps at the End of the Last
Glaciation, Cuad. Investig. Geogr., 41, 295–315, 2015.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Maisch, M., Sailer, R., Schaefer,
J., Kubik, P. W., Synal, H.-A., and Schlüchter, C.: The
timing of glacier advances in the northern European Alps based on surface
exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne, in: In
Situ-Produced Cosmogenic Nuclides and Quantification of Geological
Processes, edited by: Siame, L. L., Bourlès, D. L., and Brown, E. T.,
Geological Society of America Special Paper, 415, 43–60, https://doi.org/10.1130/2006.2415(04), 2006.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in
the European Alps, Quaternary Sci. Rev., 28, 2137–2149, 2009.
Jennings, A., Andrews, J., Pearce, C., Wilson, L., and Olfasdotttir, S.:
Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for
freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet
into the subpolar gyre, Quaternary Sci. Rev., 107, 62–80, 2015.
Joannin, S., Vannière, B., Galop, D., Peyron, O., Haas, J. N., Gilli, A., Chapron, E., Wirth, S. B., Anselmetti, F., Desmet, M., and Magny, M.: Climate and vegetation changes during the Lateglacial and early–middle Holocene at Lake Ledro (southern Alps, Italy), Clim. Past, 9, 913–933, https://doi.org/10.5194/cp-9-913-2013, 2013.
Kasper, M.: Silvretta historica – Zeitreise durch die Silvretta,
Heimatschutzverein Montafon, Schruns, Austria, 2013.
Kasper, M.: Mythos Piz Buin – Kulturgeschichte eines Berges, Haymon-Verl., Innsbruck, Vienna, Austria, 2015.
Kaufman, D. S., Miller, G. H., Stravers, J. A., Manley, W. F., and Duvall,
M. L.: Late-Glacial Ice Margins and Deglacial Chronology for Southeastern
Baffin-Island and Hudson Strait, Eastern Canadian Arctic – Reply, Can. J.
Earth Sci., 30, 1753–1758, 1993.
Kelly, M. A., Kubik, P. W., Von Blanckenburg, F., and Schlüchter, C.:
Surface exposure dating of the Great Aletsch Glacier Egesen moraine system,
western Swiss Alps, using the cosmogenic nuclide Be-10, J. Quaternary Sci.,
19, 431–441, 2004.
Kerschner, H. and Ivy-Ochs, S.: Palaeoclimate from glaciers: Examples from
the Eastern Alps during the Alpine Lateglacial and early Holocene, Global
Planet. Change, 60, 58–71, 2008.
Kerschner, H., Hertl, A., Gross, G., Ivy-Ochs, S., and Kubik, P. W.: Surface
exposure dating of moraines in the Kromer valley (Silvretta Mountains,
Austria) – evidence for glacial response to the 8.2 ka event in the Eastern
Alps?, Holocene, 16, 7–15, 2006.
Knudsen, K. L., Stabell, B., Seidenkrantz, M. S., Eiriksson, J., and Blake,
W.: Deglacial and Holocene conditions in northernmost Baffin Bay: sediments,
foraminifera, diatoms and stable isotopes, Boreas, 37, 346–376, 2008.
Kobashi, T., Menviel, L., Jeltsch-Thommes, A., Vinther, B. M., Box, J. E.,
Muscheler, R., Nakaegawa, T., Pfister, P. L., Doring, M., Leuenberger, M.,
Wanner, H., and Ohmura, A.: Volcanic influence on centennial to millennial
Holocene Greenland temperature change, Sci. Rep.-UK, 7, 1441, https://doi.org/10.1038/s41598-017-01451-7, 2017.
K. u. k. Militärgeographisches Institut: Dritte Reambulierte
Landesaufnahme (Franzisco-Josephinische Landesaufnahme) – Blatt 5244, K. u.
k. Militärgeographisches Institut, Vienna, Austria, 1870–1887.
Lal, D.: In situ-produced Cosmogenic Isotopes in Terrestrial Rocks, Annu. Rev. Earth Pl. Sc., 16, 355–388, 1988.
Land Tirol – tiris: Digitales Geländemodell (DGM), Abteilung Geoinformation Tirol, Innsbruck, Austria [data set], available at: https://maps.tirol.gv.at (last access: 15 October 2021), 2018.
Land Tirol – tiris: Orthofoto, Abteilung Geoinformation Tirol, Innsbruck, Austria [data set], available at: https://maps.tirol.gv.at (last access: 15 October 2021), 2020.
Larocque-Tobler, I., Grosjean, M., Heiri, O., Trachsel, M., and Kamenik, C.:
Thousand years of climate change reconstructed from chironomid subfossils
preserved in varved lake Silvaplana, Engadine, Switzerland, Quaternary Sci. Rev., 29, 1940–1949, 2010a.
Larocque-Tobler, I., Heiri, O., and Wehrli, M.: Late Glacial and Holocene
temperature changes at Egelsee, Switzerland, reconstructed using subfossil
chironomids, J. Paleolimnol., 43, 649–666, 2010b.
Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P.,
Huls, M., Milecka, K., Namiotko, T., Obremska, M., Von Grafenstein, U., and
Participants, D.: Environmental responses to Lateglacial climatic
fluctuations recorded in the sediments of pre-Alpine Lake Mondsee
(northeastern Alps), J. Quaternary Sci., 26, 253–267, 2011.
LDEO: Extraction of Beryllium from Quartz. LDEO Cosmogenic Isotope Lab,
Palisades, NY, USA, 2012a.
LDEO: Separation and Purifiation of Quartz from Whole Rock. LDEO Cosmogenic
Isotope Lab, Palisades, NY, USA, 2012b.
Le Roy, M., Nicolussi, K., Deline, P., Astrade, L., Edouard, J. L.,
Miramont, C., and Arnaud, F.: Calendar-dated glacier variations in the
western European Alps during the Neoglacial: the Mer de Glace record, Mont
Blanc massif, Quaternary Sci. Rev., 108, 1–22, 2015.
Levy, L. B., Kelly, M. A., Lowell, T. V., Hall, B. L., Howley, J. A., and
Smith, C. A.: Coeval fluctuations of the Greenland ice sheet and a local
glacier, central East Greenland, during late glacial and early Holocene
time, Geophys. Res. Lett., 43, 1623–1631, 2016.
Li, G. and Piper, D. J. W.: The influence of meltwater on the Labrador
Current in Heinrich event 1 and the Younger Dryas, Quaternary Sci. Rev., 107,
129–137, 2015.
Maggetti, M. and Flisch, M.: Evolution of the Silvretta Nappe. In:
Pre-Mesozoic Geology in the Alps, edited by: von Raumer, J. F. and Neubauer, F., Springer, Berlin, Heidelberg, Germany, 1993.
Magny, M., Vanniere, B., de Beaulieu, J. L., Begeot, C., Heiri, O., Millet,
L., Peyron, O., and Walter-Simonnet, A. V.: Early-Holocene climatic
oscillations recorded by lake-level fluctuations in west-central Europe and
in central Italy, Quaternary Sci. Rev., 26, 1951–1964, 2007.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A
Reconstruction of Regional and Global Temperature for the Past 11 300 Years,
Science, 339, 1198–1201, 2013.
Mekhaldi, F., Czymzik, M., Adolphi, F., Sjolte, J., Björck, S., Aldahan, A., Brauer, A., Martin-Puertas, C., Possnert, G., and Muscheler, R.: Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum, Clim. Past, 16, 1145–1157, https://doi.org/10.5194/cp-16-1145-2020, 2020.
Moran, A. P., Ivy-Ochs, S., Schuh, M., Christl, M., and Kerschner, H.:
Evidence of central Alpine glacier advances during the Younger Dryas-early
Holocene transition period, Boreas, 45, 398–410, 2016a.
Moran, A. P., Kerschner, H., and Ivy-Ochs, S.: Redating the moraines in the
Kromer Valley (Silvretta Mountains) – New evidence for an early Holocene
glacier advance, Holocene, 26, 655–664, 2016b.
Moran, A. P., Ivy-Ochs, S., Vockenhuber, C., and Kerschner, H.: First 36Cl exposure ages from a moraine in the Northern Calcareous Alps, E&G Quaternary Sci. J., 65, 145–155, https://doi.org/10.3285/eg.65.2.03, 2017.
Nesje, A.: Latest Pleistocene and Holocene alpine glacier fluctuations in
Scandinavia, Quaternary Sci. Rev., 28, 2119–2136, 2009.
Nesje, A., Dahl, S. O., and Bakke, J.: Were abrupt Lateglacial and
early-Holocene climatic changes in northwest Europe linked to freshwater
outbursts to the North Atlantic and Arctic Oceans?, Holocene, 14, 299–310,
2004.
Nicolussi, K.: Jahrringdaten zur nacheiszeitlichen Waldverbreitung in der
Silvretta. In: Letzte Jäger, erste Hirten – Hochalpine Archäologie
in der Silvretta – Begleitheft zur Ausstellung, edited by: Reitmaier, T., Abt. Ur- und Frühgeschichte der Universität Zürich, Zürich, Switzerland, 2010.
Nicolussi, K.: Die historischen Vorstöße und Hochstände des
Vernagtferners 1600–1850 AD, Zeitschrift für Gletscherkunde und
Glazialgeologie, 45/46, 9–23, 2013.
Nicolussi, K. and Patzelt, G.: Discovery of early-Holocene wood and peat on
the forefield of the Pasterze Glacier, Eastern Alps, Austria, Holocene, 10,
191–199, 2000.
Nicolussi, K., Kaufmann, M., Patzelt, G., van der Plicht, J., and Thurner,
A.: Holocene tree-line variability in the Kauner Valley, Central Eastern
Alps, indicated by dendrochronological analysis of living trees and
subfossil logs, Veg. Hist. Archaeobot., 14, 221–234, 2005.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C.,
and McAninch, J.: Absolute calibration of Be-10 AMS standards, Nucl. Instrum.
Meth. B, 258, 403–413, 2007.
Nussbaumer, S. U., Zumbühl, H. J., and Steiner, D.: Fluctuations of the
“Mer de Glace” (Mont Blanc area, France) AD 1500–2050: an
interdisciplinary approach using new historical data and neural network
simulations, Zeitschrift für Gletscherkunde und Glazialgeologie, 40,
5–175, 2007.
Oerlemans, J.: Extracting a climate signal from 169 glacier records,
Science, 308, 675–677, 2005.
PAGES 2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346, 2013.
Patzelt, G.: Das Bunte Moor in der Oberfernau (Stubaier Alpen, Tirol) –
Eine neu bearbeitete Schlüsselstelle für die Kenntnis der
nacheiszeitlichen Gletscherschwankungen der Ostalpen, Jahrbuch der
Geologischen Bundesanstalt, Band 156, 97–107, 2016.
Patzelt, G.: Gletscher: Klimazeugen von der Eiszeit bis zur Gegenwart,
Hatje Cantz, Berlin, Germany, 2019.
Patzelt, G. and Bortenschlager, S.: Die postglazialen Gletscher- und
Klimaschwankungen in der Venedigergruppe (Hohe Tauern, Ostalpen), Z.
Geomorph. Suppl., 16, 25–72, 1973.
Paus, A., Boessenkool, S., Brochmann, C., Epp, L. S., Fabel, D., Haflidason,
H., and Linge, H.: Lake Store Finnsjoen – a key for understanding
Lateglacial/early Holocene vegetation and ice sheet dynamics in the central
Scandes Mountains, Quaternary Sci. Rev., 121, 36–51, 2015.
Pearce, C., Andrews, J. T., Bouloubassi, I., Hillaire-Marcel, C., Jennings,
A. E., Olsen, J., Kuijpers, A., and Seidenkrantz, M. S.: Heinrich 0 on the
east Canadian margin: Source, distribution, and timing, Paleoceanography,
30, 1613–1624, 2015.
Pindur, P. and Heuberger, H.: Zur holozänen Gletschergeschichte im
Zemmgrund in den Zillertaler Alpen, Tirol/Österreich (Ostalpen),
Zeitschrift für Gletscherkunde und Glazialgeologie, 42, 21–89, 2010.
Protin, M., Schimmelpfennig, I., Mugnier, J.-L., Ravanel, L., Le Roy, M.,
Deline, P., Favier, V., Buoncristiani, J.-F., Aumaître, G.,
Bourlès, D. L., and Keddadouche, K.: Climatic reconstruction for the
Younger Dryas/Early Holocene transition and the Little Ice Age based on
paleo-extents of Argentière glacier (French Alps), Quaternary Sci. Rev.,
221, 105863, https://doi.org/10.1016/j.quascirev.2019.105863, 2019.
Protin, M., Schimmelpfennig, I., Mugnier, J.-L., Buoncristiani, J.-F., Le
Roy, M., Pohl, B., Moreau, L., and Team, A.: Millennial-scale deglaciation
across the European Alps at the transition between the Younger Dryas and the
Early Holocene – evidence from a new cosmogenic nuclide chronology, Boreas, 50, 671–685, https://doi.org/10.1111/bor.12519, 2021.
Rashid, H., Piper, D. J. W., and Flower, B. P.: The role of Hudson Strait
outlet in Younger Dryas sedimentation in the Labrador Sea, Geophys. Monogr.
Ser, 193, 93–110, 2011.
Rashid, H., Piper, D. J. W., Mansfield, C., Saint-Ange, F., and Polyak, L.:
Signature of the Gold Cove event (10.2 ka) in the Labrador Sea, Quatern Int,
352, 212–221, 2014.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer,
H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Rasmussen, S. O., Vinther, B. M., Clausen, H. B., and Andersen, K. K.: Early
Holocene climate oscillations recorded in three Greenland ice cores,
Quaternary Sci. Rev., 26, 1907–1914, 2007.
Renssen, H., Goosse, H., Crosta, X., and Roche, D. M.: Early Holocene
Laurentide Ice Sheet deglaciation causes cooling in the high-latitude
Southern Hemisphere through oceanic teleconnection, Paleoceanography, 25, PA3204, https://doi.org/10.1029/2009PA001854, 2010.
Roe, G. H., Baker, M. B., and Herla, F.: Centennial glacier retreat as
categorical evidence of regional climate change, Nat. Geosci., 10, 95–99,
2017.
Rood, D. H., Brown, T. A., Finkel, R. C., and Guilderson, T. P.: Poisson and
non-Poisson uncertainty estimations of Be-10/Be-9 measurements at LLNL-CAMS,
Nucl. Instrum. Meth. B, 294, 426–429, 2013.
Rupper, S. and Roe, G.: Glacier Changes and Regional Climate: A Mass and
Energy Balance Approach, J. Climate, 21, 5384–5401, 2008.
Sailer, R. and Kerschner, H.: Equilibrium-line altitudes and rock glaciers
during the Younger Dryas cooling event, Ferwall group, western Tyrol,
Austria, Ann. Glaciol., 28, 141–145, 1999.
Samartin, S., Heiri, O., Vescovi, E., Brooks, S. J., and Tinner, W.:
Lateglacial and early Holocene summer temperatures in the southern Swiss
Alps reconstructed using fossil chironomids, J. Quaternary Sci., 27, 279–289,
2012.
Schaefer, J. M., Denton, G. H., Kaplan, M. R., Putnam, A., Finkel, R. C.,
Barrell, D. J. A., Andersen, B. G., Schwartz, R., Mackintosh, A., Chinn, T.,
and Schlüchter, C.: High-Frequency Holocene Glacier Fluctuations in New
Zealand Differ from the Northern Signature, Science, 324, 622–625, 2009.
Schimmelpfennig, I., Schaefer, J. M., Akcar, N., Ivy-Ochs, S., Finkel, R.
C., and Schlüchter, C.: Holocene glacier culminations in the Western
Alps and their hemispheric relevance, Geology, 40, 891–894, 2012.
Schimmelpfennig, I., Schaefer, J. M., Akcar, N., Koffman, T., Ivy-Ochs, S.,
Schwartz, R., Finkel, R. C., Zimmerman, S., and Schlüchter, C.: A
chronology of Holocene and Little Ice Age glacier culminations of the
Steingletscher, Central Alps, Switzerland, based on high-sensitivity
beryllium-10 moraine dating, Earth Planet. Sc. Lett., 393, 220–230, 2014.
Schindelwig, I., Akcar, N., Kubik, P. W., and Schlüchter, C.:
Lateglacial and early Holocene dynamics of adjacent valley glaciers in the
Western Swiss Alps, J. Quaternary Sci., 27, 114–124, 2012.
Schmidt, R., Kamenik, C., Tessadri, R., and Koinig, K. A.: Climatic changes
from 12 000 to 4000 years ago in the Austrian Central Alps tracked by
sedimentological and biological proxies of a lake sediment core, J.
Paleolimnol., 35, 491–505, 2006.
Schuster, R.: Zur Geologie der Ostalpen, Abh. Geol. B.-A., 64, 143–165,
2015.
Schwander, J., Eicher, U., and Ammann, B.: Oxygen isotopes of lake marl at
Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor
oscillations, and their correlation to the GRIP ice core, Palaeogeogr.
Palaeocl., 159, 203–214, 2000.
Shakun, J. D., Clark, P. U., He, F., Lifton, N. A., Liu, Z. Y., and
Otto-Bliesner, B. L.: Regional and global forcing of glacier retreat during
the last deglaciation, Nat. Commun., 6, 8059, https://doi.org/10.1038/ncomms9059, 2015.
Sigfusdottir, T. and Benediktsson, I. O.: Refining the history of Younger
Dryas and Early Holocene glacier oscillations in the Borgarfjorour region,
western Iceland, Boreas, 49, 296–314, 2020.
Simon, Q., Hillaire-Marcel, C., St-Onge, G., and Andrews, J. T.:
North-eastern Laurentide, western Greenland and southern Innuitian ice
stream dynamics during the last glacial cycle, J. Quaternary Sci., 29, 14–26,
2014.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev., 111, 9–34,
2015.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D.
S., Koch, J., Mckay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi,
K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier
fluctuations during the past 2000 years, Quaternary Sci. Rev., 149, 61–90,
2016.
Steiner, D., Pauling, A., Nussbaumer, S. U., Nesje, A., Luterbacher, J.,
Wanner, H., and Zumbuhl, H. J.: Sensitivity of European glaciers to
precipitation and temperature – two case studies, Climatic Change, 90,
413–441, 2008.
Teller, J. T., Leverington, D. W., and Mann, J. D.: Freshwater outbursts to
the oceans from glacial Lake Agassiz and their role in climate change during
the last deglaciation, Quaternary Sci. Rev., 21, 879–887, 2002.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Holocene
oscillations in temperature and salinity of the surface subpolar North
Atlantic, Nature, 457, 711–714, 2009.
Thornalley, D. J. R., McCave, I. N., and Elderfield, H.: Freshwater input
and abrupt deglacial climate change in the North Atlantic, Paleoceanography,
25, PA1201, https://doi.org/10.1029/2009PA001772, 2010.
Thornalley, D. J. R., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C.
M., Davis, R., Hall, I. R., Moffa-Sanchez, P., Rose, N. L., Spooner, P. T.,
Yashayaev, I., and Keigwin, L. D.: Anomalously weak Labrador Sea convection
and Atlantic overturning during the past 150 years, Nature, 556, 227–230,
2018.
Timms, R. G. O., Abrook, A. M., Matthews, I. P., Francis, C. P.,
Mroczkowska, A., Candy, I., Brooks, S. J., Milner, A. M., and Palmer, A. P.:
Evidence for centennial-scale Lateglacial and early Holocene climatic
complexity from Quoyloo Meadow, Orkney, Scotland, J. Quaternary Sci., 36, 339–359, 2021.
Ullman, D. J., Carlson, A. E., Hostetler, S. W., Clark, P. U., Cuzzone, J.,
Milne, G. A., Winsor, K., and Caffee, M.: Final Laurentide ice-sheet
deglaciation and Holocene climate-sea level change, Quaternary Sci. Rev., 152,
49–59, 2016.
Vollweiler, N., Scholz, D., Muhlinghaus, C., Mangini, A., and Spotl, C.: A
precisely dated climate record for the last 9 kyr from three high alpine
stalagmites, Spannagel Cave, Austria, Geophys. Res. Lett., 33, L20703, https://doi.org/10.1029/2006GL027662, 2006.
Walker, M., Johnsen, S., Rasmussen, S. O., Steffensen, J. P., Popp, T.,
Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Bjorck, S., Cwynar, L.,
Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T.,
Newnham, R., and Schwander, J.: The Global Stratotype Section and Point
(GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period)
in the NGRIP ice core, Episodes, 31, 264–267, 2008.
WGMS, W. G. M. S.: Fluctuations of Glaciers Database. World Glacier
Monitoring Service, Zürich, Switzerland, 2018.
Young, N. E., Briner, J. P., Miller, G. H., Lesnek, A. J., Crump, S. E.,
Thomas, E. K., Pendleton, S. L., Cuzzone, J., Lamp, J., Zimmerman, S.,
Caffee, M., and Schaefer, J. M.: Deglaciation of the Greenland and
Laurentide ice sheets interrupted by glacier advance during abrupt coolings,
Quaternary Sci. Rev., 229, 106091, https://doi.org/10.1016/j.quascirev.2019.106091, 2020.
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble, The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gartner-Roer, I., Thomson,
L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier
mass changes and their contributions to sea-level rise from 1961 to 2016,
Nature, 568, 382–386, 2019.
Zumbühl, H. J. and Nussbaumer, S. U.: Little Ice Age glacier history of
the Central and Western Alps from pictorial documents, Geograph. Res. Lett., 44, 115–136, https://doi.org/10.18172/cig.3363, 2018.
Short summary
Glacier reconstructions provide insights into past climatic conditions and elucidate processes and feedbacks that modulate the climate system both in the past and present. We investigate the transition from the last glacial to the current interglacial and generate beryllium-10 moraine chronologies in glaciated catchments of the eastern European Alps. We find that rapid warming was superimposed by centennial-scale cold phases that appear to have influenced large parts of the Northern Hemisphere.
Glacier reconstructions provide insights into past climatic conditions and elucidate processes...