Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1955-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1955-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Palaeo-environmental evolution of Central Asia during the Cenozoic: new insights from the continental sedimentary archive of the Valley of Lakes (Mongolia)
Institute of Applied Geosciences, Graz University of Technology, NAWI
Graz Geocenter, Graz, Austria
Oliver Wasser
Institute of Applied Geosciences, Graz University of Technology, NAWI
Graz Geocenter, Graz, Austria
Elshan Abdullayev
Department of Life Sciences, Khazar University, Baku, Azerbaijan
Department of Geoscience, French-Azerbaijani University (UFAZ), Baku,
Azerbaijan
Stefano Bernasconi
Geological Institute, ETH Zurich, Zurich, Switzerland
Stefan Löhr
Department of Earth and Environmental Sciences, Macquarie University,
Sydney, Australia
Klaus Wemmer
Geoscience Centre (GZG), University of Göttingen, Göttingen,
Germany
Werner E. Piller
Institute of Earth Sciences, University of Graz, NAWI Graz Geocenter,
Graz, Austria
Maxim Rudmin
Division of Geology, Tomsk Polytechnic University, Tomsk, Russia
Sylvain Richoz
Department of Geology, University of Lund, Lund, Sweden
Related authors
No articles found.
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, https://doi.org/10.5194/bg-16-3725-2019, 2019
Maria Andrianaki, Juna Shrestha, Florian Kobierska, Nikolaos P. Nikolaidis, and Stefano M. Bernasconi
Hydrol. Earth Syst. Sci., 23, 3219–3232, https://doi.org/10.5194/hess-23-3219-2019, https://doi.org/10.5194/hess-23-3219-2019, 2019
Short summary
Short summary
We tested the performance of the SWAT hydrological model after being transferred from a small Alpine watershed to a greater area. We found that the performance of the model for the greater catchment was satisfactory and the climate change simulations gave insights into the impact of climate change on our site. Assessment tests are important in identifying the strengths and weaknesses of the models when they are applied under extreme conditions different to the ones that were calibrated.
Maximilian Rieder, Wencke Wegner, Monika Horschinegg, Stefanie Klackl, Nereo Preto, Anna Breda, Susanne Gier, Urs Klötzli, Stefano M. Bernasconi, Gernot Arp, and Patrick Meister
Solid Earth, 10, 1243–1267, https://doi.org/10.5194/se-10-1243-2019, https://doi.org/10.5194/se-10-1243-2019, 2019
Short summary
Short summary
The formation of dolomite (CaMg(CO3)2), an abundant mineral in Earth's geological record, is still incompletely understood. We studied dolomites embedded in a 100 m thick succession of coastal alluvial clays of Triassic age in the southern Alps. Observation by light microscopy and Sr isotopes suggests that dolomites may spontaneously from concentrated evaporating seawater, in coastal ephemeral lakes or tidal flats along the western margin of the Triassic Tethys sea.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Klaus Wemmer
Solid Earth, 9, 923–951, https://doi.org/10.5194/se-9-923-2018, https://doi.org/10.5194/se-9-923-2018, 2018
Short summary
Short summary
We dated the formation of large faults in order to constrain the tectonic and exhumation history of the Barents Sea and northern Norway. Some of the dated faults formed apprx. 1 Ga and are much older than expected. However, most dated faults were active during two periods of extension: 375–325 and 315–265 Ma. The study of minerals along these cracks shows that exposed rocks in Finnmark were exhumed from deep (> 10 km) to shallow depth (< 3.5 km) during the two periods of extension.
Ángela García-Gallardo, Patrick Grunert, and Werner E. Piller
Clim. Past, 14, 339–350, https://doi.org/10.5194/cp-14-339-2018, https://doi.org/10.5194/cp-14-339-2018, 2018
Short summary
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
Juliane Meyer, Claudia Wrozyna, Albrecht Leis, and Werner E. Piller
Biogeosciences, 14, 4927–4947, https://doi.org/10.5194/bg-14-4927-2017, https://doi.org/10.5194/bg-14-4927-2017, 2017
Short summary
Short summary
Isotopic signatures of ostracods from Florida correlate with their host water, implying a regional influence of temperature and precipitation. Calculated monthly configurations of a theoretical calcite formed in rivers were compared to ostracod isotope compositions. The data suggest a seasonal shell formation during early spring that is coupled to the hydrological cycle of the region. The surprising seasonality of the investigated ostracods is of importance for paleontological interpretation.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
F. Kobierska, T. Jonas, J. W. Kirchner, and S. M. Bernasconi
Hydrol. Earth Syst. Sci., 19, 3681–3693, https://doi.org/10.5194/hess-19-3681-2015, https://doi.org/10.5194/hess-19-3681-2015, 2015
C. von Sperber, F. Tamburini, B. Brunner, S. M. Bernasconi, and E. Frossard
Biogeosciences, 12, 4175–4184, https://doi.org/10.5194/bg-12-4175-2015, https://doi.org/10.5194/bg-12-4175-2015, 2015
G. Auer, W. E. Piller, and M. Harzhauser
Clim. Past, 11, 283–303, https://doi.org/10.5194/cp-11-283-2015, https://doi.org/10.5194/cp-11-283-2015, 2015
Short summary
Short summary
High-resolution analyses of paleoecological and geochemical proxies give insight into environmental processes and climate variations in the past on a timescale that is relevant for humans. This study, as the first of its kind, aims to resolve cyclic variations of nannofossil assemblages on a decadal to centennial scale in a highly sensitive Early Miocene (~17Ma) shallow marine setting. Our results indicate that solar variation played a major role in shaping short-term climate variability.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
M. Reuter, W. E. Piller, M. Harzhauser, and A. Kroh
Clim. Past, 9, 2101–2115, https://doi.org/10.5194/cp-9-2101-2013, https://doi.org/10.5194/cp-9-2101-2013, 2013
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Cenozoic
Climatic and tectonic controls on shallow marine and freshwater diatomite deposition through the Palaeogene
Middle Eocene Climatic Optimum (MECO) and its imprint in the continental Escanilla Formation, Spain
Fluvio-deltaic record of increased sediment transport during the Middle Eocene Climatic Optimum (MECO), Southern Pyrenees, Spain
Terrestrial carbon isotope stratigraphy and mammal turnover during post-PETM hyperthermals in the Bighorn Basin, Wyoming, USA
Climate and ecology in the Rocky Mountain interior after the early Eocene Climatic Optimum
Terrestrial responses of low-latitude Asia to the Eocene–Oligocene climate transition revealed by integrated chronostratigraphy
Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2
Pliocene to Pleistocene climate and environmental history of Lake El'gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data
A re-evaluation of the palaeoclimatic significance of phosphorus variability in speleothems revealed by high-resolution synchrotron micro XRF mapping
Cécile Figus, Or M. Bialik, Andrey Yu. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2229, https://doi.org/10.5194/egusphere-2024-2229, 2024
Short summary
Short summary
Global scale compilation of Palaeogene diatomite occurrences reveals the impact of palaeogeographic and palaeoceanographic changes on diatom accumulation, particularly in the middle Eocene: diatomite deposition dropped in epicontinental seas between ~46 and ~43 Ma, while diatoms began to accumulate from ~43.5 Ma in open ocean settings. The compilation also shows the indirect correlation between Palaeogene climate fluctuations & diatomite deposition in shallow marine and freshwater environments.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
Sarah J. Widlansky, Ross Secord, Kathryn E. Snell, Amy E. Chew, and William C. Clyde
Clim. Past, 18, 681–712, https://doi.org/10.5194/cp-18-681-2022, https://doi.org/10.5194/cp-18-681-2022, 2022
Short summary
Short summary
New stable isotope records from pedogenic carbonates through the ETM2, H2, and possibly I1 hyperthermals from the Bighorn Basin highlight significant spatial variability in the preservation and magnitude of these global climate events in paleosol records. These data also provide important climate context for the extensive early Eocene mammal fossil record from the southern Bighorn Basin and support previous hypotheses that pulses in mammal turnover corresponded to the ETM2 and H2 hyperthermals.
Rebekah A. Stein, Nathan D. Sheldon, Sarah E. Allen, Michael E. Smith, Rebecca M. Dzombak, and Brian R. Jicha
Clim. Past, 17, 2515–2536, https://doi.org/10.5194/cp-17-2515-2021, https://doi.org/10.5194/cp-17-2515-2021, 2021
Short summary
Short summary
Modern climate change drives us to look to the past to understand how well prior life adapted to warm periods. In the early Eocene, a warm period approximately 50 million years ago, southwestern Wyoming was covered by a giant lake. This lake and surrounding environments made for excellent preservation of ancient soils, plant fossils, and more. Using geochemical tools and plant fossils, we determine the region was a warm, wet forest and that elevated temperatures were maintained by volcanoes.
Y. X. Li, W. J. Jiao, Z. H. Liu, J. H. Jin, D. H. Wang, Y. X. He, and C. Quan
Clim. Past, 12, 255–272, https://doi.org/10.5194/cp-12-255-2016, https://doi.org/10.5194/cp-12-255-2016, 2016
Short summary
Short summary
An integrated litho-, bio-, cyclo-, and magnetostratigraphy constrains the onset of a depositional environmental change from a lacustrine to a deltaic environment in the Maoming Basin, China, at 33.88 Ma. This coincides with the global cooling during the Eocene-Oligocene transition (EOT) at ~ 33.7–33.9 Ma. This change represents terrestrial responses of low-latitude Asia to the EOT. The greatly refined chronology permits detailed examination of the late Paleogene climate change in southeast Asia.
A. E. Chew
Clim. Past, 11, 1223–1237, https://doi.org/10.5194/cp-11-1223-2015, https://doi.org/10.5194/cp-11-1223-2015, 2015
Short summary
Short summary
This project describes mammal faunal response in the zone of the ETM2 and H2 hyperthermals (rapid global warming events) of the early Paleogene in the south-central Bighorn Basin, WY. The response includes changes in faunal structure and species relative body size. Comparative analysis suggests that environmental moisture and rate of change are important moderators of response.
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
S. Frisia, A. Borsato, R. N. Drysdale, B. Paul, A. Greig, and M. Cotte
Clim. Past, 8, 2039–2051, https://doi.org/10.5194/cp-8-2039-2012, https://doi.org/10.5194/cp-8-2039-2012, 2012
Cited articles
Abdullayev, E., Baldermann, A., Warr, L. N., Grathoff, G., and Taghiyeva, Y.:
New constraints on the palaeo-environmental conditions of the Eastern
Paratethys: Implications from the Miocene Diatom Suite (Azerbaijan), Sed.
Geol., 411, 105794, https://doi.org/10.1016/j.sedgeo.2020.105794, 2021.
An, Z., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian
monsoons and phased uplift of the Himalaya-Tibetan plateau since Late
Miocene times, Nature, 411, 62–66, https://doi.org/10.1038/35075035, 2001.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis,
G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric
CO2 concentration was the primary driver of early Cenozoic climate,
Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016.
Badamgarav, D.: A brief lithologo-genetic characteristics of
Eocene-Oligocene and Miocene deposits of the Valley of Lakes and Begger
depression, in: International
Geological Correlation Programme, Project 326 Oligocene-Miocene Transitions
in the Northern Hemisphere, Excursion Guide-Book Mongolia: Oligocene-Miocene
Boundary in Mongolia, edited by: Barsbold, R. and Akhmetiev, M. A., International Geological Correlation Programme, Mongolia, 36–39, 1993.
Bahlburg, H. and Dobrzinski, N.: A review of the Chemical Index of
Alteration (CIA) and its application to the study of Neoproterozoic glacial
deposits and climate transitions, in: The Geological Record of Neoproterozoic
Glaciations, edited by: Arnaud, E., Halverson, G. P., and
Shields-Zhou, G., Chapter 6, Geol. Soc. Lond. Mem., 36, 81–92,
https://doi.org/10.1144/M36.6, 2011.
Baldermann, A., Grathoff, G. H., and Nickel, C.: Micromilieu controlled
glauconitization in fecal pellets at Oker (Central Germany), Clay Miner.,
47, 513–538, https://doi.org/10.1180/claymin.2012.047.4.09, 2012.
Baldermann, A., Dohrmann, R., Kaufhold, S., Nickel, C., Letofsky-Papst, I.,
and Dietzel, M.: The Fe-Mg-saponite solid solution series – a hydrothermal
synthesis study, Clay Miner., 49, 391–415,
https://doi.org/10.1180/claymin.2014.049.3.04, 2014.
Baldermann, A., Dietzel, M., Mavromatis, V., Mittermayr, F., Warr, L. N., and
Wemmer, K.: The role of Fe on the formation and diagenesis of
interstratified glauconite-smectite and illite-smectite: A case study of
Upper Cretaceous shallow-water carbonates, Chem. Geol., 453, 21–34,
https://doi.org/10.1016/j.chemgeo.2017.02.008, 2017.
Baldermann, A., Mittermayr, F., Bernasconi, S. M., Dietzel, M., Grengg, C.,
Hippler, D., Kluge, T., Leis, A., Lin, K., Wang, X., Zünterl, A., and
Boch, R.: Fracture dolomite as an archive of continental
palaeo-environmental conditions, Commun. Earth Environ., 1, 35,
https://doi.org/10.1038/s43247-020-00040-3, 2020.
Baldermann, A., Reinprecht, V., and Dietzel, M.: Chemical weathering and
progressing alteration as possible controlling factors for creeping
landslides, Sci. Total Environ., 778, 146300,
https://doi.org/10.1016/j.scitotenv.2021.146300, 2021a.
Baldermann, A., Wasser, O., Abdullayev, E., Bernasconi, S., Löhr, S. C., Wemmer, K., Piller, W. E., Rudmin, M., and Richoz, S.: Palaeo-environmental evolution of Central Asia during the Cenozoic, Zenodo [data set], available at: https://zenodo.org/record/5521410#.YUsyfX2xU-U, last access: 26 September 2021b.
Barbolini, N., Woutersen, A., Dupont-Nivet, G., Silvestro, D., Tardif, D.,
Coster, P. M. C., Meijer, N., Chang, C., Zhang, H.-X., Licht, A., Rydin, C.,
Koutsodendris, A., Han, F., Rohrmann, A., Liu, X.-J., Zhang, Y., Donnadieu,
Y., Fluteau, F., Ladant, J.-B., Le Hir, G., and Hoorn, C.: Cenozoic
evolution of the steppe-desert biome in Central Asia, Sci. Adv., 6,
eabb8227, https://doi.org/10.1126/sciadv.abb8227, 2020.
Bosboom, R., Dupont-Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic,
O., Stoica, M., Huang, W., Yang, W., Guo, Z., and Krijgsman, W.: Linking
Tarim sea retreat (west China) and Asian aridification in the late Eocene,
Basin Res., 26, 621–640, https://doi.org/10.1111/bre.12054, 2014.
Caves, J. K., Sjostrom, D. J., Mix, H. T., Winnick, M. J., and Chamberlain, C. P.:
Aridification of Central Asia and uplift of the Altai and Hangay Mountains,
Mongolia: stable isotope evidence, Am. J. Sci., 314, 1171–1201,
https://doi.org/10.2475/08.2014.01, 2014.
Caves, J. K., Winnick, M. J., Graham, S. A., Sjostrom, D. J., Mulch, A., and
Chamberlain, C. P.: Role of the westerlies in Central Asia climate over the
Cenozoic, Earth Planet. Sci. Lett., 428, 33–43,
https://doi.org/10.1016/j.epsl.2015.07.023, 2015.
Caves Rugenstein, J. K. and Chamberlain, C. P.: The evolution of hydroclimate
in Asia over the Cenozoic: A stable-isotope perspective, Earth-Sci. Rev.,
185, 1129–1156, https://doi.org/10.1016/j.earscirev.2018.09.003, 2018.
Cerling, T. and Quade, J.: Stable carbon and oxygen isotopes in soil
carbonates, in: Climate Change in Continental Isotopic Records, edited by: Swart, P., Lohmann, K., McKenzie, J., and Savin, S., American Geophysical Union,
Geophysical Monograph, 78, 217–231, https://doi.org/10.1029/GM078p0217,
1993.
Cerling, T. E.: Late Cenozoic Vegetation Change, Atmospheric CO2, and
Tectonics, in: Tectonic Uplift and Climate Change, edited by: Ruddiman, W. F.,
Springer, Boston, MA, 313–327,
https://doi.org/10.1007/978-1-4615-5935-1_13, 1993.
Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F., and Vallina,
S. M.: Continental erosion and the Cenozoic rise of marine diatoms, P.
Natl. Acad. Sci. USA, 112, 4239–4244,
https://doi.org/10.1073/pnas.1412883112, 2015.
Chamberlain, C. P., Winnick, M. J., Mix, H. T., Chamberlain, S. D., and Maher,
K.: The impact of Neogene grassland expansion and aridification on the
isotopic composition of continental precipitation, Global Biogeochem. Cy.,
28, 992–1004, https://doi.org/10.1002/2014GB004822, 2014.
Chamley, H.: Clay Formation Through Weathering, in: Clay Sedimentology,
Springer, Berlin, Heidelberg, Germany, 21–50,
https://doi.org/10.1007/978-3-642-85916-8_2, 1989.
Cuadros, J.: Modeling of smectite illitization in burial diagenesis
environments, Geochim. Cosmochim. Ac., 70, 4181–4195,
https://doi.org/10.1016/j.gca.2006.06.1372, 2006.
Daxner-Höck, G., Badamgarav, D., Barsbold, R., Bayarmaa, B., Erbajeva,
M., Göhlich, U. B., Harzhauser, M., Höck, V., Höck, E.,
Ichinnorov, N., Khand, Y., Lopez-Guerrero, P., Maridet, O., Neubauer, T.,
Oliver, A., Piller, W. E., Tsogtbaatar, K., and Ziegler, R.: Oligocene
stratigraphy across the Eocene and Miocene boundaries in the Valley of Lakes
(Mongolia), in: The Valley
of Lakes in Mongolia, a key area of Cenozoic mammal evolution and
stratigraphy, edited by: Daxner-Höck, G. and Göhlich, U., Paleobiodivers. Paleoenviron., 97, 111–218,
https://doi.org/10.1007/s12549-016-0257-9, 2017.
Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., and
Fang, X. M.: Tibetan plateau aridification linked to global cooling at the
Eocene-Oligocene transition, Nature, 445, 635–638,
https://doi.org/10.1038/nature05516, 2007.
Fedo, C. M., Nesbitt, H. W., and Young, G. M.: Unraveling the effects of
potassium metasomatism in sedimentary rocks and paleosols, with implications
of paleoweathering conditions and provenance, Geology, 23, 921–924,
https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2, 1995.
Fischer-Femal, B. J. and Bowen, G. J.: Coupled carbon and oxygen isotope
model for pedogenic carbonates, Geochim. Cosmochim. Ac., 294, 126–144,
https://doi.org/10.1016/j.gca.2020.10.022, 2021.
Gallagher, S. J., Wade, B., Qianyu, L., Holdgate, G. R., Bown, P., Korasidis,
V. A., Scher, H., Houben, A. J. P., McGowran, B., and Allan, T.: Eocene to
Oligocene high paleolatitude neritic record of Oi-1 glaciation in the Otway
Basin southeast Australia, Glob. Planet. Change, 191, 103218,
https://doi.org/10.1016/j.gloplacha.2020.103218, 2020.
Grathoff, G. H. and Moore, D. M.: Illite Polytype Quantification Using
Wildfire© Calculated X-Ray Diffraction Patterns, Clays Clay Miner.,
44, 835–842, https://doi.org/10.1346/CCMN.1996.0440615, 1996.
Guo, Z. T., Sun, B., Zhang, Z. S., Peng, S. Z., Xiao, G. Q., Ge, J. Y., Hao, Q. Z., Qiao, Y. S., Liang, M. Y., Liu, J. F., Yin, Q. Z., and Wei, J. J.: A major reorganization of Asian climate by the early Miocene, Clim. Past, 4, 153–174, https://doi.org/10.5194/cp-4-153-2008, 2008.
Güven, N., Hower, W. F., and Davies, D. K.: Nature of authigenic illites
in sandstone reservoirs, J. Sed. Res., 50, 761–766,
https://doi.org/10.1306/212F7ADB-2B24-11D7-8648000102C1865D, 1980.
Harzhauser, M., Daxner-Höck, G., López-Guerrero, P., Maridet, O.,
Oliver, A., Piller, W. E., Richoz, S., Erbajeva, M. A., and Göhlich, U. B.:
The stepwise onset of the Icehouse world and its impact on Oligocene-Miocene
Central Asian mammal communities, Sci. Rep., 6, 36169,
https://doi.org/10.1038/srep36169, 2016.
Harzhauser, M., Daxner-Höck, G., Erbajeva, M. A., López-Guerrero, P.,
Maridet, O., Oliver, A., Piller, W. E, Göhlich U. B., and Ziegler, R.:
Oligocene and early Miocene biostratigraphy of the Valley of Lakes in
Mongolia, in: The Valley of
Lakes in Mongolia, a key area of Cenozoic mammal evolution and stratigraphy, edited by: Daxner-Höck, G. and Göhlich, U.,
Palaeobiodivers. Palaeoenviron., 97, 219–231,
https://doi.org/10.1007/s12549-016-0264-x, 2017.
Hellwig, A., Voigt, S., Mulch, A., Frisch, K., Bartenstein, A., Pross, J.,
Gerdes, A., and Voigt, T.: Late Oligocene–early Miocene humidity change
recorded in terrestrial sequences in the Ili Basin (south-eastern
Kazakhstan, Central Asia), Sedimentology, 65, 517–539,
https://doi.org/10.1111/sed.12390, 2017.
Hendrix, M., Dumitru, T., and Graham, S.: Late Oligocene-early Miocene
unroofing in the Chinese Tian Shan: An early effect of the India-Asia
collision, Geology, 22, 487–490,
https://doi.org/10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2, 1994.
Höck, V., Daxner-Höck, G., Schmid, H. P., Badamgarav, D., Frank, W.,
Furtmüller, G., Montag, O., Barsbold, R., Khand, Y., and Sodov, J.:
Oligocene-Miocene sediments, fossils and basalt from the Valley of Lakes
(Central Mongolia) – an integrated study, Mitt. Österr. Geol. Ges., 90,
83–125, 1999.
Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S.,
Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T.,
Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., and Brinkhuis, H. et al.:
Reorganization of Southern Ocean plankton ecosystem at the onset of
Antarctic glaciation, Science, 340, 341–344,
https://doi.org/10.1126/science.1223646, 2013.
Hubert, J. F. and Filipov, A. J.: Debris-flow deposits in alluvial fans on
the west flank of the White Mountains, Owens Valley, California, U.S.A., Sed.
Geol., 61, 177–205, https://doi.org/10.1016/0037-0738(89)90057-2, 1989.
Huggett, J., Cuadros, J., Gale, A. S., Wray, D., and Adetunji, J.: Low
temperature, authigenic illite and carbonates in a mixed dolomite-clastic
lagoonal and pedogenic setting, Spanish Central System, Spain. Appl. Clay
Sci., 132–133, 296–312, https://doi.org/10.1016/j.clay.2016.06.016, 2016.
Ingalls, M., Rowley, D. B., Olack, G., Currie, B. S., Li, S., Schmidt, J. L.,
Tremblay, M. M., Polissar, P. J., Shuster, D. L., Lin, D., and Colman, A. S.:
Paleocene to Pliocene high elevation of southern Tibet: Implications for
tectonic models of India-Asia collision, Cenozoic climate, and geochemical
weathering, Geol. Soc. Am. Bull., 130, 307–330,
https://doi.org/10.1130/B31723.1, 2018.
Kaufman, A. J. and Knoll, A. H.: Neoproterozoic variations in the C-isotopic
composition of seawater: stratigraphic and biogeochemical implications,
Precambrian Res., 73, 27–49, https://doi.org/10.1016/0301-9268(94)00070-8,
1995.
Kelson, J. R., Huntington, K. W., Breecker, D. O., Burgener, L. K., Gallagher,
T. M., Hoke, G. D., and Petersen, S. V.: A proxy for all seasons? A synthesis
of clumped isotope data from Holocene soil carbonates, Quat. Sci. Rev., 234,
106259, https://doi.org/10.1016/j.quascirev.2020.106259, 2020.
Kenig, K.: Surface microtextures of quartz grains from Vistulian loesses
from selected profiles of Poland and some other countries, Quat. Int.,
152–153, 118–135, https://doi.org/10.1016/j.quaint.2005.12.015, 2006.
Kent-Corson, M. L., Ritts, B. D., Zhuang, G., Bovet, P. M., Graham, S. A., and
Chamberlain, C. P.: Stable isotopic constraints on the tectonic, topographic,
and climatic evolution of the northern margin of the Tibetan Plateau, Earth
Planet. Sc. Lett., 282, 158–166,
https://doi.org/10.1016/j.epsl.2009.03.011, 2009.
Komar, N. and Zeebe, R. E.: Reconciling atmospheric CO2, weathering,
and calcite compensation depth across the Cenozoic, Sci. Adv., 7, eabd4876,
https://doi.org/10.1126/sciadv.abd4876, 2021.
Kukla, T., Winnick, M. J., Maher, K., Ibarra, D. E., and Chamberlain, C. P.:
The Sensitivity of Terrestrial δ18O Gradients to Hydroclimate
Evolution, J. Geophys. Res.-Atmos., 124, 563–582,
https://doi.org/10.1029/2018JD029571, 2019.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y.:
Cooling and ice growth across the Eocene-Oligocene transition, Geology, 36,
251–254, https://doi.org/10.1130/G24584A.1, 2008.
Li, B., Sun, D., Wang, X., Zhang, Y., Hu, W., Wang, F., Li, Z., Ma, Z., and
Liang, B.: δ18O and δ13C records from a Cenozoic
sedimentary sequence in the Lanzhou Basin, Northwestern China: implications
for palaeoenvironmental and palaeoecological changes, J. Asian Earth Sci.,
125, 22–36, https://doi.org/10.1016/j.jseaes.2016.05.010, 2016.
Li, H., Liu, X., Tripati, A., Feng, S., Elliott, B., Whicker, C., Arnold,
A., and Kelley, A. M.: Factors controlling the oxygen isotopic composition of
lacustrine authigenic carbonates in Western China: implications for
paleoclimate reconstructions, Sci. Rep., 10, 16370,
https://doi.org/10.1038/s41598-020-73422-4, 2020.
Li, Z., Yu, X., Dong, S., Chen, Q., and Zhang, C.: Microtextural features on
quartz grains from eolian sands in a subaqueous sedimentary environment: A
case study in the hinterland of the Badain Jaran Desert, Northwest China,
Aeolian Res., 43, 100573, https://doi.org/10.1016/j.aeolia.2020.100573,
2020.
Lu, H., Wang, X., Wang, X., Chang, X., Zhang, H., Xu, Z., Zhang, W., Wei,
H., Zhang, X., Yi, S., Zhang, W., Feng, H., Wang, Y., Wang, Y., and Han, Z.:
Formation and evolution of Gobi Desert in central and eastern Asia,
Earth-Sci. Rev., 194, 251–263,
https://doi.org/10.1016/j.earscirev.2019.04.014, 2019.
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Wack, M., Gilder, S. A., Mulch,
A., Fortuna, A. B., Hynek, S., and Apayarov, F.: The sedimentary record of
the Issyk Kul basin, Kyrgyzstan: climatic and tectonic inferences, Basin
Res., 28, 57–80, https://doi.org/10.1111/bre.12098, 2016.
McDannell, K. T., Zeitler, P. K., and Idleman, B. D.: Relict Topography Within
the Hangay Mountains in Central Mongolia: Quantifying Long-Term Exhumation
and Relief Change in an Old Landscape, Tectonics, 37, 2531–2558,
https://doi.org/10.1029/2017TC004682, 2018.
McIntosh, J. A., Tabor, N. J., and Rosenau, A. A.: Mixed-Layer Illite-Smectite
in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the
Illinois Basin, Minerals, 11, 108, https://doi.org/10.3390/min11020108,
2020.
McLennan, S. M.: Weathering and Global Denudation, J. Geol., 101, 100th
Anniversary Symposium: Evolution of the Earth's Surface, 295–303,
available at: https://www.jstor.org/stable/30081153 (last access: 2 June 2021), 1993.
Meenakshi, Shrivastava, J. P., and Chandra, R.: Pedogenically degenerated
illite and chlorite lattices aid to palaeoclimatic reconstruction for
chronologically constrained (8–130 ka) loess-palaeosols of Dilpur
Formation, Kashmir, India, Geosci. Front., 11, 1353–1367,
https://doi.org/10.1016/j.gsf.2019.11.007, 2020.
Miall, A. D.: The Geology of Fluvial Deposits, Springer, Berlin, Germany,
1–598, https://doi.org/10.1007/978-3-662-03237-4?nosfx=y, 1996.
Mudelsee, M., Bickert, T., Lear, C. H., and Lohmann, G.: Cenozoic climate
changes: A review based on time series analysis of marine benthic δ18O records, Rev. Geophys., 52, 333–374,
https://doi.org/10.1002/2013RG000440, 2014.
Mutz, S. G., Ehlers, T. A., Werner, M., Lohmann, G., Stepanek, C., and Li, J.: Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens, Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, 2018.
Nadeau, P. H., Wilson, M. J., McHardy, W. J., and Tait, J. M.: The conversion of
smectite to illite during diagenesis: evidence from some illitic clays from
bentonites and sandstones, Mineral. Mag., 49, 393–400,
https://doi.org/10.1180/minmag.1985.049.352.10, 1985.
Neubauer, T. A., Harzhauser, M., Daxner-Höck, G., and Piller, W. E.: New
data on the terrestrial gastropods from the Oligocene-Miocene transition in
the Valley of Lakes, Central Mongolia, Paleontol. J., 47, 374–385,
https://doi.org/10.1134/S003103011304014X, 2013.
Nesbitt, H. W. and Young, G. M.: Early Proterozoic climate and plate motions
inferred from major element chemistry of lutites, Nature, 299, 715–717,
https://doi.org/10.1038/299715a0, 1982.
Nesbitt, H. W. and Young, G. M.: Prediction of some weathering trends of
plutonic and volcanic rocks based on thermodynamic and kinetic
considerations, Geochim. Cosmochim. Ac., 48, 1523–1534,
https://doi.org/10.1016/0016-7037(84)90408-3, 1984.
Norris, R., Turner, S. K., Hull, P. M., and Ridgwell, A.: Marine Ecosystem
Responses to Cenozoic Global Change, Science, 341, 492–498,
https://doi.org/10.1126/science.1240543, 2013.
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W. P.,
Krishnan, S., and DeConto, R. M.: The Role of Carbon Dioxide During the Onset
of Antarctic Glaciation, Science, 334, 6060, 1261–1264,
https://doi.org/10.1126/science.1203909, 2011.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear,
C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The heartbeat of
the Oligocene climate system, Science, 314, 1894–1898,
https://doi.org/10.1126/science.1133822, 2006.
Porter, T. M.: The geology, structure and mineralisation of the Oyu Tolgoi
porphyry copper-gold-molybdenum deposits, Mongolia: A review, Geosci.
Front., 7, 375–407, https://doi.org/10.1016/j.gsf.2015.08.003, 2016.
Rafiei, M., Löhr, S., Baldermann, A., Webster, R., and Kong, C.:
Quantitative petrographic differentiation of detrital vs diagenetic clay
minerals in marine sedimentary sequences: Implications for the rise of
biotic soils, Precambrian Res., 350, 105948,
https://doi.org/10.1016/j.precamres.2020.105948, 2020.
Richoz, S., Baldermann, A., Frauwallner, A., Harzhauser, M.,
Daxner-Höck, G., Klammer, D., and Piller, W. E.: Geochemistry and
mineralogy of the Oligo-Miocene sediments of the Valley of Lakes, Mongolia,
Palaeobiodivers. Palaeoenviron., 97, 233–258,
https://doi.org/10.1007/s12549-016-0268-6, 2017.
Roser, B. P. and Korsch, R. J.: Provenance signatures of sandstone-mudstone
suites determined using discriminant function analysis of major-element
data, Chem. Geol., 67, 119–139,
https://doi.org/10.1016/0009-2541(88)90010-1, 1988.
Sahagian, D., Proussevitch, A., Ancuta, L. D., Idleman, B. D., and Zeitler,
P. K.: Uplift of Central Mongolia Recorded in Vesicular Basalts. J. Geol.,
124, 435–445, https://doi.org/10.1086/686272, 2016.
Sandeep, S., Ajayamohan, R. S., Boos, W. R., Sabin, T. P., and Praveen, V.:
Decline and poleward shift in Indian summer monsoon synoptic activity in a
warming climate, P. Natl. Acad. Sci. USA., 115, 2681–2686,
https://doi.org/10.1073/pnas.1709031115, 2018.
Środoń, J.: Mixed-layer illite-smectite in low-temperature
diagenesis: data from the Miocene of the Carpathian Foredeep, Clay Miner.,
19, 205–215, https://doi.org/10.1180/claymin.1984.019.2.07, 1984.
Sun, J. and Windley, B. F.: Onset of aridification by 34 Ma across the
Eocene-Oligocene transition in Central Asia, Geology, 11, 1015–1018,
https://doi.org/10.1130/G37165.1, 2015.
Takeuchi, A., Hren, M. T., Smith, S. V., Chamberlain, C. P., and Larson, P. B.:
Pedogenic carbonate carbon isotopic constraints on paleoprecipitation:
Evolution of desert in the Pacific Northwest, USA, in response to
topographic development of the Cascade Range, Chem. Geol., 277, 323–335,
https://doi.org/10.1016/j.chemgeo.2010.08.015, 2010.
Teraoka, Y., Suzuki, M., Tungalag, F., Ichinnorov, N., and Sakamaki, Y.:
Tectonic framework of the Bayankhongor area, west Mongolia, Bulletin of the
Geological Survey of Japan, 47, 447–455, 1996.
Wang, X., Carrapa, B., Sun, Y., Dettman, D. L., Chapman, J. B., Rugenstein,
J. K. C., Clementz, M. T., DeCelles, P. G., Wang, M., Chen, J., Quade, J., Wang,
F., Li, Z., Oimuhammadzoda, I., Gadoev, M., Lohmann, G., Zhang, X., and
Chen, F.: The role of the westerlies and orography in Asian hydroclimate
since the late Oligocene, Geology, 48, 728–732,
https://doi.org/10.1130/G47400.1, 2020.
Wemmer, K., Steenken, A., Müller, S., de Luchi, M. G. L., and Siegesmund,
S.: The tectonic significance of K/Ar illite fine-fraction ages from the San
Luis formation (Eastern Sierras Pampeanas, Argentina), Int. J. Earth Sci.,
100, 659–669, https://doi.org/10.1007/s00531-010-0629-8, 2011.
Winnick, M. J., Chamberlain, C. P., Caves, J. K., and Welker, J. M.: Quantifying
the isotopic “continental effect”, Earth Planet. Sci. Lett., 406, 123–133,
https://doi.org/10.1016/j.epsl.2014.09.005, 2014.
Xiao, G. Q., Abels, H. A., Yao, Z. Q., Dupont-Nivet, G., and Hilgen, F. J.: Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China), Clim. Past, 6, 501–513, https://doi.org/10.5194/cp-6-501-2010, 2010.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, https://doi.org/10.1126/science.1059412, 2001.
Zamanian, K., Lechler, A. R., Schauer, A. J., Kuzyakov, Y., and Huntington,
K. W.: The δ13C, δ18O and Δ47 records
in biogenic, pedogenic and geogenic carbonate types from paleosol-loess
sequence and their paleoenvironmental meaning, Quat. Res., 101, 256–272,
https://doi.org/10.1017/qua.2020.109, 2021.
Zhang, C., Wang, Y., Deng, T., Wang, X., Biasatti, D., Xu, Y., and Li, Q.:
C4 expansion in the central Inner Mongolia during the latest Miocene and
early Pliocene, Earth Planet. Sci. Lett., 287, 311–319,
https://doi.org/10.1016/j.epsl.2009.08.025, 2009.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and Deconto, R.: A
40-million-year history of atmospheric CO2, Philos. T. R. Soc. A, 371,
20130096, https://doi.org/10.1098/rsta.2013.0096, 2013.
Zorin, Y. A., Belichenko, V. G., Turutanov, E. K., Kozhevnikov, V. M.,
Ruzhentsev, S. V., Dergunov, A. B., Filippova, I. B., Tomurtogoo, O.,
Arvisbaatar, N., Bayasgalan, T., Biambaa, C., and Khosbayar, P.: The South
Siberia-Central Mongolia transect, Tectonophysics, 225, 361–378,
https://doi.org/10.1016/0040-1951(93)90305-4, 1993.
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate...