Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1937-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1937-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
North Atlantic marine biogenic silica accumulation through the early to middle Paleogene: implications for ocean circulation and silicate weathering feedback
Jakub Witkowski
CORRESPONDING AUTHOR
Institute of Marine and Environmental Sciences, University of
Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
Karolina Bryłka
Department of Geology, Faculty of Science, Lund University,
Sölvegatan 12, Lund, Sweden
Steven M. Bohaty
Schoool of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Elżbieta Mydłowska
Institute of Spatial Management and Socio-Economic Geography, ul.
Mickiewicza 18, 70-383 Szczecin, Poland
Donald E. Penman
Department of Geosciences, Utah State University, 4505 Old Main Hill, Logan, UT 84322, USA
Bridget S. Wade
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
Related authors
Cécile Figus, Steve Bohaty, Johan Renaudie, and Jakub Witkowski
Clim. Past, 21, 1431–1441, https://doi.org/10.5194/cp-21-1431-2025, https://doi.org/10.5194/cp-21-1431-2025, 2025
Short summary
Short summary
We examine trends in biosiliceous fluxes and isotopic records in the North and South Atlantic, South Pacific, and Indian oceans during two climatic and biotic events: the Latest Danian Event (LDE; ~62.2 Ma) and the Early Late Palaeocene Event (ELPE; ~59.2 Ma). Our results show a peak during the LDE and following the ELPE.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
Biogeosciences, 22, 3029–3046, https://doi.org/10.5194/bg-22-3029-2025, https://doi.org/10.5194/bg-22-3029-2025, 2025
Short summary
Short summary
The synthesis of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific, and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic is indirectly related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Cécile Figus, Steve Bohaty, Johan Renaudie, and Jakub Witkowski
Clim. Past, 21, 1431–1441, https://doi.org/10.5194/cp-21-1431-2025, https://doi.org/10.5194/cp-21-1431-2025, 2025
Short summary
Short summary
We examine trends in biosiliceous fluxes and isotopic records in the North and South Atlantic, South Pacific, and Indian oceans during two climatic and biotic events: the Latest Danian Event (LDE; ~62.2 Ma) and the Early Late Palaeocene Event (ELPE; ~59.2 Ma). Our results show a peak during the LDE and following the ELPE.
Alessio Fabbrini, Paul N. Pearson, Anieke Brombacher, Francesco Iacoviello, Thomas H. G. Ezard, and Bridget S. Wade
J. Micropalaeontol., 44, 213–235, https://doi.org/10.5194/jm-44-213-2025, https://doi.org/10.5194/jm-44-213-2025, 2025
Short summary
Short summary
Pulleniatina is a genus of planktonic foraminifera used in biostratigraphy. Here, we illustrate typical specimens of Pulleniatina and the likely ancestor Neogloboquadrina acostaensis from International Ocean Discovery Program Site U1488. We present a novel integration of high-definition light microscopy images, X-ray microcomputed tomography data, and scanning electron microscope images to compare the six Pulleniatina species, supporting an evolutionary model with two diverging lineages.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
Biogeosciences, 22, 3029–3046, https://doi.org/10.5194/bg-22-3029-2025, https://doi.org/10.5194/bg-22-3029-2025, 2025
Short summary
Short summary
The synthesis of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific, and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic is indirectly related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Flavia Boscolo-Galazzo, David Evans, Elaine M. Mawbey, William R. Gray, Paul N. Pearson, and Bridget S. Wade
Biogeosciences, 22, 1095–1113, https://doi.org/10.5194/bg-22-1095-2025, https://doi.org/10.5194/bg-22-1095-2025, 2025
Short summary
Short summary
Here we compare the Mg / Ca and oxygen isotope signatures for 57 recent to fossil species of planktonic foraminifera for the last 15 Myr. We find the occurrence of lineage-specific offsets in Mg / Ca conservative between ancestor-descendent species. Taking into account species kinship significantly improves temperature reconstructions, and we suggest that the occurrence of Mg / Ca offsets in modern species results from their evolution when ocean properties were different from today's.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Cited articles
Abelson, M. and Erez, J.: The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: evidence, causes, and possible implications for global cooling, Geochem. Geophy. Geosy., 18, 2177–2199, https://doi.org/10.1002/2017GC006826, 2017.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016.
Aubry, M.-P.: From chronology to stratigraphy: interpreting the lower and
middle Eocene stratigraphic record in the Atlantic Ocean, in: Geochronology,
Time Scales, and Global Stratigraphic Correlation, edited by: Berggren,
W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., SEPM Special Publication, 54, 213–274, https://doi.org/10.2110/pec.95.04.0213, 1995.
Barron, J. A., Stickley, C. E., and Bukry, D.: Paleoceanographic, and
paleoclimatic constraints on the global Eocene diatom and silicoflagellate
record, Palaeogeogr. Palaeocl., 422, 85–100,
https://doi.org/10.1016/j.palaeo.2015.01.015, 2015.
Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A.,
Klein, T., Péréz-Díaz, L., and Frank, M.: Major intensification
of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth, Nat. Commun., 9, 4954, https://doi.org/10.1038/s41467-018-07457-7, 2018.
Berger, W. H.: Biogenous Deep-Sea Sediments: Fractionation by Deep-Sea
Circulation, Geol. Soc. Am. Bull., 81, 1385–1402,
https://doi.org/10.1130/0016-7606(1970)81[1385:BDSFBD]2.0.CO;2, 1970.
Bertolino, M., Cattaneo-Vietti, R., Pansini, M., Santini, C., and
Bavestrello, G.: Siliceous sponge spicule dissolution: In field experimental
evidences from temperate and tropical waters, Estuar. Coast. Shelf S., 184, 46–53, https://doi.org/10.1016/j.ecss.2016.10.044, 2017.
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L.: Coupled
greenhouse warming and deep-sea acidification in the middle Eocene,
Paleoceanography, 24, PA2207, https://doi.org/10.1029/2008PA001676, 2009.
Boyle, R., Romans, B. W., Tucholke, B. E., Norris, R. D., Swift, S. A., and
Sexton, F.: Cenozoic North Atlantic deep circulation history recorded in
contourite drifts, offshore Newfoundland, Canada, Mar. Geol., 385, 185–203,
https://doi.org/10.1016/j.margeo.2016.12.014, 2017.
Borrelli, C., Cramer, B. S., and Katz, M. E.: Bipolar Atlantic deepwater
circulation in the middle-late Eocene: effects of Southern Ocean gateway
openings, Paleoceanography, 29, 308–327, https://doi.org/10.1002/2012PA002444, 2014.
Caves, J. K., Jost, A. B., Lau, K. V., and Maher, K.: Cenozoic carbon cycle
imbalances and a variable weathering feedback, Earth Planet. Sc. Lett., 450, 152–163, https://doi.org/10.1016/j.epsl.2016.06.035, 2016.
Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F., and Vallina, S. M.: Continental erosion and the Cenozoic rise of marine diatoms, P. Natl. Acad. Sci. USA, 112, 4239–4244, https://doi.org/10.1073/pnas.1412883112, 2015.
Cleveland, W. S., Grosse, E., and Shyu, W. M.: Local regression models, in:
Statistical Models in S, edited by: Chambers, J. M. and Hastie, T. J., Chapman & Hall, London, United Kingdom, 309–376, 1992.
Conley, D. J., Frings, P. J., Fontorbe, G., Clymans, W., and Stadmark, J.:
Biosilicification Drives a Decline of Dissolved Si in the Oceans through
Geologic Time, Front. Mar. Sci., 4, 397,
https://doi.org/10.3389/fmars.2017.00397, 2017.
Coxall, H. K., Huck, C. E., Huber, M., Lear, C. H., Legarda-Lisarri, A.,
O'Regan, M., Sliwińska, K. K., van de Flierdt, T., de Boer, A. M., Zachos, J. C., and Backman, J.: Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation, Nat. Geosci., 11, 190–196, https://doi.org/10.1038/s41561-018-0069-9, 2018.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216,
https://doi.org/10.1029/2008PA001683, 2009.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.: Synchronous tropical and polar temperature evolution in the Eocene, Nature, 559, 382–386, https://doi.org/10.1038/s41586-018-0272-2, 2018.
D'haenens, S., Bornemann, A., Claeys, P., Roöhl, U., Steurbaut, E., and Speijer, R. P.: A transient deep-sea circulation switch during Eocene Thermal Maximum 2, Paleoceanography, 29, 370–388, https://doi.org/10.1002/2013PA002567, 2014.
DeMaster, D. J.: The diagenesis of biogenic silica: chemical transformations
occurring in the water column, seabed, and crust, in: Treatise on
Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K.,
Elsevier, Amsterdam, The Netherlands, 9, 103–111,
https://doi.org/10.1016/B978-0-08-095975-7.00704-X, 2014.
Diekmann, B., Kuhn, G., Gersonde, R., and Mackensen, A.: Middle Eocene to
early Miocene environmental changes in the sub-Antarctic Southern Ocean:
evidence from biogenic and terrigenous depositional patterns at ODP Site
1090, Global Planet. Change, 40, 295–313, https://doi.org/10.1016/j.gloplacha.2003.09.001, 2004.
Diester-Haass, L.: Middle Eocene to early Oligocene paleoceanography of the
Antarctic Ocean (Maud Rise,ODP Leg 13, Site 689): change from a low to a
high productivity ocean, Palaeogeogr. Palaeocl., 113,
311–334, https://doi.org/10.1016/0031-0182(95)00067-V, 1995.
Egan, K. E., Rickaby, R. E. M., Hendry, K. R., and Halliday, A. N.: Opening the gateways for diatoms primes Earth for Antarctic glaciation, Earth Planet.
Sc. Lett., 375, 34-4-3, https://doi.org/10.1016/j.epsl.2013.04.030, 2013.
Fenner, J.: Middle Eocene to Oligocene planktonic diatom stratigraphy from
deep sea drilling sites in the South Atlantic, Equatorial Pacific, and
Indian oceans, Init. Repts DSDP, 75, 1245–1271,
https://doi.org/10.2973/dsdp.proc.75.149.1984, 1984.
Fenner, J.: Taxonomy, stratigraphy, and paleoceanographic implications of
Paleocene diatoms, Proc. ODP, Sci. Res., 114, 123–154,
https://doi.org/10.2973/odp.proc.sr.114.137.1991, 1991.
Fiedler, P. C., Philbrick, V., and Chavez, F. P.: Oceanic upwelling and
productivity in the eastern tropical Pacific, Limnol. Oceanogr., 36,
1834–1850, https://doi.org/10.4319/lo.1991.36.8.1834, 1991.
Fontorbe, G., Frings, P. J., De La Rocha, C. L., Hendry, K. R., and Conley,
D. J.: A silicon depleted North Atlantic since the Palaeogene: evidence from
sponge and radiolarian silicon isotopes, Earth Planet. Sc. Lett., 453, 67–77, https://doi.org/10.1016/j.epsl.2016.08.006, 2016.
Fontorbe, G., Frings, P. J., De La Rocha, C. L., Hendry, K. R., and Conley,
D. J.: Constraints on Earth system functioning at the Paleocene-Eocene
Thermal Maximum from the marine silicon cycle, Paleoceanography and
Paleoclimatology, 35, e2020PA003873, https://doi.org/10.1029/2020PA003873, 2020.
Frings, P.: Revisiting the dissolution of biogenic Si in marine sediments: a
key term in the ocean Si budget, Acta Geochimica, 36, 429–432,
https://doi.org/10.1007/s11631-017-0183-1, 2017.
Froelich, F. and Misra, S.: Was the late Paleocene-early Eocene hot because
Earth was flat? An ocean lithium isotope view of mountain building,
continental weathering, carbon dioxide, and Earth's Cenozoic climate,
Oceanography, 27, 36–49, https://doi.org/10.5670/oceanog.2014.06, 2015.
Gombos Jr., A. M.: Early and Middle Eocene diatom evolutionary events,
Bacillaria, 5, 225–243, 1982.
Gradstein, F. M. and Sheridan, R. E.: On the Jurassic Atlantic Ocean and a
synthesis of results of DSDP Project Leg 76: Init. Repts DSDP, 76, 913–943,
https://doi.org/10.2973/dsdp.proc.76.144.1983, 1983.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (Eds.): The
Geologic Time Scale 2012, Elsevier, Amsterdam, The Netherlands, 2, 1144 pp., https://doi.org/10.1016/C2011-1-08249-8, 2012.
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Gulf Stream Dynamics along
the Southeastern U.S. Seaboard, J. Phys. Oceanogr., 45, 690–715,
https://doi.org/10.1175/JPO-D-14-0154.1, 2015.
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Submesoscale Dynamics of a
Gulf Stream Frontal Eddy in the South Atlantic Bight, J. Phys. Oceanogr.,
46, 305–325, https://doi.org/10.1175/JPO-D-14-0258.1, 2016.
Handoh, I. C., Bigg, G. R., and Jones, E. J. W.: Evolution of upwelling in the Atlantic Ocean basin, Palaeogeogr. Palaeocl., 202, 31–58,
https://doi.org/10.1016/S0031-0182(03)00571-6, 2003.
Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina,
L. L., Dutay, J.-C., German, C. R., Heimbürger-Boavida, L.-E., Jaccard,
S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik,
F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova,
M. V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A.,
Shiller, A., Tagliabue, A., Tessin, A. C., van Hulten, M., and Zhang, J.:
Global ocean sediment composition and burial flux in the deep sea, Global
Biogeochem. Cy., 35, e2020GB006769, https://doi.org/10.1029/2020GB006769, 2020.
Hendry, K. R., Marron, A. O., Vincent, F., Conley, D. J., Gehlen, M., Ibarbalz, F. M., Quéguiner, B., and Bowler, C.: Competition between silicifiers and non-silicifiers in the past and present ocean and its evolutionary impacts, Front. Mar. Sci., 5, 22, https://doi.org/10.3389/fmars.2018.00022, 2018.
Henehan, M. J., Edgar, K. M., Foster, G. L., Penman, D. E., Hull, P. M., Greenop, R., Anagnostou, E., and Pearson, P. N.: Revisiting the Middle Eocene Climatic Optimum “Carbon Cycle Conundrum” with new estimates of atmospheric pCO2 from boron isotopes, Paleoceanography and Paleoclimatology, 35,
e2019PA003713, https://doi.org/10.1029/2019PA003713, 2020.
Hilting, A. K., Kump, L. R., and Bralower, T. J.: Variations in the oceanic
vertical carbon isotope gradient and their implications for the
Paleocene-Eocene biological pump, Paleoceanography, 23, PA3222,
https://doi.org/10.1029/2007PA001458, 2008.
Hohbein, M. W., Sexton, P. F., and Cartwright, J. A.: Onset of North Atlantic
Deep Water production coincident with inception of the Cenozoic global
cooling trend, Geology, 40, 255–258, https://doi.org/10.1130/G32461.1, 2012.
Hollis, C. J.: Data report: siliceous microfossil abundance in IODP
Expedition 342 sediments, Proc. IODP, 342, 1–16,
https://doi.org/10.2204/iodp.proc.342.201.2017, 2014.
Iwasaki, S., Takahashi, K., Ogawa, Y., Uehara, S., and Vogt, C.: Alkaline
leaching characteristics of biogenic opal in Eocene sediments from the
central Arctic Ocean: a case study in the ACEX cores, J. Oceanogr., 70,
241–249, https://doi.org/10.1007/s10872-014-0227-7, 2014.
Kamikuri, S.-I. and Wade, B. S.: Radiolarian magnetobiochronology and faunal
turnover across the middle/late Eocene boundary at Ocean Drilling Program
Site 1052 in the western North Atlantic Ocean, Mar. Micropaleontol., 88–89,
41–53, https://doi.org/10.1016/j.marmicro.2012.03.001, 2012.
Kasting, J. F.: The Goldilocks Planet? How Silicate Weathering Maintains
Earth “Just Right”, Elements, 15, 235–240,
https://doi.org/10.2138/gselements.15.4.235, 2019.
Katz, M. E., Cramer, B. S., Toggweiler, J. R., Esmay, G., Liu, Ch., Miller,
K. G., Rosenthal, Y., Wade, B. S., and Wright, J. D.: Impact of Antarctic
Circumpolar Current Development on Late Paleogene Ocean Structure, Science,
332, 1076–1079, https://doi.org/10.1126/science.1202122, 2011.
Kirtland-Turner, S., Sexton, P. F., Charles, C. D., and Norris, R. D.:
Persistence of carbon release events through the peak of early Eocene global
warmth, Nat. Geosci., 7, 748–751, https://doi.org/10.1038/ngeo2240, 2014.
Klemm, V., Levasseur, S., Frank, M., Hein, J. R., and Halliday, A. N.: Osmium
isotope stratigraphy of a marine ferromanganese crust, Earth Planet. Sc. Lett., 238, 42–48, https://doi.org/10.1016/j.epsl.2005.07.016, 2005.
Lazarus, D., Barron, J. A., Renaudie, J., Diver, P., and Türke, A.:
Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate
Change, PLOS ONE, 9, e84857, https://doi.org/10.1371/journal.pone.0084857, 2014.
Lee, T. N., Yoder, J. A., and Atkinson, L. P.: Gulf Stream Frontal Eddy
Influence on Productivity of the Southeast U.S. Continental Shelf, J.
Geophys. Res., 96, 22191–22205, https://doi.org/10.1029/91JC02450, 1991.
Lisitzin, A. P.: Distribution of siliceous microfossils in suspension and in
bottom sediments, in: The Micropalaeontology of Oceans, edited by: Funnell,
B. M. and Riedel, W. R., Cambridge University Press, Cambridge, United
Kingdom, 173–196, 1971.
Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A.: Biogenic
Sedimentation in the Eocene Equatorial Pacific—The Stuttering Greenhouse
and Eocene Carbonate Compensation Depth, Proc. ODP, Sci. Res., 199, 1–35, https://doi.org/10.2973/odp.proc.sr.199.219.2005, 2005.
Maldonado, M., Camona, M. C., Uriz, M. J., and Cruzado, A.: Decline in Mesozoic reef-building sponges explained by silicon limitation, Nature, 401, 785–788, https://doi.org/10.1038/44560, 1999.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J.,
Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., and
Bowler, C.: Insights into global diatom distribution and diversity in the
world's ocean, P. Natl. Acad. Sci. USA, 113, 1516–1525,
https://doi.org/10.1073/pnas.1509523113, 2016.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea
geochemical and concinental margin records, Sci. Adv., 6, eaaz1346,
https://doi.org/10.1126/sciadv.aaz1346, 2020.
Miskell, K. J., Brass, G. W., and Harrison, C. G. A.: Global patterns in opal
deposition from Late Cretaceous to Late Miocene, AAPG Bull., 69, 996–1012,
https://doi.org/10.1306/AD462B41-16F7-11D7-8645000102C1865D, 1985.
Misra, S. and Froelich, N.: Lithium isotope history of Cenozoic seawater:
changes in silicate weathering and reverse weathering, Science, 335,
818–823, https://doi.org/10.1126/science.1214697, 2012.
Montes, C., Cardona, A., McFadden, R., Morón, S. E., Silva, C. A.,
Restrepo-Moreno, S., Ramírez, D. A., Hoyos, N., Wilson, J., Farris, D.,
Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., and Flores, J. A.:
Evidence for middle Eocene and younger land emergence in central Panama:
Implications for Isthmus closure, Geol. Soc. Am. Bull., 124, 780–799,
https://doi.org/10.1130/B30528.1, 2012.
Moore Jr., T. C.: Radiolaria: change in skeletal weight and resistance to
solution, Geol. Soc. Am. Bull., 80, 2103–2108, https://doi.org/10.1130/0016-7606(1969)80[2103:RCISWA]2.0.CO;2, 1969.
Moore Jr., T. C., Jarrard, R. D., Olivarez Lyle, A., and Lyle, M.: Eocene
biogenic silica accumulation rates at the Pacific equatorial divergence
zone, Paleoceanography, 23, PA220, https://doi.org/10.1029/2007PA001514, 2008.
Muttoni, G. and Kent, D. V.: Widespread formation of cherts during the early
Eocene climate optimum, Palaeogeogr. Palaeocl., 253, 348–362, https://doi.org/10.1016/j.palaeo.2007.06.008, 2007.
Newsam, C., Bown, R., Wade, B. S., and Jones, H. L.: Muted calcareous
nannoplankton response at the Middle/Late Eocene Turnover event in the
western North Atlantic Ocean, Newsl. Stratig., 50, 297–309,
https://doi.org/10.1127/nos/2016/0306, 2017.
Nielsen, S. G., Mar-Gerrison, S., Gannoun, A., LaRowe, D., Klemm, V.,
Halliday, A. N., Burton, K. W., and Hein, J. R.: Thallium isotope evidence for
a permanent increase in marine organic carbon export in the early Eocene,
Earth Planet. Sc. Lett., 278, 397–307,
https://doi.org/10.1016/j.epsl.2008.12.010, 2009.
Nishimura, A.: Paleocene radiolarian biostratigraphy in the northwest
Atlantic at Site 384, Leg 43, of the Deep Sea Drilling Project,
Micropaleontology, 38, 317–362, 1992.
Ogg, J. G. and Bardot, L.: Aptian through Eocene magnetostratigraphic
correlation of the Blake Nose Transect (Leg 171B), Florida Continental
Margin, Proc. ODP, Sci. Res., 171B, 1–58,
https://doi.org/10.2973/odp.proc.sr.171B.104.2001, 2001.
Ocean Drilling Stratigraphic Network: https://www.odsn.de/, last access: 15 April 2021.
Olivarez Lyle, A. and Lyle, M.: Determination of biogenic opal in pelagic
marine sediments: a simple method revisited, Proc. ODP, Init. Repts., 199,
1–21, https://doi.org/10.2973/odp.proc.ir.199.106.2002, 2002.
Oreshkina, T. V. and Aleksandrova, G. N.: Terminal paleocene of the Volga
middle reaches: Biostratigraphy and paleosettings, Stratigr. Geol. Correl.,
15, 206–230, https://doi.org/10.1134/S0869593807020062, 2007.
Pelegrí, J. L., Csanady, G. T., and Martins, A.: The North Atlantic
Nutrient Stream, J. Oceanogr., 52, 275–299,
https://doi.org/10.1007/BF02235924, 1996.
Penman, D. E.: Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum, Geology, 44, 731–734,
https://doi.org/10.1130/G37704.1, 2016.
Penman, D. E., Keller, A., D'haenens, S., Turner, S. K., and Hull, P. M.:
Atlantic Deep-Sea Cherts Associated With Eocene Hyperthermal Events,
Paleoceanography and Paleoclimatology, 34, 287–299,
https://doi.org/10.1029/2018PA003503, 2019.
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., and Winnick, M.J .:
Silicate weathering as a feedback and forcing in Earth's climate and carbon
cycle, Earth-Sci. Rev., 209, 103298, https://doi.org/10.1016/j.earscirev.2020.103298, 2020.
Piela, C., Lyle, M., Marcantonio, F., Baldauf, J., and Olivarez Lyle, A.:
Biogenic sedimentation in the equatorial Pacific: Carbon cycling and
paleoproduction, 12–24 Ma, Paleoceanography, 27, PA2204,
https://doi.org/10.1029/2011PA002236, 2012.
Pinet, P. R., Popenoe, P., and Nelligan, D. F.: Gulf Stream: Reconstruction of
Cenozoic flow patterns over the Blake Plateau, Geology, 9, 266–270,
https://doi.org/10.1130/0091-7613(1981)9<266:GSROCF>2.0.CO;2, 1981.
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski,
M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G., François, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D. M., and Quéquiner, B.: A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26, 317–365,
https://doi.org/10.1016/S0921-8181(00)00052-7, 2000.
Ravizza, G. and Peucker-Ehrenbrink, B.: The marine
record of the Eocene–Oligocene transition: the interplay of weathering and
glaciation, Earth Planet. Sc. Lett., 210, 151–165,
https://doi.org/10.1016/S0012-821X(03)00137-7, 2003.
Ravizza, G., Norris, R. N., Blusztajn, J., and Aubry, M.-P.: An osmium
isotope excursion associated with the Late Paleocene thermal maximum:
Evidence of intensified chemical weathering, Paleoceanography, 16, 155–163,
https://doi.org/10.1029/2000PA000541, 2001.
Renaudie, J.: Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles, Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, 2016.
Richardson, P. L.: Florida Current, Gulf Stream, and Labrador Current, in:
Encyclopedia of Ocean Sciences, edited by: Steele, J. H., Elsevier, Amsterdam, The Netherlands, 2, 1054–1064, https://doi.org/10.1006/rwos.2001.0357, 2001.
Roughan, M., Keating, S. R., Schaeffer, A., Heredia, C. P., Rocha, C.,
Griffin, D., Robertson, R., and Suthers, I. M.: A tale of two eddies: The
biophysical characteristics of two contrasting cyclonic eddies in the East
Australian Current System, J. Geophys. Res.-Oceans, 122, 2494–2518,
https://doi.org/10.1002/2016JC012241, 2017.
Röhl, U., Norris, R. D., and Ogg, J. G.: Cyclostratigraphy of upper
Paleocene and lower Eocene sediments at Blake Nose Site 1051 (western North
Atlantic), Geol. Soc. Am. Spec. Pap., 369, 567–589,
https://doi.org/10.1130/0-8137-2369-8.567, 2003.
Salamy, K. A. and Zachos, J. C.: Latest Eocene-early Oligocene climate change
and Southern Ocean fertility: inferences from sediment accumulation and
stable isotope data, Palaeogeogr. Palaeocl., 145, 61–77,
https://doi.org/10.1016/S0031-0182(98)00093-5, 1999.
Sanchez-Franks, A. and Zhang, R.: Impact of the Atlantic meridional
overturning circulation on the decadal variability of the Gulf Stream path
and regional chlorophyll and nutrient concentrations, Geophys. Res. Lett.,
42, 9889–9897, https://doi.org/10.1002/2015GL066262, 2015.
Shipboard Scientific Party: Introduction, Proc. ODP, Init. Repts., 171B,
5–10, https://doi.org/10.2973/odp.proc.ir.171B.101.1998, 1998a.
Shipboard Scientific Party: Site 1049, Proc. ODP, Init. Repts., 171B, 47–91,
https://doi.org/10.2973/odp.proc.ir.171B.103.1998, 1998b.
Shipboard Scientific Party: Site 1050, Proc. ODP, Init. Repts., 171B,
93–170, https://doi.org/10.2973/odp.proc.ir.171B.104.1998, 1998c.
Shipboard Scientific Party: Site 1051, Proc. ODP, Init. Repts., 171B,
171–239, https://doi.org/10.2973/odp.proc.ir.171B.105.1998, 1998d.
Shipboard Scientific Party: Site 1052, Proc. ODP, Init. Repts., 171B,
241–319, https://doi.org/10.2973/odp.proc.ir.171B.106.1998, 1998e.
Shipboard Scientific Party: Site 1053, Proc. ODP, Init. Repts., 171B,
321–348, https://doi.org/10.2973/odp.proc.ir.171B.107.1998, 1998f.
Sims, P. A., Mann, D. G., and Medlin, L. K.: Evolution of the diatoms: insights from fossil, biological and molecular data, Phycologia, 45, 361–402, https://doi.org/10.2216/05-22.1, 2006.
Sluijs, A., Zeebe, R. E., Bijl, P. K., and Bohaty, S. M.: A middle Eocene
carbon cycle conundrum: Nat. Geosci., 6, 429–434, https://doi.org/10.1038/ngeo1807, 2013.
Smetacek, V.: Diatoms and the ocean carbon cycle: Protist, 150, 25–32,
https://doi.org/10.1016/S1434-4610(99)70006-4, 1999.
Thomas, D. J., Bralower, T. J., and Jones, C. E.: Neodymium isotopic
reconstruction of late Paleocene-early Eocene thermohaline circulation,
Earth Planet. Sc. Lett., 209, 309–322,
https://doi.org/10.1016/S0012-821X(03)00096-7, 2003.
Tréguer, P. J. and De La Rocha, C. L.: The World Ocean silica cycle, Annu. Rev. Mar. Sci., 5, 477–501,
https://doi.org/10.1146/annurev-marine-121211-172346, 2013.
Van Cappellen, P., Dixit, S., and van Beusekom, J.: Biogenic silica
dissolution in the oceans: Reconciling experimental and field-based
dissolution rates, Global Biogeochem. Cy., 16, 1075,
https://doi.org/10.1029/2001GB001431, 2002.
van der Ploeg, R., Selby, D., Cramwinckel, M. J., Li, Y., Bohaty, S. M.,
Middelburg, J. J., and Sluijs, A.: Middle Eocene greenhouse warming
facilitated by diminished weathering feedback, Nat. Commun., 9, 2877,
https://doi.org/10.1038/s41467-018-05104-9, 2018.
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert,
T., and Pälike, H.: Ocean and climate response to North Atlantic seaway
changes at the onset of long-term Eocene cooling, Earth Planet. Sc. Lett.,
498, 185–195, https://doi.org/10.1016/j.epsl.2018.06.031, 2018.
Via, R. K. and Thomas, D. J.: Evolution of Atlantic thermohaline circulation:
early Oligocene onset of deep-water production in the North Atlantic,
Geology, 34, 441–444, https://doi.org/10.1130/G22545.1, 2006.
Wade, B. S. and Kroon, D.: Middle Eocene regional climate instability:
Evidence from the western North Atlantic, Geology, 30, 1011–1014,
https://doi.org/10.1130/0091-7613(2002)030<1011:MERCIE>2.0.CO;2, 2002.
Wade, B. S., Fucek, V. P., Kamikuri, S.-I., Bartol, M., Luciani, V., and
Pearson, P. N.: Successive extinctions of muricate planktonic foraminifera
(Morozovelloides and Acarinina) as a candidate for marking the base Priabonian, Newsl. Stratig., 45, 245–262, https://doi.org/10.1127/0078-0421/2012/0023, 2012.
Wade, B. S., O'Neill, J. F., Phujareanchaiwon, C., Ali, I., Lyle, M., and
Witkowski, J.: Evolution of deep-sea sediments across the Paleocene-Eocene
and Eocene-Oligocene boundaries, Earth-Sci. Rev., 211, 103403,
https://doi.org/10.1016/j.earscirev.2020.103403, 2020.
Walker, J. C., Hays, B., and Kasting, J. F.: A negative feedback mechanism
for the long-term stabilization of Earth's surface temperature, J. Geophys.
Res., 86, 9776–9782, https://doi.org/10.1029/JC086iC10p09776, 1981.
Warnock, J. P. and Scherer, R. P.: Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean
assemblages, Cont. Shelf Res., 102, 1–8, https://doi.org/10.1016/j.csr.2015.04.012, 2015.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global extent of early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209), Paleoceanography and Paleoclimatology, 33, 626–642,
https://doi.org/10.1029/2017PA003306, 2018a.
Westerhold, T., Röhl, U., Donner, B., Friederichs, T., Kordesch, W. E. C., Bohaty, S. M., Hodell, D. A., Laskar, J., and Zeebe, R. E.: Late Lutetian
Thermal Maximum – crossing a thermal threshold in Earth's climate system?,
Geochem. Geophys. Geosy., 19, 73–82, https://doi.org/10.1002/2017GC007240, 2018b.
Witkowski, J., Bohaty, S. M., Edgar, K. M., and Harwood, D. M.: Rapid
fluctuations in mid-latitude siliceous plankton production during the Middle
Eocene Climatic Optimum (ODP Site 1051, western North Atlantic), Mar.
Micropaleontol., 106, 110–129, https://doi.org/10.1016/j.marmicro.2014.01.001, 2014.
Witkowski, J., Harwood, D. M., Wade, B. S., and Bryłka, K.: Rethinking the
chronology of early Paleogene sediments in the western North Atlantic using
diatom biostratigraphy, Mar. Geol., 424, 106168,
https://doi.org/10.1016/j.margeo.2020.106168, 2020a.
Witkowski, J., Penman, D., Bryłka, K., Wade, B. S., Matting, S., Harwood,
D. M., and Bohaty, S. M.: Early Paleogene biosiliceous sedimentation in the
Atlantic Ocean: testing the inorganic origin hypothesis for Paleocene and
Eocene chert and porcellanite, Palaeogeogr. Palaeocl., 556, 109896, https://doi.org/10.1016/j.palaeo.2020.109896, 2020b.
Yool, A. and Tyrrell, T.: Role of diatoms in regulating the ocean's silicon
cycle, Global Biogeochem. Cy., 17, 1103, https://doi.org/10.1029/2002GB002018, 2003.
Yool, A. and Tyrrell, T.: Implications for the history of Cenozoic opal
deposition from a quantitative model, Palaeogeogr. Palaeocl., 218, 239–255, https://doi.org/10.1016/j.palaeo.2004.12.017, 2005.
Zachos, J. C., Quinn, T. M., and Salamy, K. A.: High-resolution (104 years)
deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate
transition, Paleoceanography, 11, 251–266, https://doi.org/10.1029/96PA00571, 1996.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene...