Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1937-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1937-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
North Atlantic marine biogenic silica accumulation through the early to middle Paleogene: implications for ocean circulation and silicate weathering feedback
Jakub Witkowski
CORRESPONDING AUTHOR
Institute of Marine and Environmental Sciences, University of
Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
Karolina Bryłka
Department of Geology, Faculty of Science, Lund University,
Sölvegatan 12, Lund, Sweden
Steven M. Bohaty
Schoool of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Elżbieta Mydłowska
Institute of Spatial Management and Socio-Economic Geography, ul.
Mickiewicza 18, 70-383 Szczecin, Poland
Donald E. Penman
Department of Geosciences, Utah State University, 4505 Old Main Hill, Logan, UT 84322, USA
Bridget S. Wade
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
Related authors
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Flavia Boscolo-Galazzo, David Evans, Elaine Mawbey, William Gray, Paul Pearson, and Bridget Wade
EGUsphere, https://doi.org/10.5194/egusphere-2024-1608, https://doi.org/10.5194/egusphere-2024-1608, 2024
Short summary
Short summary
Here we present a comparison of results from the Mg/Ca and oxygen stable isotopes paleothermometers obtained from 57 modern to fossil species of planktonic foraminifera from the last 15 million of years. We find that the occurrence (or not) of species-species offsets in Mg/Ca is conservative between ancestor-descendent species, and that taking into account species kinship can significantly improve temperature reconstructions by several degrees.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Cenozoic
Polar amplification of orbital-scale climate variability in the early Eocene greenhouse world
Biotic response of plankton communities to Middle to Late Miocene monsoon wind and nutrient flux changes in the Oman margin upwelling zone
Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene
Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum
Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?
Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling
Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene
Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)
Productivity feedback did not terminate the Paleocene-Eocene Thermal Maximum (PETM)
High resolution cyclostratigraphy of the early Eocene – new insights into the origin of the Cenozoic cooling trend
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, and C. P. Slomp
Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, https://doi.org/10.5194/cp-10-1421-2014, 2014
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
M. Reuter, W. E. Piller, M. Harzhauser, and A. Kroh
Clim. Past, 9, 2101–2115, https://doi.org/10.5194/cp-9-2101-2013, https://doi.org/10.5194/cp-9-2101-2013, 2013
A. Torfstein, G. Winckler, and A. Tripati
Clim. Past, 6, 265–272, https://doi.org/10.5194/cp-6-265-2010, https://doi.org/10.5194/cp-6-265-2010, 2010
T. Westerhold and U. Röhl
Clim. Past, 5, 309–327, https://doi.org/10.5194/cp-5-309-2009, https://doi.org/10.5194/cp-5-309-2009, 2009
Cited articles
Abelson, M. and Erez, J.: The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: evidence, causes, and possible implications for global cooling, Geochem. Geophy. Geosy., 18, 2177–2199, https://doi.org/10.1002/2017GC006826, 2017.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016.
Aubry, M.-P.: From chronology to stratigraphy: interpreting the lower and
middle Eocene stratigraphic record in the Atlantic Ocean, in: Geochronology,
Time Scales, and Global Stratigraphic Correlation, edited by: Berggren,
W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., SEPM Special Publication, 54, 213–274, https://doi.org/10.2110/pec.95.04.0213, 1995.
Barron, J. A., Stickley, C. E., and Bukry, D.: Paleoceanographic, and
paleoclimatic constraints on the global Eocene diatom and silicoflagellate
record, Palaeogeogr. Palaeocl., 422, 85–100,
https://doi.org/10.1016/j.palaeo.2015.01.015, 2015.
Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A.,
Klein, T., Péréz-Díaz, L., and Frank, M.: Major intensification
of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth, Nat. Commun., 9, 4954, https://doi.org/10.1038/s41467-018-07457-7, 2018.
Berger, W. H.: Biogenous Deep-Sea Sediments: Fractionation by Deep-Sea
Circulation, Geol. Soc. Am. Bull., 81, 1385–1402,
https://doi.org/10.1130/0016-7606(1970)81[1385:BDSFBD]2.0.CO;2, 1970.
Bertolino, M., Cattaneo-Vietti, R., Pansini, M., Santini, C., and
Bavestrello, G.: Siliceous sponge spicule dissolution: In field experimental
evidences from temperate and tropical waters, Estuar. Coast. Shelf S., 184, 46–53, https://doi.org/10.1016/j.ecss.2016.10.044, 2017.
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L.: Coupled
greenhouse warming and deep-sea acidification in the middle Eocene,
Paleoceanography, 24, PA2207, https://doi.org/10.1029/2008PA001676, 2009.
Boyle, R., Romans, B. W., Tucholke, B. E., Norris, R. D., Swift, S. A., and
Sexton, F.: Cenozoic North Atlantic deep circulation history recorded in
contourite drifts, offshore Newfoundland, Canada, Mar. Geol., 385, 185–203,
https://doi.org/10.1016/j.margeo.2016.12.014, 2017.
Borrelli, C., Cramer, B. S., and Katz, M. E.: Bipolar Atlantic deepwater
circulation in the middle-late Eocene: effects of Southern Ocean gateway
openings, Paleoceanography, 29, 308–327, https://doi.org/10.1002/2012PA002444, 2014.
Caves, J. K., Jost, A. B., Lau, K. V., and Maher, K.: Cenozoic carbon cycle
imbalances and a variable weathering feedback, Earth Planet. Sc. Lett., 450, 152–163, https://doi.org/10.1016/j.epsl.2016.06.035, 2016.
Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F., and Vallina, S. M.: Continental erosion and the Cenozoic rise of marine diatoms, P. Natl. Acad. Sci. USA, 112, 4239–4244, https://doi.org/10.1073/pnas.1412883112, 2015.
Cleveland, W. S., Grosse, E., and Shyu, W. M.: Local regression models, in:
Statistical Models in S, edited by: Chambers, J. M. and Hastie, T. J., Chapman & Hall, London, United Kingdom, 309–376, 1992.
Conley, D. J., Frings, P. J., Fontorbe, G., Clymans, W., and Stadmark, J.:
Biosilicification Drives a Decline of Dissolved Si in the Oceans through
Geologic Time, Front. Mar. Sci., 4, 397,
https://doi.org/10.3389/fmars.2017.00397, 2017.
Coxall, H. K., Huck, C. E., Huber, M., Lear, C. H., Legarda-Lisarri, A.,
O'Regan, M., Sliwińska, K. K., van de Flierdt, T., de Boer, A. M., Zachos, J. C., and Backman, J.: Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation, Nat. Geosci., 11, 190–196, https://doi.org/10.1038/s41561-018-0069-9, 2018.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216,
https://doi.org/10.1029/2008PA001683, 2009.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.: Synchronous tropical and polar temperature evolution in the Eocene, Nature, 559, 382–386, https://doi.org/10.1038/s41586-018-0272-2, 2018.
D'haenens, S., Bornemann, A., Claeys, P., Roöhl, U., Steurbaut, E., and Speijer, R. P.: A transient deep-sea circulation switch during Eocene Thermal Maximum 2, Paleoceanography, 29, 370–388, https://doi.org/10.1002/2013PA002567, 2014.
DeMaster, D. J.: The diagenesis of biogenic silica: chemical transformations
occurring in the water column, seabed, and crust, in: Treatise on
Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K.,
Elsevier, Amsterdam, The Netherlands, 9, 103–111,
https://doi.org/10.1016/B978-0-08-095975-7.00704-X, 2014.
Diekmann, B., Kuhn, G., Gersonde, R., and Mackensen, A.: Middle Eocene to
early Miocene environmental changes in the sub-Antarctic Southern Ocean:
evidence from biogenic and terrigenous depositional patterns at ODP Site
1090, Global Planet. Change, 40, 295–313, https://doi.org/10.1016/j.gloplacha.2003.09.001, 2004.
Diester-Haass, L.: Middle Eocene to early Oligocene paleoceanography of the
Antarctic Ocean (Maud Rise,ODP Leg 13, Site 689): change from a low to a
high productivity ocean, Palaeogeogr. Palaeocl., 113,
311–334, https://doi.org/10.1016/0031-0182(95)00067-V, 1995.
Egan, K. E., Rickaby, R. E. M., Hendry, K. R., and Halliday, A. N.: Opening the gateways for diatoms primes Earth for Antarctic glaciation, Earth Planet.
Sc. Lett., 375, 34-4-3, https://doi.org/10.1016/j.epsl.2013.04.030, 2013.
Fenner, J.: Middle Eocene to Oligocene planktonic diatom stratigraphy from
deep sea drilling sites in the South Atlantic, Equatorial Pacific, and
Indian oceans, Init. Repts DSDP, 75, 1245–1271,
https://doi.org/10.2973/dsdp.proc.75.149.1984, 1984.
Fenner, J.: Taxonomy, stratigraphy, and paleoceanographic implications of
Paleocene diatoms, Proc. ODP, Sci. Res., 114, 123–154,
https://doi.org/10.2973/odp.proc.sr.114.137.1991, 1991.
Fiedler, P. C., Philbrick, V., and Chavez, F. P.: Oceanic upwelling and
productivity in the eastern tropical Pacific, Limnol. Oceanogr., 36,
1834–1850, https://doi.org/10.4319/lo.1991.36.8.1834, 1991.
Fontorbe, G., Frings, P. J., De La Rocha, C. L., Hendry, K. R., and Conley,
D. J.: A silicon depleted North Atlantic since the Palaeogene: evidence from
sponge and radiolarian silicon isotopes, Earth Planet. Sc. Lett., 453, 67–77, https://doi.org/10.1016/j.epsl.2016.08.006, 2016.
Fontorbe, G., Frings, P. J., De La Rocha, C. L., Hendry, K. R., and Conley,
D. J.: Constraints on Earth system functioning at the Paleocene-Eocene
Thermal Maximum from the marine silicon cycle, Paleoceanography and
Paleoclimatology, 35, e2020PA003873, https://doi.org/10.1029/2020PA003873, 2020.
Frings, P.: Revisiting the dissolution of biogenic Si in marine sediments: a
key term in the ocean Si budget, Acta Geochimica, 36, 429–432,
https://doi.org/10.1007/s11631-017-0183-1, 2017.
Froelich, F. and Misra, S.: Was the late Paleocene-early Eocene hot because
Earth was flat? An ocean lithium isotope view of mountain building,
continental weathering, carbon dioxide, and Earth's Cenozoic climate,
Oceanography, 27, 36–49, https://doi.org/10.5670/oceanog.2014.06, 2015.
Gombos Jr., A. M.: Early and Middle Eocene diatom evolutionary events,
Bacillaria, 5, 225–243, 1982.
Gradstein, F. M. and Sheridan, R. E.: On the Jurassic Atlantic Ocean and a
synthesis of results of DSDP Project Leg 76: Init. Repts DSDP, 76, 913–943,
https://doi.org/10.2973/dsdp.proc.76.144.1983, 1983.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (Eds.): The
Geologic Time Scale 2012, Elsevier, Amsterdam, The Netherlands, 2, 1144 pp., https://doi.org/10.1016/C2011-1-08249-8, 2012.
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Gulf Stream Dynamics along
the Southeastern U.S. Seaboard, J. Phys. Oceanogr., 45, 690–715,
https://doi.org/10.1175/JPO-D-14-0154.1, 2015.
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Submesoscale Dynamics of a
Gulf Stream Frontal Eddy in the South Atlantic Bight, J. Phys. Oceanogr.,
46, 305–325, https://doi.org/10.1175/JPO-D-14-0258.1, 2016.
Handoh, I. C., Bigg, G. R., and Jones, E. J. W.: Evolution of upwelling in the Atlantic Ocean basin, Palaeogeogr. Palaeocl., 202, 31–58,
https://doi.org/10.1016/S0031-0182(03)00571-6, 2003.
Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina,
L. L., Dutay, J.-C., German, C. R., Heimbürger-Boavida, L.-E., Jaccard,
S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik,
F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova,
M. V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A.,
Shiller, A., Tagliabue, A., Tessin, A. C., van Hulten, M., and Zhang, J.:
Global ocean sediment composition and burial flux in the deep sea, Global
Biogeochem. Cy., 35, e2020GB006769, https://doi.org/10.1029/2020GB006769, 2020.
Hendry, K. R., Marron, A. O., Vincent, F., Conley, D. J., Gehlen, M., Ibarbalz, F. M., Quéguiner, B., and Bowler, C.: Competition between silicifiers and non-silicifiers in the past and present ocean and its evolutionary impacts, Front. Mar. Sci., 5, 22, https://doi.org/10.3389/fmars.2018.00022, 2018.
Henehan, M. J., Edgar, K. M., Foster, G. L., Penman, D. E., Hull, P. M., Greenop, R., Anagnostou, E., and Pearson, P. N.: Revisiting the Middle Eocene Climatic Optimum “Carbon Cycle Conundrum” with new estimates of atmospheric pCO2 from boron isotopes, Paleoceanography and Paleoclimatology, 35,
e2019PA003713, https://doi.org/10.1029/2019PA003713, 2020.
Hilting, A. K., Kump, L. R., and Bralower, T. J.: Variations in the oceanic
vertical carbon isotope gradient and their implications for the
Paleocene-Eocene biological pump, Paleoceanography, 23, PA3222,
https://doi.org/10.1029/2007PA001458, 2008.
Hohbein, M. W., Sexton, P. F., and Cartwright, J. A.: Onset of North Atlantic
Deep Water production coincident with inception of the Cenozoic global
cooling trend, Geology, 40, 255–258, https://doi.org/10.1130/G32461.1, 2012.
Hollis, C. J.: Data report: siliceous microfossil abundance in IODP
Expedition 342 sediments, Proc. IODP, 342, 1–16,
https://doi.org/10.2204/iodp.proc.342.201.2017, 2014.
Iwasaki, S., Takahashi, K., Ogawa, Y., Uehara, S., and Vogt, C.: Alkaline
leaching characteristics of biogenic opal in Eocene sediments from the
central Arctic Ocean: a case study in the ACEX cores, J. Oceanogr., 70,
241–249, https://doi.org/10.1007/s10872-014-0227-7, 2014.
Kamikuri, S.-I. and Wade, B. S.: Radiolarian magnetobiochronology and faunal
turnover across the middle/late Eocene boundary at Ocean Drilling Program
Site 1052 in the western North Atlantic Ocean, Mar. Micropaleontol., 88–89,
41–53, https://doi.org/10.1016/j.marmicro.2012.03.001, 2012.
Kasting, J. F.: The Goldilocks Planet? How Silicate Weathering Maintains
Earth “Just Right”, Elements, 15, 235–240,
https://doi.org/10.2138/gselements.15.4.235, 2019.
Katz, M. E., Cramer, B. S., Toggweiler, J. R., Esmay, G., Liu, Ch., Miller,
K. G., Rosenthal, Y., Wade, B. S., and Wright, J. D.: Impact of Antarctic
Circumpolar Current Development on Late Paleogene Ocean Structure, Science,
332, 1076–1079, https://doi.org/10.1126/science.1202122, 2011.
Kirtland-Turner, S., Sexton, P. F., Charles, C. D., and Norris, R. D.:
Persistence of carbon release events through the peak of early Eocene global
warmth, Nat. Geosci., 7, 748–751, https://doi.org/10.1038/ngeo2240, 2014.
Klemm, V., Levasseur, S., Frank, M., Hein, J. R., and Halliday, A. N.: Osmium
isotope stratigraphy of a marine ferromanganese crust, Earth Planet. Sc. Lett., 238, 42–48, https://doi.org/10.1016/j.epsl.2005.07.016, 2005.
Lazarus, D., Barron, J. A., Renaudie, J., Diver, P., and Türke, A.:
Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate
Change, PLOS ONE, 9, e84857, https://doi.org/10.1371/journal.pone.0084857, 2014.
Lee, T. N., Yoder, J. A., and Atkinson, L. P.: Gulf Stream Frontal Eddy
Influence on Productivity of the Southeast U.S. Continental Shelf, J.
Geophys. Res., 96, 22191–22205, https://doi.org/10.1029/91JC02450, 1991.
Lisitzin, A. P.: Distribution of siliceous microfossils in suspension and in
bottom sediments, in: The Micropalaeontology of Oceans, edited by: Funnell,
B. M. and Riedel, W. R., Cambridge University Press, Cambridge, United
Kingdom, 173–196, 1971.
Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A.: Biogenic
Sedimentation in the Eocene Equatorial Pacific—The Stuttering Greenhouse
and Eocene Carbonate Compensation Depth, Proc. ODP, Sci. Res., 199, 1–35, https://doi.org/10.2973/odp.proc.sr.199.219.2005, 2005.
Maldonado, M., Camona, M. C., Uriz, M. J., and Cruzado, A.: Decline in Mesozoic reef-building sponges explained by silicon limitation, Nature, 401, 785–788, https://doi.org/10.1038/44560, 1999.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J.,
Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., and
Bowler, C.: Insights into global diatom distribution and diversity in the
world's ocean, P. Natl. Acad. Sci. USA, 113, 1516–1525,
https://doi.org/10.1073/pnas.1509523113, 2016.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea
geochemical and concinental margin records, Sci. Adv., 6, eaaz1346,
https://doi.org/10.1126/sciadv.aaz1346, 2020.
Miskell, K. J., Brass, G. W., and Harrison, C. G. A.: Global patterns in opal
deposition from Late Cretaceous to Late Miocene, AAPG Bull., 69, 996–1012,
https://doi.org/10.1306/AD462B41-16F7-11D7-8645000102C1865D, 1985.
Misra, S. and Froelich, N.: Lithium isotope history of Cenozoic seawater:
changes in silicate weathering and reverse weathering, Science, 335,
818–823, https://doi.org/10.1126/science.1214697, 2012.
Montes, C., Cardona, A., McFadden, R., Morón, S. E., Silva, C. A.,
Restrepo-Moreno, S., Ramírez, D. A., Hoyos, N., Wilson, J., Farris, D.,
Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., and Flores, J. A.:
Evidence for middle Eocene and younger land emergence in central Panama:
Implications for Isthmus closure, Geol. Soc. Am. Bull., 124, 780–799,
https://doi.org/10.1130/B30528.1, 2012.
Moore Jr., T. C.: Radiolaria: change in skeletal weight and resistance to
solution, Geol. Soc. Am. Bull., 80, 2103–2108, https://doi.org/10.1130/0016-7606(1969)80[2103:RCISWA]2.0.CO;2, 1969.
Moore Jr., T. C., Jarrard, R. D., Olivarez Lyle, A., and Lyle, M.: Eocene
biogenic silica accumulation rates at the Pacific equatorial divergence
zone, Paleoceanography, 23, PA220, https://doi.org/10.1029/2007PA001514, 2008.
Muttoni, G. and Kent, D. V.: Widespread formation of cherts during the early
Eocene climate optimum, Palaeogeogr. Palaeocl., 253, 348–362, https://doi.org/10.1016/j.palaeo.2007.06.008, 2007.
Newsam, C., Bown, R., Wade, B. S., and Jones, H. L.: Muted calcareous
nannoplankton response at the Middle/Late Eocene Turnover event in the
western North Atlantic Ocean, Newsl. Stratig., 50, 297–309,
https://doi.org/10.1127/nos/2016/0306, 2017.
Nielsen, S. G., Mar-Gerrison, S., Gannoun, A., LaRowe, D., Klemm, V.,
Halliday, A. N., Burton, K. W., and Hein, J. R.: Thallium isotope evidence for
a permanent increase in marine organic carbon export in the early Eocene,
Earth Planet. Sc. Lett., 278, 397–307,
https://doi.org/10.1016/j.epsl.2008.12.010, 2009.
Nishimura, A.: Paleocene radiolarian biostratigraphy in the northwest
Atlantic at Site 384, Leg 43, of the Deep Sea Drilling Project,
Micropaleontology, 38, 317–362, 1992.
Ogg, J. G. and Bardot, L.: Aptian through Eocene magnetostratigraphic
correlation of the Blake Nose Transect (Leg 171B), Florida Continental
Margin, Proc. ODP, Sci. Res., 171B, 1–58,
https://doi.org/10.2973/odp.proc.sr.171B.104.2001, 2001.
Ocean Drilling Stratigraphic Network: https://www.odsn.de/, last access: 15 April 2021.
Olivarez Lyle, A. and Lyle, M.: Determination of biogenic opal in pelagic
marine sediments: a simple method revisited, Proc. ODP, Init. Repts., 199,
1–21, https://doi.org/10.2973/odp.proc.ir.199.106.2002, 2002.
Oreshkina, T. V. and Aleksandrova, G. N.: Terminal paleocene of the Volga
middle reaches: Biostratigraphy and paleosettings, Stratigr. Geol. Correl.,
15, 206–230, https://doi.org/10.1134/S0869593807020062, 2007.
Pelegrí, J. L., Csanady, G. T., and Martins, A.: The North Atlantic
Nutrient Stream, J. Oceanogr., 52, 275–299,
https://doi.org/10.1007/BF02235924, 1996.
Penman, D. E.: Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum, Geology, 44, 731–734,
https://doi.org/10.1130/G37704.1, 2016.
Penman, D. E., Keller, A., D'haenens, S., Turner, S. K., and Hull, P. M.:
Atlantic Deep-Sea Cherts Associated With Eocene Hyperthermal Events,
Paleoceanography and Paleoclimatology, 34, 287–299,
https://doi.org/10.1029/2018PA003503, 2019.
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., and Winnick, M.J .:
Silicate weathering as a feedback and forcing in Earth's climate and carbon
cycle, Earth-Sci. Rev., 209, 103298, https://doi.org/10.1016/j.earscirev.2020.103298, 2020.
Piela, C., Lyle, M., Marcantonio, F., Baldauf, J., and Olivarez Lyle, A.:
Biogenic sedimentation in the equatorial Pacific: Carbon cycling and
paleoproduction, 12–24 Ma, Paleoceanography, 27, PA2204,
https://doi.org/10.1029/2011PA002236, 2012.
Pinet, P. R., Popenoe, P., and Nelligan, D. F.: Gulf Stream: Reconstruction of
Cenozoic flow patterns over the Blake Plateau, Geology, 9, 266–270,
https://doi.org/10.1130/0091-7613(1981)9<266:GSROCF>2.0.CO;2, 1981.
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski,
M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G., François, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D. M., and Quéquiner, B.: A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26, 317–365,
https://doi.org/10.1016/S0921-8181(00)00052-7, 2000.
Ravizza, G. and Peucker-Ehrenbrink, B.: The marine
record of the Eocene–Oligocene transition: the interplay of weathering and
glaciation, Earth Planet. Sc. Lett., 210, 151–165,
https://doi.org/10.1016/S0012-821X(03)00137-7, 2003.
Ravizza, G., Norris, R. N., Blusztajn, J., and Aubry, M.-P.: An osmium
isotope excursion associated with the Late Paleocene thermal maximum:
Evidence of intensified chemical weathering, Paleoceanography, 16, 155–163,
https://doi.org/10.1029/2000PA000541, 2001.
Renaudie, J.: Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles, Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, 2016.
Richardson, P. L.: Florida Current, Gulf Stream, and Labrador Current, in:
Encyclopedia of Ocean Sciences, edited by: Steele, J. H., Elsevier, Amsterdam, The Netherlands, 2, 1054–1064, https://doi.org/10.1006/rwos.2001.0357, 2001.
Roughan, M., Keating, S. R., Schaeffer, A., Heredia, C. P., Rocha, C.,
Griffin, D., Robertson, R., and Suthers, I. M.: A tale of two eddies: The
biophysical characteristics of two contrasting cyclonic eddies in the East
Australian Current System, J. Geophys. Res.-Oceans, 122, 2494–2518,
https://doi.org/10.1002/2016JC012241, 2017.
Röhl, U., Norris, R. D., and Ogg, J. G.: Cyclostratigraphy of upper
Paleocene and lower Eocene sediments at Blake Nose Site 1051 (western North
Atlantic), Geol. Soc. Am. Spec. Pap., 369, 567–589,
https://doi.org/10.1130/0-8137-2369-8.567, 2003.
Salamy, K. A. and Zachos, J. C.: Latest Eocene-early Oligocene climate change
and Southern Ocean fertility: inferences from sediment accumulation and
stable isotope data, Palaeogeogr. Palaeocl., 145, 61–77,
https://doi.org/10.1016/S0031-0182(98)00093-5, 1999.
Sanchez-Franks, A. and Zhang, R.: Impact of the Atlantic meridional
overturning circulation on the decadal variability of the Gulf Stream path
and regional chlorophyll and nutrient concentrations, Geophys. Res. Lett.,
42, 9889–9897, https://doi.org/10.1002/2015GL066262, 2015.
Shipboard Scientific Party: Introduction, Proc. ODP, Init. Repts., 171B,
5–10, https://doi.org/10.2973/odp.proc.ir.171B.101.1998, 1998a.
Shipboard Scientific Party: Site 1049, Proc. ODP, Init. Repts., 171B, 47–91,
https://doi.org/10.2973/odp.proc.ir.171B.103.1998, 1998b.
Shipboard Scientific Party: Site 1050, Proc. ODP, Init. Repts., 171B,
93–170, https://doi.org/10.2973/odp.proc.ir.171B.104.1998, 1998c.
Shipboard Scientific Party: Site 1051, Proc. ODP, Init. Repts., 171B,
171–239, https://doi.org/10.2973/odp.proc.ir.171B.105.1998, 1998d.
Shipboard Scientific Party: Site 1052, Proc. ODP, Init. Repts., 171B,
241–319, https://doi.org/10.2973/odp.proc.ir.171B.106.1998, 1998e.
Shipboard Scientific Party: Site 1053, Proc. ODP, Init. Repts., 171B,
321–348, https://doi.org/10.2973/odp.proc.ir.171B.107.1998, 1998f.
Sims, P. A., Mann, D. G., and Medlin, L. K.: Evolution of the diatoms: insights from fossil, biological and molecular data, Phycologia, 45, 361–402, https://doi.org/10.2216/05-22.1, 2006.
Sluijs, A., Zeebe, R. E., Bijl, P. K., and Bohaty, S. M.: A middle Eocene
carbon cycle conundrum: Nat. Geosci., 6, 429–434, https://doi.org/10.1038/ngeo1807, 2013.
Smetacek, V.: Diatoms and the ocean carbon cycle: Protist, 150, 25–32,
https://doi.org/10.1016/S1434-4610(99)70006-4, 1999.
Thomas, D. J., Bralower, T. J., and Jones, C. E.: Neodymium isotopic
reconstruction of late Paleocene-early Eocene thermohaline circulation,
Earth Planet. Sc. Lett., 209, 309–322,
https://doi.org/10.1016/S0012-821X(03)00096-7, 2003.
Tréguer, P. J. and De La Rocha, C. L.: The World Ocean silica cycle, Annu. Rev. Mar. Sci., 5, 477–501,
https://doi.org/10.1146/annurev-marine-121211-172346, 2013.
Van Cappellen, P., Dixit, S., and van Beusekom, J.: Biogenic silica
dissolution in the oceans: Reconciling experimental and field-based
dissolution rates, Global Biogeochem. Cy., 16, 1075,
https://doi.org/10.1029/2001GB001431, 2002.
van der Ploeg, R., Selby, D., Cramwinckel, M. J., Li, Y., Bohaty, S. M.,
Middelburg, J. J., and Sluijs, A.: Middle Eocene greenhouse warming
facilitated by diminished weathering feedback, Nat. Commun., 9, 2877,
https://doi.org/10.1038/s41467-018-05104-9, 2018.
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert,
T., and Pälike, H.: Ocean and climate response to North Atlantic seaway
changes at the onset of long-term Eocene cooling, Earth Planet. Sc. Lett.,
498, 185–195, https://doi.org/10.1016/j.epsl.2018.06.031, 2018.
Via, R. K. and Thomas, D. J.: Evolution of Atlantic thermohaline circulation:
early Oligocene onset of deep-water production in the North Atlantic,
Geology, 34, 441–444, https://doi.org/10.1130/G22545.1, 2006.
Wade, B. S. and Kroon, D.: Middle Eocene regional climate instability:
Evidence from the western North Atlantic, Geology, 30, 1011–1014,
https://doi.org/10.1130/0091-7613(2002)030<1011:MERCIE>2.0.CO;2, 2002.
Wade, B. S., Fucek, V. P., Kamikuri, S.-I., Bartol, M., Luciani, V., and
Pearson, P. N.: Successive extinctions of muricate planktonic foraminifera
(Morozovelloides and Acarinina) as a candidate for marking the base Priabonian, Newsl. Stratig., 45, 245–262, https://doi.org/10.1127/0078-0421/2012/0023, 2012.
Wade, B. S., O'Neill, J. F., Phujareanchaiwon, C., Ali, I., Lyle, M., and
Witkowski, J.: Evolution of deep-sea sediments across the Paleocene-Eocene
and Eocene-Oligocene boundaries, Earth-Sci. Rev., 211, 103403,
https://doi.org/10.1016/j.earscirev.2020.103403, 2020.
Walker, J. C., Hays, B., and Kasting, J. F.: A negative feedback mechanism
for the long-term stabilization of Earth's surface temperature, J. Geophys.
Res., 86, 9776–9782, https://doi.org/10.1029/JC086iC10p09776, 1981.
Warnock, J. P. and Scherer, R. P.: Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean
assemblages, Cont. Shelf Res., 102, 1–8, https://doi.org/10.1016/j.csr.2015.04.012, 2015.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global extent of early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209), Paleoceanography and Paleoclimatology, 33, 626–642,
https://doi.org/10.1029/2017PA003306, 2018a.
Westerhold, T., Röhl, U., Donner, B., Friederichs, T., Kordesch, W. E. C., Bohaty, S. M., Hodell, D. A., Laskar, J., and Zeebe, R. E.: Late Lutetian
Thermal Maximum – crossing a thermal threshold in Earth's climate system?,
Geochem. Geophys. Geosy., 19, 73–82, https://doi.org/10.1002/2017GC007240, 2018b.
Witkowski, J., Bohaty, S. M., Edgar, K. M., and Harwood, D. M.: Rapid
fluctuations in mid-latitude siliceous plankton production during the Middle
Eocene Climatic Optimum (ODP Site 1051, western North Atlantic), Mar.
Micropaleontol., 106, 110–129, https://doi.org/10.1016/j.marmicro.2014.01.001, 2014.
Witkowski, J., Harwood, D. M., Wade, B. S., and Bryłka, K.: Rethinking the
chronology of early Paleogene sediments in the western North Atlantic using
diatom biostratigraphy, Mar. Geol., 424, 106168,
https://doi.org/10.1016/j.margeo.2020.106168, 2020a.
Witkowski, J., Penman, D., Bryłka, K., Wade, B. S., Matting, S., Harwood,
D. M., and Bohaty, S. M.: Early Paleogene biosiliceous sedimentation in the
Atlantic Ocean: testing the inorganic origin hypothesis for Paleocene and
Eocene chert and porcellanite, Palaeogeogr. Palaeocl., 556, 109896, https://doi.org/10.1016/j.palaeo.2020.109896, 2020b.
Yool, A. and Tyrrell, T.: Role of diatoms in regulating the ocean's silicon
cycle, Global Biogeochem. Cy., 17, 1103, https://doi.org/10.1029/2002GB002018, 2003.
Yool, A. and Tyrrell, T.: Implications for the history of Cenozoic opal
deposition from a quantitative model, Palaeogeogr. Palaeocl., 218, 239–255, https://doi.org/10.1016/j.palaeo.2004.12.017, 2005.
Zachos, J. C., Quinn, T. M., and Salamy, K. A.: High-resolution (104 years)
deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate
transition, Paleoceanography, 11, 251–266, https://doi.org/10.1029/96PA00571, 1996.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene...