Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1903-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-17-1903-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stalagmite carbon isotopes suggest deglacial increase in soil respiration in western Europe driven by temperature change
Franziska A. Lechleitner
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Oxford, South Parks Road,
OX1 3AN, Oxford, UK
Department of Chemistry, Biochemistry and Pharmaceutical Sciences and Oeschger Centre for Climate Change Research, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Invited contribution by Franziska A. Lechleitner, recipient of the EGU Climate: Past, Present & Future Division Outstanding Early Career Scientists Award 2021.
Christopher C. Day
Department of Earth Sciences, University of Oxford, South Parks Road,
OX1 3AN, Oxford, UK
Oliver Kost
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8006
Zurich, Switzerland
Micah Wilhelm
Swiss Federal Institute for Forest, Snow and Landscape Research,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Negar Haghipour
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8006
Zurich, Switzerland
Laboratory for Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
Gideon M. Henderson
Department of Earth Sciences, University of Oxford, South Parks Road,
OX1 3AN, Oxford, UK
Heather M. Stoll
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8006
Zurich, Switzerland
Related authors
Sarah Ann Rowan, Marc Luetscher, Thomas Laemmel, Anna Harrison, Sönke Szidat, and Franziska A. Lechleitner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3775, https://doi.org/10.5194/egusphere-2024-3775, 2024
Short summary
Short summary
We explored CO2 from soil to subsurface at Milandre cave, finding very high concentrations at all depths. While forest soils produced modern CO2 year-round, cave and meadow soil CO2 influences varies with temperature controlled cave ventilation, with older CO2 input in winter from old organic matter stored underground. These findings show that CO2 fluxes in karst systems are highly dynamic, and a better understanding of them is important for accurate carbon cycle modelling.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1691, https://doi.org/10.5194/egusphere-2024-1691, 2024
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate 8.68 ± 0.09 million years ago. We show that when global average temperature was about 4.5 °C warmer than today (similar to what’s expected in the coming decades should carbon emissions continue unabated), Arctic temperature increased by more than 18 °C. Similar levels of Arctic warming in the future would see huge areas of permafrost (permanently frozen ground) thaw and release greenhouse gases to the atmosphere.
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1707, https://doi.org/10.5194/egusphere-2024-1707, 2024
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends, during the last interglacial (LIG) (124.1 – 118.8 ka BP) and Holocene (10 – 0 ka BP). We show that wildfires were greater during the LIG than the Holocene and were supported by fire prone-species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
M. Pacton, S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osintcev, and C. Vasconcelos
Biogeosciences, 10, 6115–6130, https://doi.org/10.5194/bg-10-6115-2013, https://doi.org/10.5194/bg-10-6115-2013, 2013
Sarah Ann Rowan, Marc Luetscher, Thomas Laemmel, Anna Harrison, Sönke Szidat, and Franziska A. Lechleitner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3775, https://doi.org/10.5194/egusphere-2024-3775, 2024
Short summary
Short summary
We explored CO2 from soil to subsurface at Milandre cave, finding very high concentrations at all depths. While forest soils produced modern CO2 year-round, cave and meadow soil CO2 influences varies with temperature controlled cave ventilation, with older CO2 input in winter from old organic matter stored underground. These findings show that CO2 fluxes in karst systems are highly dynamic, and a better understanding of them is important for accurate carbon cycle modelling.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautchi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-123, https://doi.org/10.5194/amt-2024-123, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing fossil from biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. With this work we made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Revised manuscript accepted for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1691, https://doi.org/10.5194/egusphere-2024-1691, 2024
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate 8.68 ± 0.09 million years ago. We show that when global average temperature was about 4.5 °C warmer than today (similar to what’s expected in the coming decades should carbon emissions continue unabated), Arctic temperature increased by more than 18 °C. Similar levels of Arctic warming in the future would see huge areas of permafrost (permanently frozen ground) thaw and release greenhouse gases to the atmosphere.
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1707, https://doi.org/10.5194/egusphere-2024-1707, 2024
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends, during the last interglacial (LIG) (124.1 – 118.8 ka BP) and Holocene (10 – 0 ka BP). We show that wildfires were greater during the LIG than the Holocene and were supported by fire prone-species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Nikita Kaushal, Carlos Perez-Mejias, and Heather M. Stoll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-37, https://doi.org/10.5194/cp-2024-37, 2024
Revised manuscript under review for CP
Short summary
Short summary
Terminations are large magnitude rapid events triggered in the North Atlantic region that manifest across the global climate system. They provide key examples of climatic teleconnections and dynamics. In this study, we use the SISAL global speleothem database and find that there are sufficient climatic records from key locations to make speleothems a valuable archive for studying Terminations and provide instances for more targeted work on speleothem research.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Andrew J. Mason, Anton Vaks, Sebastian F. M. Breitenbach, John N. Hooker, and Gideon M. Henderson
Geochronology, 4, 33–54, https://doi.org/10.5194/gchron-4-33-2022, https://doi.org/10.5194/gchron-4-33-2022, 2022
Short summary
Short summary
A novel technique for the uranium–lead dating of geologically young carbonates is described and tested. The technique expands our ability to date geological events such as fault movements and past climate records.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Hongrui Zhang, Chuanlian Liu, Luz María Mejía, and Heather Stoll
Biogeosciences, 18, 1909–1916, https://doi.org/10.5194/bg-18-1909-2021, https://doi.org/10.5194/bg-18-1909-2021, 2021
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019, https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Short summary
The carbon stored in soils is the largest reservoir of organic carbon on land. In the context of greenhouse gas emissions and a changing climate, it is very important to understand how stable the carbon in the soil is and why. The deeper parts of the soil have often been overlooked even though they store a lot of carbon. In this paper, we discovered that although deep soil carbon is expected to be old and stable, there can be a significant young component that cycles much faster.
Feifei Deng, Gideon M. Henderson, Maxi Castrillejo, Fiz F. Perez, and Reiner Steinfeldt
Biogeosciences, 15, 7299–7313, https://doi.org/10.5194/bg-15-7299-2018, https://doi.org/10.5194/bg-15-7299-2018, 2018
Short summary
Short summary
To better use Pa / Th to reconstruct deep water ventilation rate, we assessed controls on 230Th and 231Pa in the northern North Atlantic. With extended optimum multi-parameter analysis and CFC-based water-mass age, we found the imprint of young overflow water on Th and Pa and enhanced scavenging near the seafloor. A significantly higher advective loss of Pa to the south relative to Th in the Atlantic was estimated, supporting the use of Pa / Th for assessing basin-scale meridional transport.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
Hongrui Zhang, Heather Stoll, Clara Bolton, Xiaobo Jin, and Chuanlian Liu
Biogeosciences, 15, 4759–4775, https://doi.org/10.5194/bg-15-4759-2018, https://doi.org/10.5194/bg-15-4759-2018, 2018
Short summary
Short summary
The sinking speeds of coccoliths are relevant for laboratory methods to separate coccoliths for geochemical analysis. However, in the absence of estimates of coccolith settling velocity, previous implementations have depended mainly on time-consuming method development by trial and error. In this study, the sinking velocities of cocooliths were carefully measured for the first time. We also provide an estimation of coccolith sinking velocity by shape, which will make coccolith separation easier.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Lorenz Wüthrich, Claudio Brändli, Régis Braucher, Heinz Veit, Negar Haghipour, Carla Terrizzano, Marcus Christl, Christian Gnägi, and Roland Zech
E&G Quaternary Sci. J., 66, 57–68, https://doi.org/10.5194/egqsj-66-57-2017, https://doi.org/10.5194/egqsj-66-57-2017, 2017
Liviu Giosan, Camilo Ponton, Muhammed Usman, Jerzy Blusztajn, Dorian Q. Fuller, Valier Galy, Negar Haghipour, Joel E. Johnson, Cameron McIntyre, Lukas Wacker, and Timothy I. Eglinton
Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, https://doi.org/10.5194/esurf-5-781-2017, 2017
Short summary
Short summary
A reconstruction of erosion in the core monsoon zone of India provides unintuitive but fundamental insights: in contrast to semiarid regions that experience enhanced erosion during erratic rain events, the monsoon is annual and acts as a veritable
erosional pumpaccelerating when the land cover is minimal. The existence of such a monsoon erosional pump promises to reconcile conflicting views on the land–sea sediment and carbon transfer as well as the monsoon evolution on longer timescales.
Robert B. Sparkes, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, Negar Haghipour, Lukas Wacker, Timothy I. Eglinton, Helen M. Talbot, and Bart E. van Dongen
The Cryosphere, 10, 2485–2500, https://doi.org/10.5194/tc-10-2485-2016, https://doi.org/10.5194/tc-10-2485-2016, 2016
Short summary
Short summary
The permafrost in eastern Siberia contains large amounts of carbon frozen in soils and sediments. Continuing global warming is thawing the permafrost and releasing carbon to the Arctic Ocean. We used pyrolysis-GCMS, a chemical fingerprinting technique, to study the types of carbon being deposited on the continental shelf. We found large amounts of permafrost-sourced carbon being deposited up to 200 km offshore.
M. N. Müller, M. Lebrato, U. Riebesell, J. Barcelos e Ramos, K. G. Schulz, S. Blanco-Ameijeiras, S. Sett, A. Eisenhauer, and H. M. Stoll
Biogeosciences, 11, 1065–1075, https://doi.org/10.5194/bg-11-1065-2014, https://doi.org/10.5194/bg-11-1065-2014, 2014
T. J. Browning, H. A. Bouman, C. M. Moore, C. Schlosser, G. A. Tarran, E. M. S. Woodward, and G. M. Henderson
Biogeosciences, 11, 463–479, https://doi.org/10.5194/bg-11-463-2014, https://doi.org/10.5194/bg-11-463-2014, 2014
M. Pacton, S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osintcev, and C. Vasconcelos
Biogeosciences, 10, 6115–6130, https://doi.org/10.5194/bg-10-6115-2013, https://doi.org/10.5194/bg-10-6115-2013, 2013
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Holocene
Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile)
Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
Missing sea level rise in southeastern Greenland during and since the Little Ice Age
Reconstructing burnt area during the Holocene: an Iberian case study
Expression of the “4.2 ka event” in the southern Rocky Mountains, USA
Arctic glaciers and ice caps through the Holocene:a circumpolar synthesis of lake-based reconstructions
Climate-driven desertification and its implications for the ancient Silk Road trade
Diatom-oxygen isotope record from high-altitude Lake Petit (2200 m a.s.l.) in the Mediterranean Alps: shedding light on a climatic pulse at 4.2 ka
Episodic Neoglacial expansion and rapid 20th century retreat of a small ice cap on Baffin Island, Arctic Canada, and modeled temperature change
Climate trends in northern Ontario and Québec from borehole temperature profiles
Interactions between climate change and human activities during the early to mid-Holocene in the eastern Mediterranean basins
Laurentide Ice Sheet basal temperatures during the last glacial cycle as inferred from borehole data
Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, Northern Algeria
Glacier response to North Atlantic climate variability during the Holocene
Climatic variability and human impact during the last 2000 years in western Mesoamerica: evidence of late Classic (AD 600–900) and Little Ice Age drought events
Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives
Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance
Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated, high-elevation cave in the Austrian Alps
Late Glacial–Holocene climatic transition record at the Argentinian Andean piedmont between 33 and 34° S
Holocene changes in African vegetation: tradeoff between climate and water availability
Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy
Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards
A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)
Bunker Cave stalagmites: an archive for central European Holocene climate variability
Temperature variability at Dürres Maar, Germany during the Migration Period and at High Medieval Times, inferred from stable carbon isotopes of Sphagnum cellulose
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
David T. Liefert and Bryan N. Shuman
Clim. Past, 18, 1109–1124, https://doi.org/10.5194/cp-18-1109-2022, https://doi.org/10.5194/cp-18-1109-2022, 2022
Short summary
Short summary
A large drought potentially occurred roughly 4200 years ago, but its impacts and significance are unclear. We find new evidence in carbonate oxygen isotopes from a mountain lake in southeastern Wyoming, southern Rocky Mountains, of an abrupt reduction in effective moisture (precipitation–evaporation) or snowpack from approximately 4200–4000 years ago. The drought's prominence among a growing number of sites in the North American interior suggests it was a regionally substantial climate event.
Laura J. Larocca and Yarrow Axford
Clim. Past, 18, 579–606, https://doi.org/10.5194/cp-18-579-2022, https://doi.org/10.5194/cp-18-579-2022, 2022
Short summary
Short summary
This paper synthesizes 66 records of glacier variations over the Holocene from lake archives across seven Arctic regions. We find that summers only moderately warmer than today drove major environmental change across the Arctic in the early Holocene, including the widespread loss of glaciers. In comparison, future projections of Arctic temperature change far exceed estimated early Holocene values in most locations, portending the eventual loss of most of the Arctic's small glaciers.
Guanghui Dong, Leibin Wang, David Dian Zhang, Fengwen Liu, Yifu Cui, Guoqiang Li, Zhilin Shi, and Fahu Chen
Clim. Past, 17, 1395–1407, https://doi.org/10.5194/cp-17-1395-2021, https://doi.org/10.5194/cp-17-1395-2021, 2021
Short summary
Short summary
A compilation of the results of absolute dating and high-resolution paleoclimatic records from the Xishawo site in the Dunhuang area and historical archives reveals that two desertification events occurred at ~ 800–600 BCE and ~ 1450 CE. The later desertification event was consistent with the immediate fall in tribute trade that occurred in ~ 1450 CE, which indicates that climate change played a potentially important role in explaining the decline of the Ancient Silk Road trade.
Rosine Cartier, Florence Sylvestre, Christine Paillès, Corinne Sonzogni, Martine Couapel, Anne Alexandre, Jean-Charles Mazur, Elodie Brisset, Cécile Miramont, and Frédéric Guiter
Clim. Past, 15, 253–263, https://doi.org/10.5194/cp-15-253-2019, https://doi.org/10.5194/cp-15-253-2019, 2019
Short summary
Short summary
A major environmental change, 4200 years ago, was recorded in the lacustrine sediments of Lake Petit (Mediterranean Alps). The regime shift was described by a modification in erosion processes in the watershed and aquatic species in the lake. This study, based on the analysis of the lake water balance by using oxygen isotopes in diatoms, revealed that these environmental responses were due to a rapid change in precipitation regime, lasting ca. 500 years.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Carolyne Pickler, Hugo Beltrami, and Jean-Claude Mareschal
Clim. Past, 12, 2215–2227, https://doi.org/10.5194/cp-12-2215-2016, https://doi.org/10.5194/cp-12-2215-2016, 2016
Short summary
Short summary
The ground surface temperature histories of the past 500 years were reconstructed at 10 sites in northern Ontario and Quebec. The regions experienced a warming of ~1–2 K for the past 150 years, agreeing with borehole reconstructions for southern Ontario and Quebec and proxy data. Permafrost maps locate the sites in a region of discontinuous permafrost but our reconstructions suggest that the potential for permafrost was minimal to absent over the past 500 years.
Jean-Francois Berger, Laurent Lespez, Catherine Kuzucuoğlu, Arthur Glais, Fuad Hourani, Adrien Barra, and Jean Guilaine
Clim. Past, 12, 1847–1877, https://doi.org/10.5194/cp-12-1847-2016, https://doi.org/10.5194/cp-12-1847-2016, 2016
Short summary
Short summary
This paper focuses on early Holocene rapid climate changes in the Mediterranean zone, which are under-represented in continental archives, and on their impact on prehistoric societies from the eastern to central Mediterranean (central Anatolia, Cyprus, NE and NW Greece). Our study demonstrates the reality of hydrogeomorphological responses to early Holocene RCCs in valleys and alluvial fans and lake–marsh systems. We finally question their socio-economic and geographical adaptation capacities.
C. Pickler, H. Beltrami, and J.-C. Mareschal
Clim. Past, 12, 115–127, https://doi.org/10.5194/cp-12-115-2016, https://doi.org/10.5194/cp-12-115-2016, 2016
J. Ruan, F. Kherbouche, D. Genty, D. Blamart, H. Cheng, F. Dewilde, S. Hachi, R. L. Edwards, E. Régnier, and J.-L. Michelot
Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, https://doi.org/10.5194/cp-12-1-2016, 2016
N. L. Balascio, W. J. D'Andrea, and R. S. Bradley
Clim. Past, 11, 1587–1598, https://doi.org/10.5194/cp-11-1587-2015, https://doi.org/10.5194/cp-11-1587-2015, 2015
Short summary
Short summary
Sediment cores were collected from a lake that captures runoff from two glaciers in Greenland. Our analysis of the sediments shows that these glaciers were active over the last 9,000 years and advanced and retreated in response to regional climate changes. The data also provide a long-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the range of natural variability.
A. Rodríguez-Ramírez, M. Caballero, P. Roy, B. Ortega, G. Vázquez-Castro, and S. Lozano-García
Clim. Past, 11, 1239–1248, https://doi.org/10.5194/cp-11-1239-2015, https://doi.org/10.5194/cp-11-1239-2015, 2015
Short summary
Short summary
We present results from western Mexico, where very few palaeoclimatic research sites exist. The record has good chronological resolution (ca. 20 years) and clear climatic trends during the last 2ka. The most important signals are: dry conditions during the late Classic (AD 500 to 1000), especially from AD 600 to 800, and low lake levels during the LIA, in two phases that follow Spörer and Maunder solar minima. Drier conditions are related with a lower intensity of the North American monsoon.
S. Albani, N. M. Mahowald, G. Winckler, R. F. Anderson, L. I. Bradtmiller, B. Delmonte, R. François, M. Goman, N. G. Heavens, P. P. Hesse, S. A. Hovan, S. G. Kang, K. E. Kohfeld, H. Lu, V. Maggi, J. A. Mason, P. A. Mayewski, D. McGee, X. Miao, B. L. Otto-Bliesner, A. T. Perry, A. Pourmand, H. M. Roberts, N. Rosenbloom, T. Stevens, and J. Sun
Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, https://doi.org/10.5194/cp-11-869-2015, 2015
Short summary
Short summary
We propose an innovative framework to organize paleodust records, formalized in a publicly accessible database, and discuss the emerging properties of the global dust cycle during the Holocene by integrating our analysis with simulations performed with the Community Earth System Model. We show how the size distribution of dust is intrinsically related to the dust mass accumulation rates and that only considering a consistent size range allows for a consistent analysis of the global dust cycle.
H. Beltrami, G. S. Matharoo, L. Tarasov, V. Rath, and J. E. Smerdon
Clim. Past, 10, 1693–1706, https://doi.org/10.5194/cp-10-1693-2014, https://doi.org/10.5194/cp-10-1693-2014, 2014
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
A. E. Mehl and M. A. Zárate
Clim. Past, 10, 863–875, https://doi.org/10.5194/cp-10-863-2014, https://doi.org/10.5194/cp-10-863-2014, 2014
C. Hély, A.-M. Lézine, and APD contributors
Clim. Past, 10, 681–686, https://doi.org/10.5194/cp-10-681-2014, https://doi.org/10.5194/cp-10-681-2014, 2014
B. Vannière, M. Magny, S. Joannin, A. Simonneau, S. B. Wirth, Y. Hamann, E. Chapron, A. Gilli, M. Desmet, and F. S. Anselmetti
Clim. Past, 9, 1193–1209, https://doi.org/10.5194/cp-9-1193-2013, https://doi.org/10.5194/cp-9-1193-2013, 2013
A. Simonneau, E. Chapron, B. Vannière, S. B. Wirth, A. Gilli, C. Di Giovanni, F. S. Anselmetti, M. Desmet, and M. Magny
Clim. Past, 9, 825–840, https://doi.org/10.5194/cp-9-825-2013, https://doi.org/10.5194/cp-9-825-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
J. Fohlmeister, A. Schröder-Ritzrau, D. Scholz, C. Spötl, D. F. C. Riechelmann, M. Mudelsee, A. Wackerbarth, A. Gerdes, S. Riechelmann, A. Immenhauser, D. K. Richter, and A. Mangini
Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, https://doi.org/10.5194/cp-8-1751-2012, 2012
R. Moschen, N. Kühl, S. Peters, H. Vos, and A. Lücke
Clim. Past, 7, 1011–1026, https://doi.org/10.5194/cp-7-1011-2011, https://doi.org/10.5194/cp-7-1011-2011, 2011
Cited articles
AEMET: State Meteorological Agency (AEMET) [WWW Document], available at:
http://www.aemet.es/en/portada (last access: 13 September 2021), 2020.
Amundson, R., Stern, L., Baisden, T., and Wang, Y.: The isotopic
composition of soil and soil-respired CO2, Geoderma, 82, 83–114, 1998.
Baldini, L. M., McDermott, F., Baldini, J. U. L., Arias, P., Cueto, M.,
Fairchild, I. J., Hoffmann, D. L., Mattey, D. P., Müller, W., Constantin,
D., Ontañón, R., Garciá-Moncó, C., and Richards, D. A.:
Regional temperature, atmospheric circulation, and sea-ice variability
within the Younger Dryas Event constrained using a speleothem from northern
Iberia, Earth Planet. Sc. Lett. 419, 101–110,
https://doi.org/10.1016/j.epsl.2015.03.015, 2015.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F.,
Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome
C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42,
542–549, https://doi.org/10.1002/2014GL061957, 2015.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Borsato, A., Frisia, S., and Miorandi, R.: Carbon dioxide concentration in
temperate climate caves and parent soils over an altitudinal gradient and
its influence on speleothem growth and fabrics, Earth Surf. Proc.
Land., 40, 1158–1170, https://doi.org/10.1002/esp.3706, 2015.
Boström, B., Comstedt, D., and Ekblad, A.: Isotope fractionation and
13C enrichment in soil profiles during the decomposition of soil
organic matter, Oecologia, 153, 89–98, https://doi.org/10.1007/s00442-007-0700-8, 2007.
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal
origin of the thermal maxima at the Holocene and the last interglacial,
Nature, 589, 548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Braun, K., Bar-Matthews, M., Matthews, A., Ayalon, A., Cowling, R. M.,
Karkanas, P., Fisher, E. C., Dyez, K., Zilberman, T., and Marean, C. W.:
Late Pleistocene records of speleothem stable isotopic compositions from
Pinnacle Point on the South African south coast, Quaternary Res., 91, 265–288,
https://doi.org/10.1017/qua.2018.61, 2019.
Breecker, D. O.: Atmospheric pCO2 control on speleothem stable
carbon isotope compositions, Earth Planet. Sc. Lett., 458, 58–68,
https://doi.org/10.1016/j.epsl.2016.10.042, 2017.
Breecker, D. O., Payne, A. E., Quade, J., Banner, J. L., Ball, C. E., Meyer,
K. W., and Cowan, B. D.: The sources and sinks of CO2 in caves under
mixed woodland and grassland vegetation, Geochim. Cosmochim. Ac., 96,
230–246, https://doi.org/10.1016/j.gca.2012.08.023, 2012.
Breitenbach, S. F. M. and Bernasconi, S. M.: Carbon and oxygen isotope
analysis of small carbonate samples (20 to 100 ug) with a GasBench II
preparation device, Rapid Commun. Mass Spectrom., 25, 1910–1914,
https://doi.org/10.1002/rcm.5052, 2011.
Brook, G. A., Folkoff, M. E., and Box, E. O.: A World model of soil carbon
dioxide, Earth Surf. Proc. Land., 8, 79–88, 1983.
Buchmann, N., Brooks, J. R., and Ehleringer, J. R.: Predicting daytime
carbon isotope ratios of atmospheric CO2 within forest canopies, Funct.
Ecol., 16, 49–57, 2002.
Cerling, T. E., Solomon, D. K., Quade, J., and Bowman, J. R.: On the isotopic
composition of carbon in soil carbon dioxide, Geochim. Cosmochim. Ac., 55,
3403–3405, https://doi.org/10.1016/0016-7037(91)90498-T, 1991.
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook,
E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix,
A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M., Whitlock,
C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry, W. B., Flower,
B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf, V., McManus, J.,
Mitrovica, J. X., Moreno, P. I., and Williams, J. W.: Global climate
evolution during the last deglaciation, P. Natl. Acad. Sci. USA, 109,
1134–1142, https://doi.org/10.1073/pnas.1116619109, 2012.
Comas-Bru, L., Atsawawaranunt, K., Harrison, S., and SISAL (Speleothem Isotopes Synthesis and AnaLysis) Working Group Members: SISAL
(Speleothem Isotopes Synthesis and AnaLysis Working Group) database version
2.0, University of Reading Research Data Archive [data set], https://doi.org/10.17864/1947.242,
2020a.
Comas-Bru, L., Rehfeld, K., Roesch, C., Amirnezhad-Mozhdehi, S., Harrison, S. P., Atsawawaranunt, K., Ahmad, S. M., Brahim, Y. A., Baker, A., Bosomworth, M., Breitenbach, S. F. M., Burstyn, Y., Columbu, A., Deininger, M., Demény, A., Dixon, B., Fohlmeister, J., Hatvani, I. G., Hu, J., Kaushal, N., Kern, Z., Labuhn, I., Lechleitner, F. A., Lorrey, A., Martrat, B., Novello, V. F., Oster, J., Pérez-Mejías, C., Scholz, D., Scroxton, N., Sinha, N., Ward, B. M., Warken, S., Zhang, H., and SISAL Working Group members: SISALv2: a comprehensive speleothem isotope database with multiple age–depth models, Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, 2020b.
Darfeuil, S., Ménot, G., Giraud, X., Rostek, F., Tachikawa, K., Garcia,
M., and Bard, É.: Sea surface temperature reconstructions over the
last 70 kyr off Portugal: Biomarker data and regional modeling,
Paleoceanography, 31, 40–65, https://doi.org/10.1002/2015PA002831,
2016.
Day, C. C., Pogge von Strandmann, P. A. E., and Mason, A. J.: Lithium isotopes
and partition coefficients in inorganic carbonates: Proxy calibration for
weathering reconstruction, Geochim. Cosmochim. Ac., 305, 243–262,
https://doi.org/10.1016/j.gca.2021.02.037,
2021.
Denniston, R. F., Houts, A. N., Asmerom, Y., Wanamaker Jr., A. D., Haws, J. A., Polyak, V. J., Thatcher, D. L., Altan-Ochir, S., Borowske, A. C., Breitenbach, S. F. M., Ummenhofer, C. C., Regala, F. T., Benedetti, M. M., and Bicho, N. F.: A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles, Clim. Past, 14, 1893–1913, https://doi.org/10.5194/cp-14-1893-2018, 2018.
Fahrni, S. M., Wacker, L., Synal, H.-A., and Szidat, S.: Improving a gas
ion source for 14C AMS, Nucl. Instrum. Meth. B, 294,
320–327, https://doi.org/10.1016/j.nimb.2012.03.037,
2013.
Fletcher, W. J., Sanchez Goñi, M. F., Allen, J. R. M., Cheddadi, R.,
Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D.,
Margari, V., Müller, U. C., Naughton, F., Novenko, E., Roucoux, K., and
Tzedakis, P. C.: Millennial-scale variability during the last glacial
in vegetation records from Europe, Quaternary Sci. Rev., 29, 2839–2864,
https://doi.org/10.1016/j.quascirev.2009.11.015,
2010.
Fohlmeister, J., Voarintsoa, N. R. G., Lechleitner, F. A., Boyd, M.,
Brandtstätter, S., Jacobson, M. J., and Oster, J. L.: Main controls on
the stable carbon isotope composition of speleothems, Geochim. Cosmochim.
Ac., 279, 67–87, https://doi.org/10.1016/j.gca.2020.03.042,
2020.
Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T.,
Malmström, C. M., Vitousek, P. M., James Collatz, G., Sellers, P. J.,
Randall, D. A., Denning, A. S., Badeck, F., and John, J.: Carbon 13
exchanges between the atmosphere and biosphere, Global Biogeochem. Cy.,
11, 507–533,
1997.
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu,
E., and Hamelin, B.: Dead carbon in stalagmites: carbonate bedrock
paleodissolution vs. ageing of soil organic matter, Implications for
13C variations in speleothems, Geochim. Cosmochim. Ac., 65, 3443–3457,
https://doi.org/10.1016/S0016-7037(01)00697-4,
2001.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and
Van-Exter, S.: Precise dating of Dansgaard-Oeschger climate
oscillations in western Europe from stalagmite data, Nature, 421, 833–837,
https://doi.org/10.1038/nature01391,
2003.
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M.,
Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., and Bourges, F.: Timing
and dynamics of the last deglaciation from European and North African
δ13C stalagmite profiles – Comparison with Chinese and South
Hemisphere stalagmites, Quaternary Sci. Rev., 25, 2118–2142,
https://doi.org/10.1016/j.quascirev.2006.01.030,
2006.
Gleixner, G., Danier, H.-J., Werner, R. A., and Schmidt, H.-L.:
Correlations between the 13C content of primary and secondary plant products
in different cell compartments and that in decomposing basidiomycetes, Plant
Physiol., 102, 1287–1290,
1993.
Goffin, S., Aubinet, M., Maier, M., Plain, C., Schack-Kirchner, H., and Longdoz,
B.: Characterization of the soil CO2 production and its carbon
isotope composition in forest soil layers using the flux-gradient approach,
Agr. Forest Meteorol., 188, 45–57, https://doi.org/10.1016/j.agrformet.2013.11.005,
2014.
Hendy, C. H.: The isotopic geochemistry of speleothems—I. The
calculation of the effects of different modes of formation on the isotopic
composition of speleothems and their applicability as palaeoclimatic
indicators, Geochim. Cosmochim. Ac., 35, 801–824,
https://doi.org/10.1016/0016-7037(71)90127-X,
1971.
Heuser, A. and Eisenhauer, A.: The calcium isotope composition ( Ca) of NIST SRM 915b and NIST SRM 1486, Geostand. Geoanal.
Res., 32, 27–32, 2008.
Hippler, D., Schmitt, A.-D., Gussone, N., Heuser, A., Stille, P.,
Eisenhauer, A., and Nägler, T. F.: Calcium isotopic composition of
various reference materials and seawater, Geostand. Newslett., 27, 13–19,
2003.
Janssens, I. A. and Pilegaard, K.: Large seasonal changes in Q10 of
soil respiration in a beech, Glob. Change Biol., 9, 911–918,
2003.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111,
2014.
Lechleitner, F: flechleitner/DCF_calculator: (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5503025, 2021.
Lechleitner, F. and Wilhelm, M.: flechleitner/Spain_analysis: (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5503041, 2021.
Li, C., Peng, Y., Nie, X., Yang, Y., Yang, L., Li, F., Fang, K., Xiao, Y., and
Zhou, G.: Differential responses of heterotrophic and autotrophic
respiration to nitrogen addition and precipitation changes in a Tibetan
alpine steppe, Sci. Rep., 8, 16546, https://doi.org/10.1038/s41598-018-34969-5,
2018.
Maier, M., Schack-Kirchner, H., Hildebrand, E. E., and Holst, J.:
Pore-space CO2 dynamics in a deep, well-aerated soil, Eur. J. Soil Sci.,
61, 877–887, https://doi.org/10.1111/j.1365-2389.2010.01287.x,
2010.
Mattey, D. P., Atkinson, T. C., Barker, J. A., Fisher, R., Latin, J.-P.,
Durell, R., and Ainsworth, M.: Carbon dioxide, ground air and carbon
cycling in Gibraltar karst, Geochim. Cosmochim. Ac., 184, 88–113,
https://doi.org/10.1016/j.gca.2016.01.041,
2016.
Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I.,
Valero-Garcés, B., Ito, E., and Edwards, R. L.: A speleothem record of
glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian
Peninsula, Global Planet. Change, 71, 218–231,
https://doi.org/10.1016/j.gloplacha.2009.10.002,
2010.
Moreno, A., Lopez-Merino, L., Leira, M., Marco-Barba, J.,
Gonzalez-Sampériz, P., Valero-Garcés, B.L., Lopez-Saez, J.A.,
Santos, L., Mata, P., and Ito, E.: Revealing the last 13,500 years of
environmental history from the multiproxy record of a mountain lake (Lago
Enol, northern Iberian Peninsula), J. Paleolimnol., 46, 327–349,
https://doi.org/10.1007/s10933-009-9387-7,
2011.
Moreno, A., Svensson, A., Brooks, S. J., Connor, S., Engels, S., Fletcher,
W., Genty, D., Heiri, O., Labuhn, I., Pers, A., Peyron, O., Sadori, L.,
Valero-Garcés, B., Wulf, S., Zanchetta, G., and data contributors: A
compilation of Western European terrestrial records 60 – 8 ka BP: towards an
understanding of latitudinal climatic gradients, Quaternary Sci. Rev., 106,
167–185, https://doi.org/10.1016/j.quascirev.2014.06.030,
2014.
Owen, R. A., Day, C. C., Hu, C., Liu, Y., Pointing, M. D., Blättler, C. L., and
Henderson, G. M.: Calcium isotopes in caves as a proxy for aridity:
Modern calibration and application to the 8.2 kyr event, Earth Planet. Sc.
Lett., 443, 129–138, https://doi.org/10.1016/j.epsl.2016.03.027,
2016.
Owen, R. A., Day, C. C., and Henderson, G. M.: CaveCalc: A new model for
speleothem chemistry & isotopes, Comput. Geosci., 119, 115–122,
https://doi.org/10.1016/J.CAGEO.2018.06.011,
2018.
Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R.,
Still, C. J., Buchmann, N., Kaplan, J. O., and Berry, J. A.: The application
and interpretation of Keeling plots in terrestrial carbon cycle research,
Global Biogeochem. Cy., 17, 1022, https://doi.org/10.1029/2001GB001850,
2003.
Peinado Lorca, M. and Martínez-Parras, J. M.: Castilla-La Mancha, in:
La Vegetación de España, Alcala de Henares, Universidad de Alcala de
Henares, 163–196,
1987.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H.,
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther,
B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic
framework for abrupt climatic changes during the Last Glacial period based
on three synchronized Greenland ice-core records: Refining and extending the
INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007,
2014.
Rehfeld, K. and Kurths, J.: Similarity estimators for irregular and age-uncertain time series, Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, 2014.
Reimer, P.: Selection and Treatment of Data for Radiocarbon
Calibration: An Update to the International Calibration (IntCal) Criteria,
Radiocarbon, 55, 1923–1945, https://doi.org/10.2458/azu_js_rc.55.16955,
2013.
Reimer, P., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon,
J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and
Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP,
Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947,
2013.
Reynard, L. M., Day, C. C., and Henderson, G. M.: Large fractionation of
calcium isotopes during cave-analogue calcium carbonate growth, Geochim.
Cosmochim. Ac., 75, 3726–3740, https://doi.org/10.1016/j.gca.2011.04.010,
2011.
Romanek, C. S., Grossman, E. L., and Morse, J. W.: Carbon isotopic
fractionation in synthetic aragonite and calcite: effects of temperature and
precipitation rate, Geochim. Cosmochim. Ac., 56, 419–430,
1992.
Rossi, C., Bajo, P., Lozano, R. P., and Hellstrom, J.: Younger Dryas to
Early Holocene paleoclimate in Cantabria (N Spain): Constraints from
speleothem Mg, annual fluorescence banding and stable isotope records, Quaternary
Sci. Rev., 192, 71–85, https://doi.org/10.1016/j.quascirev.2018.05.025,
2018.
Rudzka, D., McDermott, F., Baldini, L. M., Fleitmann, D., Moreno, A., and Stoll,
H.: The coupled δ13C-radiocarbon systematics of three
Late Glacial/early Holocene speleothems; insights into soil and cave
processes at climatic transitions, Geochim. Cosmochim. Ac., 75, 4321–4339,
https://doi.org/10.1016/j.gca.2011.05.022,
2011.
Scheff, J., Seager, R., Liu, H., and Coats, S.: Are Glacials Dry?
Consequences for Paleoclimatology and for Greenhouse Warming, J. Climate, 30,
6593–6609, https://doi.org/10.1175/JCLI-D-16-0854.1,
2017.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A.,
Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M.,
and Fischer, H.: Carbon isotope constraints on the deglacial CO2 rise from
ice cores, Science, 336, 711–715,
2012.
Schubert, B. A. and Jahren, A. H.: Global increase in plant carbon isotope
fractionation following the last glacial maximum caused by increase in
atmospheric pCO2, Geology, 43, 435–438, https://doi.org/10.1130/G36467.1,
2015.
Slessarev, E. W., Lin, Y., Bingham, N. L., Johnson, J. E., Dai, Y., Schimel,
J. P., and Chadwick, O. A.: Water balance creates a threshold in soil pH at
the global scale, Nature, 540, 567–569, https://doi.org/10.1038/nature20139,
2016.
Stoll, H., Mendez-Vicente, A., Gonzalez-Lemos, S., Moreno, A., Cacho, I.,
Cheng, H., and Edwards, R. L.: Interpretation of orbital scale variability
in mid-latitude speleothem d18O: Significance of growth rate controlled
kinetic fractionation effects, Quaternary Sci. Rev., 127, 215–228,
https://doi.org/10.1016/j.quascirev.2015.08.025,
2015.
Stoll, H. M., Müller, W., and Prieto, M.: I-STAL, a model for
interpretation of , Sr/Ca and Ba/Ca variations in speleothems and its
forward and inverse application on seasonal to millennial scales,
Geochem. Geophy. Geosy., 13, 1–27, https://doi.org/10.1029/2012GC004183,
2012.
Stoll, H. M., Moreno, A., Mendez-Vicente, A., Gonzalez-Lemos, S.,
Jimenez-Sanchez, M., Dominguez-Cuesta, M. J., Edwards, R. L., Cheng, H., and Wang,
X.: Paleoclimate and growth rates of speleothems in the northwestern
Iberian Peninsula over the last two glacial cycles, Quaternary Res., 80, 284–290,
https://doi.org/10.1016/j.yqres.2013.05.002,
2013.
Stoll, H. M., Cacho, I., Gasson, E., Sliwinski, J., Kost, O., Moreno, A., Iglesias, M., Torner, J., Perez, C., Haghipour, N., Cheng, H., Lawrence Edwards, R.: Rapid melting of a large Eurasian Ice Sheet during the penultimate deglaciation, Nat. Geosci., in review, 2021.
Synal, H. A., Stocker, M., and Suter, M.: MICADAS: A new compact
radiocarbon AMS system, Nucl. Instrum. Meth. B, 259, 7–13,
https://doi.org/10.1016/j.nimb.2007.01.138,
2007.
Tierney, J. E. and Tingley, M. P.: A TEX86 surface sediment database
and extended Bayesian calibration, Sci. Data, 2, 150029, https://doi.org/10.1038/sdata.2015.29,
2015.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen,
C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584,
569–573, https://doi.org/10.1038/s41586-020-2617-x,
2020.
Vargas, R. and Allen, M. F.: Environmental controls and the influence of
vegetation type, fine roots and rhizomorphs on diel and seasonal variation
in soil respiration, New Phytol., 179, 460–471,
2008.
Vaughn, L. J. S. and Torn, M. S.: 14C evidence that millennial and
fast-cycling soil carbon are equally sensitive to warming, Nat. Clim. Chang.,
9, 467–471, https://doi.org/10.1038/s41558-019-0468-y,
2019.
Verheyden, S., Keppens, E., Quinif, Y., Cheng, H., and Edwards, L. R.:
Late-glacial and Holocene climate reconstruction as inferred from a
stalagmite – Grotte du Pere Noel, Han-sur-Lesse, Belgium, Geol. Belgica, 17,
83–89,
2014.
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M.,
Vonhof, H., Dublyansky, Y., Pons-Branchu, E., Thomas, L., van Calsteren, P.,
Quinif, Y., and Caillon, N.: Speleothem record of the last 180 ka in
Villars cave (SW France): Investigation of a large δ18O shift
between MIS6 and MIS5, Quaternary Sci. Rev., 30, 130–146,
https://doi.org/10.1016/j.quascirev.2010.07.004,
2011.
Wang, X., Liu, L., Piao, S., Janssens, I. A., Tang, J., Liu, W., Chi, Y.,
Wang, J., and Xu, S.: Soil respiration under climate warming: differential
response of heterotrophic and autotrophic respiration, Glob. Change Biol.,
20, 3229–3237, https://doi.org/10.1111/gcb.12620,
2014.
Waring, C. L., Hankin, S. I., Griffith, D. W. T., Kertesz, M. A., Kobylski, V.,
Wilson, N. L., Coleman, N. V, Kettlewell, G., Zlot, R., Bosse, M., and Bell, G.: Seasonal total methane depletion in limestone caves, Sci. Rep., 7, 8314,
https://doi.org/10.1038/s41598-017-07769-6,
2017.
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson, A.: Millennial-scale variability during the last glacial: The ice core
record, Quaternary Sci. Rev., 29, 2828–2838, https://doi.org/10.1016/j.quascirev.2009.10.013,
2010.
Zhang, J., Quay, P. D., and Wilbur, D.: Carbon isotope fractionation during
gas-water exchange and dissolution of CO2, Geochim. Cosmochim. Ac., 59,
107–114, 1995.
Download
- Article
(3026 KB) - Full-text XML
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We...
Special issue