Articles | Volume 16, issue 3
https://doi.org/10.5194/cp-16-885-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-885-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A proxy modelling approach to assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera
Brett Metcalfe
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA–CNRS–UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Earth and Climate Cluster, Department of Earth Science, Faculty of
Science, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
Bryan C. Lougheed
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA–CNRS–UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Department of Earth Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Claire Waelbroeck
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA–CNRS–UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Didier M. Roche
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA–CNRS–UVSQ, Université Paris-Saclay, 91191
Gif-sur-Yvette, France
Earth and Climate Cluster, Department of Earth Science, Faculty of
Science, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
Related authors
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
Gilles Reverdin, Claire Waelbroeck, Antje Voelker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3009, https://doi.org/10.5194/egusphere-2024-3009, 2024
Short summary
Short summary
Water isotopes in the ocean trace the freshwater exchanges between the ocean, the atmosphere and the cryosphere, and are used to investigate processes of the hydrological cycle. We illustrate offsets in seawater isotopic composition between different data sets that are larger than the expected variability that one often wants to explore. This highlights the need to share seawater isotopic composition samples dedicated to specific intercomparison of data produced in the different laboratories.
Louise Abot, Aurélien Quiquet, and Claire Waelbroeck
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-51, https://doi.org/10.5194/cp-2024-51, 2024
Preprint under review for CP
Short summary
Short summary
This modeling study examines how Northern Hemisphere ice sheets interacted with oceans during the last glacial period. Warmer ocean subsurface temperatures increase freshwater release, cooling the Northern Hemisphere and slowing the ocean circulation. Cold freshwater release slows ice discharges, revealing complex feedback at this interface. The study emphasizes the importance of additional modeling studies and observational comparisons to enhance understanding of past climate variability.
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024, https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Short summary
In this work, we use the same experimental protocol to simulate the last two glacial terminations with a coupled ice sheet–climate model. Major differences among the two terminations are that the ice sheets retreat earlier and the Atlantic oceanic circulation is more prone to collapse during the penultimate termination. However, for both terminations the pattern of ice retreat is similar, and this retreat is primarily explained by orbital forcing changes and greenhouse gas concentration changes.
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
EGUsphere, https://doi.org/10.5194/egusphere-2024-556, https://doi.org/10.5194/egusphere-2024-556, 2024
Short summary
Short summary
To improve the simulation of surface mass balance (SMB) that influences the advance-retreat of ice sheets, we run a snow model BESSI (BErgen Snow Simulator) with transient climate forcing obtained from an Earth system model iLOVECLIM over Greenland and Antarctica during the Last Interglacial period (130–116 kaBP). Compared to the existing simple SMB scheme of iLOVECLIM, BESSI gives more details about SMB processes with higher physics constraints while maintaining a low computational cost.
Thomas Extier, Thibaut Caley, and Didier M. Roche
Geosci. Model Dev., 17, 2117–2139, https://doi.org/10.5194/gmd-17-2117-2024, https://doi.org/10.5194/gmd-17-2117-2024, 2024
Short summary
Short summary
Stable water isotopes are used to infer changes in the hydrological cycle for different time periods in climatic archive and climate models. We present the implementation of the δ2H and δ17O water isotopes in the coupled climate model iLOVECLIM and calculate the d- and 17O-excess. Results of a simulation under preindustrial conditions show that the model correctly reproduces the water isotope distribution in the atmosphere and ocean in comparison to data and other global circulation models.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Claire Waelbroeck, Jerry Tjiputra, Chuncheng Guo, Kerim H. Nisancioglu, Eystein Jansen, Natalia Vázquez Riveiros, Samuel Toucanne, Frédérique Eynaud, Linda Rossignol, Fabien Dewilde, Elodie Marchès, Susana Lebreiro, and Silvia Nave
Clim. Past, 19, 901–913, https://doi.org/10.5194/cp-19-901-2023, https://doi.org/10.5194/cp-19-901-2023, 2023
Short summary
Short summary
The precise geometry and extent of Atlantic circulation changes that accompanied rapid climate changes of the last glacial period are still unknown. Here, we combine carbon isotopic records from 18 Atlantic sediment cores with numerical simulations and decompose the carbon isotopic change across a cold-to-warm transition into remineralization and circulation components. Our results show that the replacement of southern-sourced by northern-sourced water plays a dominant role below ~ 3000 m depth.
Frank Arthur, Didier M. Roche, Ralph Fyfe, Aurélien Quiquet, and Hans Renssen
Clim. Past, 19, 87–106, https://doi.org/10.5194/cp-19-87-2023, https://doi.org/10.5194/cp-19-87-2023, 2023
Short summary
Short summary
This paper simulates transcient Holocene climate in Europe by applying an interactive downscaling to the standard version of the iLOVECLIM model. The results show that downscaling presents a higher spatial variability in better agreement with proxy-based reconstructions as compared to the standard model, particularly in the Alps, the Scandes, and the Mediterranean. Our downscaling scheme is numerically cheap, which can perform kilometric multi-millennial simulations suitable for future studies.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Huan Li, Hans Renssen, and Didier M. Roche
Clim. Past, 18, 2303–2319, https://doi.org/10.5194/cp-18-2303-2022, https://doi.org/10.5194/cp-18-2303-2022, 2022
Short summary
Short summary
In past warm periods, the Sahara region was covered by vegetation. In this paper we study transitions from this
greenstate to the desert state we find today. For this purpose, we have used a global climate model coupled to a vegetation model to perform transient simulations. We analyzed the model results to assess the effect of vegetation shifts on the abruptness of the transition. We find that the vegetation feedback was more efficient during the last interglacial than during the Holocene.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Lise Missiaen, Nathaelle Bouttes, Didier M. Roche, Jean-Claude Dutay, Aurélien Quiquet, Claire Waelbroeck, Sylvain Pichat, and Jean-Yves Peterschmitt
Clim. Past, 16, 867–883, https://doi.org/10.5194/cp-16-867-2020, https://doi.org/10.5194/cp-16-867-2020, 2020
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Bryan C. Lougheed
Geosci. Model Dev., 13, 155–168, https://doi.org/10.5194/gmd-13-155-2020, https://doi.org/10.5194/gmd-13-155-2020, 2020
Short summary
Short summary
Deep-sea sediment archives are made up of the calcareous tests of foraminifera, small sea dwelling organisms that record the Earth's past climate. Sediment cores retrieved from the sea floor contain sediment that is systematically bioturbated (mixed). The SEAMUS model of single foraminifera sedimentation and bioturbation allows users to quantify the error of bioturbation upon their foraminifera-derived climate reconstructions and radiocarbon dates.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Aurélien Quiquet, Christophe Dumas, Catherine Ritz, Vincent Peyaud, and Didier M. Roche
Geosci. Model Dev., 11, 5003–5025, https://doi.org/10.5194/gmd-11-5003-2018, https://doi.org/10.5194/gmd-11-5003-2018, 2018
Short summary
Short summary
This paper presents the GRISLI (Grenoble ice sheet and land ice) model in its newest revision. We present the recent model improvements from its original version (Ritz et al., 2001), together with a discussion of the model performance in reproducing the present-day Antarctic ice sheet geometry and the grounding line advances and retreats during the last 400 000 years. We show that GRISLI is a computationally cheap model, able to reproduce the large-scale behaviour of ice sheets.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Nathaelle Bouttes, Didier Swingedouw, Didier M. Roche, Maria F. Sanchez-Goni, and Xavier Crosta
Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, https://doi.org/10.5194/cp-14-239-2018, 2018
Short summary
Short summary
Atmospheric CO2 is key for climate change. CO2 is lower during the oldest warm period of the last million years, the interglacials, than during the most recent ones (since 430 000 years ago). This difference has not been explained yet, but could be due to changes of ocean circulation. We test this hypothesis and the role of vegetation and ice sheets using an intermediate complexity model. We show that only small changes of CO2 can be obtained, underlying missing feedbacks or mechanisms.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, and Didier Paillard
Geosci. Model Dev., 11, 453–466, https://doi.org/10.5194/gmd-11-453-2018, https://doi.org/10.5194/gmd-11-453-2018, 2018
Short summary
Short summary
Earth system models of intermediate complexity generally have a simplified model physics and a coarse model resolution. In this work we present the inclusion of an online dynamical downscaling of temperature and precipitation in such a model. This downscaling explicitly takes into account sub-grid topography. With this new model functionality we are able to simulate temperature and precipitation on a 40 km grid for the whole Northern Hemisphere from the native model resolution.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
Ruza F. Ivanovic, Lauren J. Gregoire, Masa Kageyama, Didier M. Roche, Paul J. Valdes, Andrea Burke, Rosemarie Drummond, W. Richard Peltier, and Lev Tarasov
Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, https://doi.org/10.5194/gmd-9-2563-2016, 2016
Short summary
Short summary
This manuscript presents the experiment design for the PMIP4 Last Deglaciation Core experiment: a transient simulation of the last deglaciation, 21–9 ka. Specified model boundary conditions include time-varying orbital parameters, greenhouse gases, ice sheets, ice meltwater fluxes and other geographical changes (provided for 26–0 ka). The context of the experiment and the choices for the boundary conditions are explained, along with the future direction of the working group.
Marianne Bügelmayer-Blaschek, Didier M. Roche, Hans Renssen, and Claire Waelbroeck
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-31, https://doi.org/10.5194/cp-2016-31, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Using the global isotope-enabled climate – iceberg model iLOVECLIM we performed three experiments to investigate the mechanisms behind the simulated δ18Ocalcite pattern applying a Heinrich event like iceberg forcing. Our model results display two main patterns in the δ18Ocalcite signal. First, we find regions that display almost no response in δ18Ocalcite and second, regions where the δ18Ocalcite pattern closely follows the δ18Oseawater signal.
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
M. Bügelmayer, D. M. Roche, and H. Renssen
Geosci. Model Dev., 8, 2139–2151, https://doi.org/10.5194/gmd-8-2139-2015, https://doi.org/10.5194/gmd-8-2139-2015, 2015
N. Bouttes, D. M. Roche, V. Mariotti, and L. Bopp
Geosci. Model Dev., 8, 1563–1576, https://doi.org/10.5194/gmd-8-1563-2015, https://doi.org/10.5194/gmd-8-1563-2015, 2015
Short summary
Short summary
We describe the development of a relatively simple climate model to include a model of the carbon cycle in the ocean. The carbon cycle consists of the exchange of carbon between the atmosphere, land vegetation and ocean. In the ocean, carbon exists in organic form, such as plankton which grows and dies, and inorganic forms, such as dissolved CO2. With this we will be able to explore long-standing questions such as why the atmospheric CO2 has changed over time during the last million years.
D. C. Kitover, R. van Balen, D. M. Roche, J. Vandenberghe, and H. Renssen
Geosci. Model Dev., 8, 1445–1460, https://doi.org/10.5194/gmd-8-1445-2015, https://doi.org/10.5194/gmd-8-1445-2015, 2015
M. Bügelmayer, D. M. Roche, and H. Renssen
The Cryosphere, 9, 821–835, https://doi.org/10.5194/tc-9-821-2015, https://doi.org/10.5194/tc-9-821-2015, 2015
K. A. Crichton, D. M. Roche, G. Krinner, and J. Chappellaz
Geosci. Model Dev., 7, 3111–3134, https://doi.org/10.5194/gmd-7-3111-2014, https://doi.org/10.5194/gmd-7-3111-2014, 2014
Short summary
Short summary
Permafrost is ground that remains frozen for two or more consecutive years. An estimated 50% of the global below-ground organic carbon is stored in soils of the permafrost zone. This study presents the development and validation of a simplified permafrost-carbon mechanism for the CLIMBER-2 model. Our model development allows, for the first time, the study of the role of permafrost soils in the global carbon cycle for long timescales and for coupled palaeoclimate Earth system modelling studies.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
T. Caley, D. M. Roche, C. Waelbroeck, and E. Michel
Clim. Past, 10, 1939–1955, https://doi.org/10.5194/cp-10-1939-2014, https://doi.org/10.5194/cp-10-1939-2014, 2014
D. M. Roche, C. Dumas, M. Bügelmayer, S. Charbit, and C. Ritz
Geosci. Model Dev., 7, 1377–1394, https://doi.org/10.5194/gmd-7-1377-2014, https://doi.org/10.5194/gmd-7-1377-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
D. M. Roche
Geosci. Model Dev., 6, 1481–1491, https://doi.org/10.5194/gmd-6-1481-2013, https://doi.org/10.5194/gmd-6-1481-2013, 2013
D. M. Roche and T. Caley
Geosci. Model Dev., 6, 1493–1504, https://doi.org/10.5194/gmd-6-1493-2013, https://doi.org/10.5194/gmd-6-1493-2013, 2013
T. Caley and D. M. Roche
Geosci. Model Dev., 6, 1505–1516, https://doi.org/10.5194/gmd-6-1505-2013, https://doi.org/10.5194/gmd-6-1505-2013, 2013
S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
The Cryosphere, 7, 681–698, https://doi.org/10.5194/tc-7-681-2013, https://doi.org/10.5194/tc-7-681-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Instrumental Period
Variability in Neogloboquadrina pachyderma stable isotope ratios from isothermal conditions: implications for individual foraminifera analysis
Sea ice dynamics in the Bransfield Strait, Antarctic Peninsula, during the past 240 years: a multi-proxy intercomparison study
Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
B. C. Lougheed, H. L. Filipsson, and I. Snowball
Clim. Past, 9, 1015–1028, https://doi.org/10.5194/cp-9-1015-2013, https://doi.org/10.5194/cp-9-1015-2013, 2013
Cited articles
Allen, K. A., Hönisch, B., Eggins, S. M., Haynes, L. L., Rosenthal, Y.,
and Yu, J.: Trace element proxies for surface ocean conditions: A synthesis
of culture calibrations with planktic foraminifera, Geochim.
Cosmochim. Ac., 193, 197–221, https://doi.org/10.1016/j.gca.2016.08.015, 2016.
An, S.-I. and Bong, H.: Inter-decadal change in El Niño-Southern Oscillation
examined with Bjerknes stability index analysis, Clim. Dynam., 47, 967–979,
https://doi.org/10.1007/s00382-015-2883-8, 2016.
An, S.-I. and Bong, H.: Feedback process responsible for the suppression of
ENSO activity during the mid-Holocene, Theor. Appl. Climatol., 132, 779–790,
https://doi.org/10.1007/s00704-017-2117-6, 2018.
Anderson, T. W. and Darling, D. A.: A test of goodness of fit, J. Am. Stat. Assoc.,
49, 765–769, https://doi.org/10.2307/2281537, 1954.
Andreasen, D. H., Ravelo, A. C., and Broccoli, A. J.: Remote forcing at the Last
Glacial Maximum in the tropical Pacific Ocean, J. Geophys. Res., 106, 879–897,
2001.
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF
ocean reanalysis system ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161, 2013.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures
used for foraminiferal Mg/Ca paleothermometry, Geochem. Geophy. Geosy.,
4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Batiza, R.: Abundances, distribution and sizes of volcanoes in the Pacific
Ocean and implications for the origin of non-hotspot volcanoes, Earth Planet. Sc.
Lett., 60, 195–206, 1982.
Bé, A. W. H. and Spero, H. J.: Shell regeneration and biological
recovery of planktonic foraminfera after physical injury induced in
laboratory culture, Micropaleontology, 27, 305–316, 1981.
Bé, A. W. H., Spero, H. J., and Anderson, O. R.: Effects of symbiont
elimination and reinfection on the life processes of the planktonic
foraminifer Globigerinodies sacculifer, Mar. Biol., 70, 73–86, 1982.
Beaufort, L., Garidel-Thoron, T., Mix, A. C., and Pisias, N. G.: ENSO like forcing
on oceanic primary production during the late Pleistocene, Science, 293,
2440–2444, 2001.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
https://doi.org/10.1029/98PA00070, 1998.
Berger, W. H.: Planktonic Foraminifera: selective solution and paleoclimatic
interpretation, Deep-Sea Res., 15, 31–43, 1968.
Berger, W. H.: Sedimentation of planktonic foraminifera, Mar. Geol., 11,
325–358, https://doi.org/10.1016/0025-3227(71)90035-1, 1971.
Berger, W. H. and Heath, G. R.: Vertical mixing in pelagic sediments,
J. Mar. Res., 26, 134–143, 1968.
Berger, W. H., Adelseck, C., and Mayer, L. A.: Distribution of carbonate in
surface sediments of the Pacific, J. Geophys. Res., 81, 2617–2627,
https://doi.org/10.1029/JC081i015p02617, 1976.
Bijma, J., Hönisch, B., and Zeebe, R. E.: Impact of the ocean carbonate
chemistry on living foraminiferal shell weight: Comment on “Carbonate ion
concentration in glacial-age deep waters of the Caribbean Sea” by W. S.
Broecker and E. Clark, Geochem. Geophy. Geosy., 3, 1–7,
https://doi.org/10.1029/2002GC000388, 2002.
Bird, C., Darling, K. F., Russell, A. D., Davis, C. V., Fehrenbacher, J., Free, A.,
Wyman, M., and Ngwenya, B. T.: Cyanobacterial endobionts within a major
marine planktonic calcifier (Globigerina bulloides, Foraminifera)
revealed by 16S rRNA metabarcoding, Biogeosciences, 14, 901–920,
https://doi.org/10.5194/bg-14-901-2017, 2017.
Bird, C., Darling, K. F., Russell, A. D., Fehrenbacher, J. S., Davis, C. V.,
Free, A., and Ngwenya, B. T.: 16S rRNA gene metabarcoding and TEM reveals
different ecological strategies within the genus Neogloboquadrina
(planktonic foraminifer), PLOS ONE, 13, e0191653,
https://doi.org/10.1371/journal.pone.0191653, 2018.
Blackman, A. and Somayajulu, B. L. K.: Pacific Pleistocene Cores: Faunal
Analyses and Geochronology, Science, 154, 886–889, 1966.
Boudreau, B. P.: Mean mixed depth of sediments: The wherefore and the why,
Limnol. Oceanogr., 43, 524–526, 1998.
Bramlette, M. N.: Pelagic sediments, in: Oceanography, edited by: Sears, M.,
American Association Advancement of Science, Washington, D.C., Publication
67, https://doi.org/10.5962/bhl.title.34806, 1961.
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T.:
Assessment of international reference materials for isotope-ratio analysis
(IUPAC Technical Report), Pure Appl. Chem., 86, 425–467,
https://doi.org/10.1515/pac-2013-1023, 2014.
Caley, T., Roche, D. M., Waelbroeck, C., and Michel, E.: Oxygen stable isotopes
during the Last Glacial Maximum climate: perspectives from data–model
(iLOVECLIM) comparison, Clim. Past, 10, 1939–1955,
https://doi.org/10.5194/cp-10-1939-2014, 2014.
Carton, J. A., Chepurin, G. A., Cao, X., and Giese, B. S.: A Simple Ocean Data
Assimilation analysis of the global upper ocean 1950–1995, Part 1:
methodology, J. Phys. Oceanogr., 30, 294–309, 2000a.
Carton, J. A., Chepurin, G. A., and Cao, X.: A Simple Ocean Data Assimilation
analysis of the global upper ocean 1950–1995 Part 2: results, J. Phys.
Oceanogr., 30, 311–326, 2000b.
Clement, A. C., Seager, R., and Cane, M. A.: Orbital controls on the El
Niño/Southern Oscillation and the tropical climate, Paleoceanography,
14, 441–456, 1999.
Clouard, V. and Bonneville, A.: Ages of seamounts, islands, and plateaus on
the Pacific plate, Geol. S. Am. S., 388, 71–90,
https://doi.org/10.1130/0-8137-2388-4.71, 2005.
Cole, J. E. and Tudhope, A. W.: Reef-based reconstructions of eastern Pacific climate variability, in: Coral Reefs of the Eastern Pacific: Persistence and Loss in a Dynamic Environment, edited by: Glynn, P. W. and Manzello, D., Springer, The Netherlands, 535–549, https://doi.org/10.1007/978-94-017-7499-4_19, 2017.
Coplen, T. B.: Reporting of stable carbon, hydrogen, and oxygen isotopic
abundances, Reference and intercomparison materials for stable isotopes of
light elements, IAEA, Vienna, Austria, 1–3 December 1993, 159 pp., 1995.
Darling, K. F., Wade, C. M., Kroon, D., Brown, A. J. L., and Bijma, J.: The
Diversity and Distribution of Modern Planktic Foraminiferal Small Subunit
Ribosomal RNA Genotypes and their Potential as Tracers of Present and Past
Ocean Circulations, Paleoceanography, 14, 3–12,
https://doi.org/10.1029/1998PA900002, 1999.
Darling, K. F., Wade, C. M., Steward, I. A., Kroon, D., Dingle, R., and Leigh
Brown, A. J.: Molecular evidence for genetic mixing of Arctic and Antarctic
subpolar populations of planktonic foraminifers, Nature, 405, 43–47, 2000.
Darling, K. F., Kucera, M., Pudsey, C. J., and Wade, C. M.: Molecular
evidence links cryptic diversification in polar planktonic protists to
Quaternary climate dynamics, P. Natl. Acad. Sci., 101, 7657–7662,
https://doi.org/10.1073/pnas.0402401101, 2004.
Dee, S., Emile‐Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson, D. M.: PRYSM: An open‐source framework for PRoxY System Modeling, with applications to oxygen‐isotope systems, J. Adv. Model. Earth Sy., 7, 1220–1247, https://doi.org/10.1002/2015MS000447, 2015.
de Garidel-Thoron, T., Rosenthal, Y., Beaufort, L., Bard, E., Sonzogni, C.,
and Mix, A. C.: A multiproxy assessment of the western equatorial Pacific
hydrography during the last 30 kyr, Paleoceanography, 22,
https://doi.org/10.1029/2006PA001269, 2007.
de Nooijer, L. J., Toyofuku, T., Oguri, K., Nomaki, H., and Kitazato, H.:
Intracellular pH distribution in foraminifera determined by the fluorescent
probe HPTS: Intracellular pH of foraminifera, Limnol. Oceanogr.-Meth., 6,
610–618, https://doi.org/10.4319/lom.2008.6.610, 2008.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote
calcification by elevating their intracellular pH, P. Natl. Acad. Sci. USA, 106,
15374–15378, https://doi.org/10.1073/pnas.0904306106, 2009.
Deuser, W. G., Ross, E. H., and Anderson, R. F.: Seasonality in the supply of
sediment to the deep Sargasso Sea and implications for the rapid transfer of
matter to the deep ocean, Deep-Sea Res., 28, 495–505,
https://doi.org/10.1016/0198-0149(81)90140-0, 1981.
de Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W., and Pawlowski, J.:
Molecular evidence of cryptic speciation in planktonic foraminifers and
their relation to oceanic provinces, P. Natl. Acad. Sci., 96, 2864–2868,
https://doi.org/10.1073/pnas.96.6.2864, 1999.
de Vargas, C., Bonzon, M., Rees, N. W., Pawlowski, J., and Zaninetti, L.: A
molecular approach to biodiversity and biogeography in the planktonic
foraminifer Globigerinella siphonifera (d'Orbigny), Mar.
Micropaleontol., 45, 101–116, 2002.
Dolman, A. M. and Laepple, T.: Sedproxy: a forward model for
sediment-archived climate proxies, Clim. Past, 14, 1851–1868,
https://doi.org/10.5194/cp-14-1851-2018, 2018.
Dubois, N., Kienast, M., Normandeau, C., and Herbert, T. D.: Eastern
equatorial Pacific cold tongue during the Last Glacial Maximum as seen from
alkenone paleothermometry, Paleoceanography, 24, PA4207,
https://doi.org/10.1029/2009PA001781, 2009.
Eggins, S. M., Sadekov, A., and de Deckker, P.: Modulation and daily banding
of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and
respiration: a complication for seawater thermometry, Earth Planet. Sc. Lett.,
225, 411–419, 2003.
Elderfield, H. and Ganssen, G. M.: Past temperature and δ18O
of surface ocean waters inferred from foraminiferal Mg/Ca ratios, Nature,
405, 442–445, 2000.
Evans, M. N., Kaplan, A., and Cane, M. A.: Optimal sites for coral-based
reconstructions of global sea surface temperature, Paleoceanography, 13,
502–516, 1998.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of proxy system modeling in high resolution paleoclimatology,
Quaternary Sci. Rev., 76, 16–28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Evans, D., Müller, W., and Erez, J.: Assessing foraminifera biomineralisation models through trace element data of cultures under variable seawater chemistry, Geochim. Cosmochim. Ac., 236, 198–217, https://doi.org/10.1016/j.gca.2018.02.048, 2018
Fallet, U., Boer, W., van Assen, C., Greaves, M., and Brummer, G. J. A.: A
novel application of wet-oxidation to retrieve carbonates from large,
organic-rich samples for application in climate research, Geochem.
Geophy. Geosy., 10, Q08004, https://doi.org/10.1029/2009GC002573, 2009.
Feldberg, M. J. and Mix, A. C.: Planktonic foraminifera, sea surface
temperatures, and mechanisms of oceanic change in the Peru and south
equatorial currents, 0–150 ka BP, Paleoceanography, 18, 1–16, 2003.
Feldmeijer, W., Metcalfe, B., Scussolini, P., and Arthur, K.: The effect of
chemical pretreatment of sediment upon foraminiferal-based proxies,
Geochem. Geophy. Geosy., 14, 3996–4014, https://doi.org/10.1002/ggge.20233, 2013.
Feldmeijer, W., Metcalfe, B., Brummer, G. J. A., and Ganssen, G. M.:
Reconstructing the depth of the permanent thermocline through the
morphology
and geochemistry of the deep dwelling planktonic foraminifer
Globorotalia truncatulinoides, Paleoceanography, 30, 1–22,
https://doi.org/10.1002/2014PA002687, 2015.
Ford, H. L., Ravelo, A. C., and Polissar, P. J.: Reduced El Niño-Southern
Oscillation during the Last Glacial Maximum, Science, 347, 255–258,
https://doi.org/10.1126/science.1258437, 2015.
Fraass, A. J. and Lowery, C. M.: Defining uncertainty and error in planktic
foraminiferal oxygen isotope measurements, Paleoceanography, 32, 104–122,
https://doi.org/10.1002/2016PA003035, 2017.
Fraile, I., Schulz, M., Mulitza, S., and Kucera, M.: Predicting the global
distribution of planktonic foraminifera using a dynamic ecosystem model,
Biogeosciences, 5, 891–911, https://doi.org/10.5194/bg-5-891-2008, 2008.
Fraile, I., Schulz, M., Mulitza, S., Merkel, U., Prange, M., and Paul, A.:
Modeling the seasonal distribution of planktonic foraminifera during the
Last Glacial Maximum, Paleoceanography, 24, PA2216,
https://doi.org/10.1029/2008PA001686, 2009.
GEBCO (General Bathymetric Chart of the Oceans): GEBCO_2014 Grid, version 20150318, available at: https://www.gebco.net/ (last access: 21 December 2017), 2015.
Gray, W. R., Weldeab, S., Lea, D. W., Rosenthal, Y., Gruber, N., Donner, B.,
and Fischer, G.: The effects of temperature, salinity, and the carbonate
system on Mg/Ca in Globigerinoides ruber (white): A global sediment trap
calibration, Earth Planet. Sc. Lett., 482, 607–620,
https://doi.org/10.1016/j.epsl.2017.11.026, 2018.
Greaves, M., Barker, S., Daunt, C., and Elderfield, H.: Accuracy,
standardization, and interlaboratory calibration standards for foraminiferal
Mg/Ca thermometry, Geochem. Geophys. Geosyst., 6, Q02D13,
https://doi.org/10.1029/2004GC000790, 2005.
Groeneveld, J., Nürnberg, D., Tiedemann, R., Reichart, G.-J., Steph, S.,
Reuning, L., Crudeli, D., and Mason, P.: Foraminiferal Mg/Ca increase in the
Caribbean during the Pliocene: Western Atlantic Warm Pool formation,
salinity influence, or diagenetic overprint?, Geochem. Geophy. Geosy., 9,
Q01P23, https://doi.org/10.1029/2006GC001564, 2008.
Hamilton, C. P., Spero, H. J., Bijma, J., and Lea, D. W.: Geochemical
investigation of gametogenic calcite addition in the planktonic foraminifera
Orbulina universa, Mar. Micropaleontol., 68, 256–267, 2008.
Hays, J. D., Saito, T., Opdyke, N., and Burckle, L. H.: Pliocene-Pleistocene
Sediments of the Equatorial Pacific: Their Paleomagnetic, Biostratigraphic,
and Climatic Record, Geol. Soc. Am. Bull., 80, 1481–1514, 1969.
Hillier, J. K.: Pacific seamount volcanism in space and time, Geophys. J.
Int., 168, 877–889, https://doi.org/10.1111/j.1365-246X.2006.03250.x, 2007.
Hori, M., Shirai, K., Kimoto, K., Kurasawa, A., Takagi, H., Ishida, A.,
Takahata, N., and Sano, Y.: Chamber formation and trace element distribution
in the calcite walls of laboratory cultured planktonic foraminifera
(Globigerina bulloides and Globigerinoides ruber), Mar.
Micropaleontol., 140, 46–55, https://doi.org/10.1016/j.marmicro.2017.12.004, 2018.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/jcli-d-16-0836.1, 2017.
Huber, B. T., Bijma, J., and Darling, K.: Cryptic speciation in the living
planktonic foraminifer Globigerinella siphonifera (d'Orbigny),
Paleobiology, 23, 33–62, https://doi.org/10.1017/S0094837300016638, 1997.
Huber, M. and Caballero, R.: Eocene El Niño: Evidence for Robust
Tropical Dynamics in the “Hothouse”, Science, 299, 877–881, 2003.
Hut, G.: Consultants group meeting on stable isotope reference samples for
geochemical and hydrological investigations, International Atomic Energy
Agency, Vienna, 1987.
Jonkers, L. and Kučera, M.: Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies, Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, 2017.
Kageyama, M., Braconnot, P., Bopp, L., Caubel, A., Foujols, M.-A.,
Guilyardi, E., Khodri, M., Lloyd, J., Lombard, F., Mariotti, V., Marti, O.,
Roy, T., and Woillez, M.-N.: Mid-Holocene and Last Glacial Maximum climate
simulations with the IPSL model—part I: comparing IPSL_CM5A to
IPSL_CM4, Clim. Dynam., 40, 2447–2468,
https://doi.org/10.1007/s00382-012-1488-8, 2013.
Keigwin, L. D. and Guilderson, T. P.: Bioturbation artifacts in zero-age
sediments, Paleoceanography, 24, PA4212, https://doi.org/10.1029/2008PA001727, 2009.
Kienast, M., MacIntyre, G., Dubois, N., Higginson, S., Normandeau, C.,
Chazen, C., and Herbert, T. D.: Alkenone unsaturation in surface sediments
from the eastern equatorial Pacific: Implications for SST reconstructions,
Paleoceanography, 27, PA1210, https://doi.org/10.1029/2011PA002254, 2012.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kısakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D.,
and Erez, J.: Controls on shell Mg/Ca and Sr/Ca in cultured planktonic
foraminiferan, Globigerinoides ruber (white), Earth Planet. Sc. Lett., 273,
260–269, https://doi.org/10.1016/j.epsl.2008.06.026, 2008.
Koppers, A. A. P., Staudigel, H., Pringle, M. S., and Wijbrans, J. R.: Short-lived
and discontinuous intraplate volcanism in the South Pacific; hot spots or
extensional volcanism, Geochem. Geophy. Geosy., 4, 1089,
https://doi.org/10.1029/2003GC000533, 2003.
Koutavas, A. and Joanides, S.: El Niño–Southern Oscillation extrema in
the Holocene and Last Glacial Maximum, Paleoceanography, 27, PA4208,
https://doi.org/10.1029/2012PA002378, 2012.
Koutavas, A. and Lynch-Stieglitz, J.: Glacial‐interglacial dynamics of the eastern
equatorial Pacific cold tongue‐Intertropical Convergence Zone system
reconstructed from oxygen isotope records, Paleoceanography, 18, 1089,
https://doi.org/10.1029/2003PA000894, 2003.
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M., and Sachs, J. P.: El
Niño-Like Pattern in Ice Age Tropical Pacific Sea Surface Temperature,
Science, 297, 226–230, https://doi.org/10.1126/science.1072376, 2002.
Koutavas, A., deMenocal, P. B., Olive, G. C., and Lynch-Stieglitz, J.:
Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed
by individual foraminifera in eastern tropical Pacific sediments, Geology,
34, 993–996, https://doi.org/10.1130/G22810A.1, 2006.
Kretschmer, K., Kucera, M., and Schulz, M.: Modeling the distribution and
seasonality of Neogloboquadrina pachyderma in the North Atlantic
Ocean during Heinrich Stadial 1, Paleoceanography, 31, 986–1010,
https://doi.org/10.1002/2015PA002819, 2016.
Kretschmer, K., Jonkers, L., Kucera, M., and Schulz, M.: Modeling seasonal and
vertical habitats of planktonic foraminifera on a global scale, Biogeosciences, 15,
4405–4429, https://doi.org/10.5194/bg-15-4405-2018, 2018.
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E.: Modes of eastern equatorial
Pacific thermocline variability: Implications for ENSO dynamics over the last
glacial period, Paleoceanography, 24, PA3202, https://doi.org/10.1029/2008PA001701,
2009.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604,
https://doi.org/10.1029/2006GL026011, 2006.
Lombard, F., Labeyrie, L., Michel, E., Spero, H. J., and Lea, D. W.:
Modelling the temperature dependent growth rates of planktic foraminfera,
Mar. Micropalaeontol., 70, 1–7, 2009.
Lombard, F., da Rocha, R. E., Bijma, J., and Gattuso, J.-P.: Effect of carbonate ion
concentration and irradiance on calcification in planktonic foraminifera,
Biogeosciences, 7, 247–255, https://doi.org/10.5194/bg-7-247-2010, 2010.
Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S., Howa,
H., and Jorissen, F.: Modelling planktic foraminifer growth and distribution
using an ecophysiological multi-species approach, Biogeosciences, 8, 853–873,
https://doi.org/10.5194/bg-8-853-2011, 2011.
Lougheed, B. C.: gebconetcdf.m, available at: https://github.com/bryanlougheed/gebconetcdf, last access: 22 April 2020a.
Lougheed, B. C.: SEAMUS (v1.20): a Δ14C-enabled, single-specimen
sediment accumulation simulator, Geosci. Model Dev., 13, 155–168,
https://doi.org/10.5194/gmd-13-155-2020, 2020b.
Lougheed, B. C., Metcalfe, B., Ninnemann, U. S., and Wacker, L.: Moving
beyond the age–depth model paradigm in deep-sea palaeoclimate archives:
dual radiocarbon and stable isotope analysis on single foraminifera, Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, 2018.
Lougheed, B. C., Ascough, P., Dolman, A. M., Löwemark, L., and Metcalfe, B.: Re-evaluating 14C dating accuracy in deep-sea sediment archives, Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, 2020.
Martínez, I., Keigwin, L., Barrows, T. T., Yokoyama, Y., and Southon,
J.: La Niña-like conditions in the eastern equatorial Pacific and a
stronger Choco jet in the northern Andes during the last glaciation,
Paleoceanography, 18, 1033, https://doi.org/10.1029/2002PA000877, 2003.
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an Integrating
Concept in Earth Science, Science, 314, 1740–1745, 2006.
Menard, H. W.: Marine Geology of the Pacific, McGraw-Hill, New York, 1964.
Metcalfe, B., Feldmeijer, W., de Vringer-Picon, M., Brummer, G.-J. A., Peeters, F.
J. C., and Ganssen, G. M.: Late Pleistocene glacial–interglacial shell-size–isotope
variability in planktonic foraminifera as a function of local hydrography,
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, 2015.
Metcalfe, B., Feldmeijer, W., and Ganssen, G. M.: Oxygen isotope variability
of planktonic foraminifera provide clues to past upper ocean seasonal
variability, Paleoceanography and Paleoclimatology, 34, 374–393,
https://doi.org/10.1029/2018PA003475, 2019a.
Metcalfe, B., Lougheed, B. C., Waelbroeck, C., and Roche, D. M.: On the validity
of foraminifera-based ENSO reconstructions, Version 1.0.0, Zenodo,
https://doi.org/10.5281/zenodo.2554843, 2019b.
Mikis, A., Hendry, K. R., Pike, J., Schmidt, D. N., Edgar, K. M., Peck, V., Peeters, F. J. C., Leng, M. J., Meredith, M. P., Todd, C. L., Stammerjohn, S., and Ducklow, H.: Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study, Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, 2019.
Mix, A. C.: The oxygen-isotope record of deglaciation, in: North America and
adjacent oceans during the last deglaciation, in The Geology of America,
vol. K-3, edited by: Ruddiman, W. F. and Wright, H. E. J., Geological Society of
America, Boulder, Colorado, 111–135, 1987.
Morard, R., Quillévéré, F., Escarguel, G., de Garidel-Thoron,
T., de Vargas, C., and Kucera, M.: Ecological modeling of the temperature
dependence of cryptic species of planktonic Foraminifera in the Southern
Hemisphere, Palaeogeogr. Palaeocl., 391, 13–33,
https://doi.org/10.1016/j.palaeo.2013.05.011, 2013.
Morard, R., Reinelt, M., Chiessi, C. M., Groeneveld, J., and Kucera, M.:
Tracing shifts of oceanic fronts using the cryptic diversity of the
planktonic foraminifera Globorotalia inflata, Paleoceanography, 31,
1193–1205, https://doi.org/10.1002/2016PA002977, 2016.
Mulitza, S., Wolff, T., Pätzold, J., Hale, W., and Wefer, G.: Temperature
sensitivity of planktic foraminifera and its influence on the oxygen isotope
record, Mar. Micropaleontol., 33, 223–240,
https://doi.org/10.1016/S0377-8398(97)00040-6, 1998.
Murray, J. and Renard, A. F.: Deep-sea deposits (based on the specimens
collected during the voyage of HMS Challenger in the years 1872 to 1876),
Report on the scientific results of the voyage of H.M.S. Challenger during the
years 1873–76, John Menzies and Co., Edinburgh, United Kingdom, 1891.
North Greenland Ice Core Project Members: High-resolution record of Northern
Hemisphere climate extending into the Last Interglacial period, Nature, 431,
147–151, 2004.
Nürnberg, D., Bijma, J., and Hemleben, C.: Assessing the reliability of
magnesium in foraminiferal calcite as a proxy for water mass temperatures,
Geochim. Cosmochim. Ac., 60, 803–814, 1996.
Olson, P., Reynolds, E., Hinnov, L., and Goswami, A.: Variation of ocean
sediment thickness with crustal age, Geochem. Geophy. Geosy., 17,
1349–1369, 2016.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen Isotope
Fractionation in Divalent Metal Carbonates, J. Chem. Phys., 51, 5547–5558, 1969.
Parker, F. L. and Berger, W. H.: Faunal and solution patterns of planktonic
Foraminifera in surface sediments of the South Pacific, Deep-Sea Res.,
18, 73–107, 1971.
Pena, L. D., Cacho, I., Ferretti, P., and Hall, M. A.: El Niño–Southern
Oscillation–like variability during glacial terminations and
interlatitudinal teleconnections, Paleoceanography, 23, PA3101,
https://doi.org/10.1029/2008PA001620, 2008.
Peng, T.-H., Broecker, W. S., and Berger, W. H.: Rates of benthic mixing in
deep-sea sediment as determined by radioactive tracers, Quaternary Res., 11,
141–149, 1979.
Pisias, N. G. and Mix, A. C.: Aliasing of the geologic record and the search
for long-period Milankovitch cycles, Paleoceanography, 3, 613–619,
https://doi.org/10.1029/PA003i005p00613, 1988.
Pisias, N. G. and Mix, A. C.: Spatial and temporal oceanographic
variability of the eastern equatorial Pacific during the late Pleistocene:
evidence from Radiolaria microfossils, Paleoceanography, 12, 381–393, 1997.
Pracht, H., Metcalfe, B., and Peeters, F. J. C.: Oxygen isotope composition of the
final chamber of planktic foraminifera provides evidence of vertical migration
and depth-integrated growth, Biogeosciences, 16, 643–661,
https://doi.org/10.5194/bg-16-643-2019, 2019.
Rasmussen, S. O., Bigler, M., Blockley, S., Blunier, T., Buchardt, B.,
Clausen, H., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S., Fischer, H., Gkinis, V.,
Guillevic, M., Hoek, W., Lowe, J., Pedro, J., Popp, T., Seierstad, I., Steffensen, J.,
Svensson, A., Vallelonga, P., Vinther, B., Walker, M., Wheatley, J. J., and
Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the
Last Glacial period based on three synchronized Greenland ice-core records:
refining and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev.,
106, 14–27, 2014.
Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P. S., Riebesell, U., Sheperd, J., Turley, C., and Watson, A.: Ocean Acidification due to Increasing Atmospheric Carbon Dioxide, Royal Society, London, Royal Society Policy Document 12/05, 68 pp., 2005.
Rincón-Martínez, D., Steph, S., Lamy, F., Mix, A., and Tiedemann,
R.: Tracking the equatorial front in the eastern equatorial Pacific Ocean by
the isotopic and faunal composition of planktonic foraminifera, Mar.
Micropaleontol., 79, 24–40, https://doi.org/10.1016/j.marmicro.2011.01.001, 2011.
Rink, S., Kühl, M., Bijma, J., and Spero, H. J.: Microsensor studies of
photosynthesis and respiration in the symbiotic foraminifer Orbulina
universa, Mar. Biol., 131, 583–595, 1998.
Roche, D. M., Paillard, D., Caley, T., and Waelbroeck, C.: LGM hosing
approach to Heinrich Event 1: results and perspectives from data–model
integration using water isotopes, Quaternary Sci. Rev., 106, 247–261,
https://doi.org/10.1016/j.quascirev.2014.07.020, 2014.
Roche, D. M., Waelbroeck, C., Metcalfe, B., and Caley, T.: FAME (v1.0): a simple
module to simulate the effect of planktonic foraminifer species-specific habitat
on their oxygen isotopic content, Geosci. Model Dev., 11, 3587–3603,
https://doi.org/10.5194/gmd-11-3587-2018, 2018.
Rosenthal, Y. and Broccoli, A. J.: In search of Paleo-ENSO, Science, 304, 219–221,
2004.
Roy, T., Lombard, F., Bopp, L., and Gehlen, M.: Projected impacts of climate
change and ocean acidification on the global biogeography of planktonic
Foraminifera, Biogeosciences, 12, 2873–2889, https://doi.org/10.5194/bg-12-2873-2015,
2015.
Sadekov, A., Eggins, S. M., De Deckker, P., and Kroon, D.: Uncertainties in
seawater thermometry deriving from intratest and intertest Mg/Ca variability
in Globigerinoides ruber: Uncertainties Mg/Ca seawater thermometry
Paleoceanography, 23, PA1215, https://doi.org/10.1029/2007PA001452, 2008.
Sadekov, A., Eggins, S. M., De Deckker, P., Ninnemann, U., Kuhnt, W., and
Bassinot, F.: Surface and subsurface seawater temperature reconstruction
using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata: Seawater temperature reconstruction, Paleoceanography, 24,
PA3201, https://doi.org/10.1029/2008PA001664, 2009.
Sadekov, A. Y., Ganeshram, R., Pichevin, L., Berdin, R., McClymont, E.,
Elderfield, H., and Tudhope, A. W.: Palaeoclimate reconstructions reveal a
strong link between El Niño-Southern Oscillation and Tropical Pacific
mean state, Nat. Commun., 4, 2692, https://doi.org/10.1038/ncomms3692, 2013.
Schiebel, R., Barker, Stephen, Lendt, R., Thomas, H., and Bollmann, J.:
Planktic foraminiferal dissolution in the twilight zone, Deep-Sea Res.
Pt. II 54, 676–686, https://doi.org/10.1016/j.dsr2.2007.01.009, 2007.
Seierstad I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook, E.,
Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S.
M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J., Rasmussen, S. O.,
Severinghaus, J. P., Svensson, A., and Vinther, B. M.: Consistently dated records
from the Greenland GRIP, GISP2
and NGRIP ice cores for the past 104 ka reveal regional millennial-scale
δ18O gradients with possible Heinrich event imprint,
Quaternary Sci. Rev., 106, 29-46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014.
Spero, H. J. and DeNiro, M. J.: The influence of symbiont photosynthesis on
the δ18O and δ13C values of planktonic
foraminiferal shell calcite, Symbiosis, 4, 213–228, 1987.
Spero, H. J. and Lea, D. W.: Experimental determination of stable isotope
variability in Globigerina bulloides: implications for paleoceanographic
reconstructions, Mar. Micropaleontol., 28, 231–246,
https://doi.org/10.1016/0377-8398(96)00003-5, 1996.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater
carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature,
390, 497–500, https://doi.org/10.1038/37333, 1997.
Steinhardt, J., Cléroux, C., de Nooijer, L. J., Brummer, G.-J., Zahn, R.,
Ganssen, G., and Reichart, G.-J.: Reconciling single-chamber Mg/Ca with
whole-shell δ18O in surface to deep-dwelling planktonic
foraminifera from the Mozambique Channel, Biogeosciences, 12, 2411–2429,
https://doi.org/10.5194/bg-12-2411-2015, 2015.
Stott, L., Poulsen, C., Lund, S., and Thunell, R.: Super ENSO and Global
Climate Oscillations at Millennial Time Scales, Science, 297, 222,
https://doi.org/10.1126/science.1071627, 2002.
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H.: The Oceans, Their Physics,
Chemistry, and General Biology, Prentice-Hall, New York, 1942.
Thirumalai, K., Partin, J. W., Jackson, C. S., and Quinn, T. M.: Statistical
constraints on El Niño Southern Oscillation reconstructions using
individual foraminifera: A sensitivity analysis, Paleoceanography, 28,
401–412, https://doi.org/10.1002/palo.20037, 2013.
Thunell, R. C., Kier, R. S., and Honjo, S.: Calcite dissolution: an in-situ
study in the Panama Basin, Science, 212, 659–661, 1981.
Trenberth, K. E. and Otto-Bliesner, B. L.: Toward Integrated Reconstruction of
past Climates, Science, 300, 589–591, 2003.
van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J. C., Biastoch, A.,
Weijer, W., Turney, C., Paris, C. B., and Zahn R.: Ocean currents generate large
footprints in marine palaeoclimate proxies, Nat.
Commun., 6, 6521, https://doi.org/10.1038/ncomms7521, 2015.
Vetter, L., Kozdon, R., Mora, C. I., Eggins, S. M., Valley, J. W.,
Hönisch, B., and Spero, H. J.: Micron-scale intrashell oxygen isotope
variation in cultured planktic foraminifers, Geochim. Cosmochim. Ac., 107,
267–278, https://doi.org/10.1016/j.gca.2012.12.046, 2013.
Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., and Cortijo, E.: A
global compilation of late Holocene planktonic foraminiferal
δ18O: relationship between surface water temperature and
δ18O, Quaternary Sci. Rev., 24, 853–868, 2005.
Wang, C., Deser, C., Yu, J.-Y., DiNezio, P., and Clement, A.: El Niño and
Southern Oscillation (ENSO): A Review, in: Coral Reefs of the Eastern
Tropical Pacific: Persistence and Loss in a Dynamic Environment, edited by:
Glynn, P. W., Manzello, D. P., and Enochs, I. C., Springer Netherlands,
Dordrecht, 85–106, 2017.
Wang, X. L.: The Coupling of the Annual Cycle and ENSO Over the Tropical Pacific, J. Atmos. Sci., 51, 1115–1136, https://doi.org/10.1175/1520-0469(1994)051<1115:TCOTAC>2.0.CO;2, 1994.
Waterson, A. M., Edgar, K. M., Schmidt, D. N., and Valdes, P. J.: Quantifying
the stability of planktic foraminiferal physical niches between the Holocene
and Last Glacial Maximum, Paleoceanography, 32, 74–89,
https://doi.org/10.1002/2016PA002964, 2016.
Wessel, P. and Lyons, S.: Distribution of large Pacific seamounts from
Geosat/ERS-1, J. Geophys. Res., 102, 459–475, 1997.
Weyl, P. K.: Micropaleontology and Ocean Surface Climate, Science, 202,
475–481, 1978.
White, S. M., Ravelo, A. C., and Polissar, P. J.: Dampened El Niño in the
Early and Mid-Holocene Due to Insolation-Forced Warming/Deepening of the
Thermocline, Geophys. Res. Lett., 45, 316–326, https://doi.org/10.1002/2017GL075433,
2018.
Wilke, I., Bickert, T., and Peeters, F. J. C.: The influence of seawater
carbonate ion concentration [ ] on the stable isotope
composition of planktic foraminifera species Globorotalia inflata, Mar.
Micropaleontol., 58, 243–258, https://doi.org/10.1016/j.marmicro.2005.11.005, 2006.
Wit, J. C., Reichart, G. J., and Ganssen, G. M.: Unmixing of stable isotope
signals using single specimen δ18O analyses, Geochem.
Geophy. Geosy., 14, 1312–1320, https://doi.org/10.1002/ggge.20101, 2013.
Wolf-Gladrow, D. A., Bijma, J., and Zeebe, R. E.: Model simulation of the
carbonate chemistry in the microenvironment of symbiont bearing
foraminifera, Mar. Chem., 64, 181–198,
https://doi.org/10.1016/S0304-4203(98)00074-7, 1999.
Wunsch, C.: On sharp spectral lines in the climate record and the millennial
peak, Paleoceanography, 15, 417–424, https://doi.org/10.1029/1999PA000468, 2000.
Wunsch, C. and Gunn, D. E.: A densely sampled core and climate variable
aliasing, Geo-Mar. Lett., 23, 64–71, https://doi.org/10.1007/s00367-003-0125-2, 2003.
Wycech, J. B., Kelly, D. C., Kitajima, K., Kozdon, R., Orland, I. J., and
Valley, J. W.: Combined effects of gametogenic calcification and dissolution
on δ18O measurements of the planktic foraminifer
Trilobatus sacculifer, Geochem. Geophys. Geosyst., 19, 4487–4501,
https://doi.org/10.1029/2018GC007908, 2018.
Xie, S.-P.: On the Genesis of the Equatorial Annual Cycle, J. Climate, 7,
2008–2013, 1994.
Xie, S.-P.: Interaction between the annual and interannual variations in the
equatorial Pacific, J. Phys. Oceanogr., 25, 1930–1941, 1995.
Žarić, S., Donner, B., Fischer, G., Mulitza, S., and Wefer, G.:
Sensitivity of planktic foraminifera to sea surface temperature and export
production as derived from sediment trap data, Mar. Micropaleontol., 55,
75–105, https://doi.org/10.1016/j.marmicro.2005.01.002, 2005.
Žarić, S., Schulz, M., and Mulitza, S.: Global prediction of planktic
foraminiferal fluxes from hydrographic and productivity data, Biogeosciences, 3,
187–207, https://doi.org/10.5194/bg-3-187-2006, 2006.
Zebiak, S. E. and Cane, M. A.: A Model El Niño-Southern Oscillation, Mon.
Weather Rev., 115, 2262–2278,
https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2, 1987.
Zeebe, R. E. and Sanyal, A.: Comparison of two potential strategies of
planktonic foraminifera for house building: Mg2+ or H+ removal?,
Geochim. Cosmochim. Ac., 66, 1159–1169,
https://doi.org/10.1016/S0016-7037(01)00852-3, 2002.
Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas,
R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.: Reduced ENSO
variability at the LGM revealed by an isotope-enabled Earth system model,
Geophys. Res. Lett., 44, 6984–6992, https://doi.org/10.1002/2017GL073406, 2017.
Short summary
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to collection by Palaeoclimatologists for use as proxies. Such organisms in life are sensitive to the ambient conditions (e.g. temperature, salinity), which therefore means our proxies maybe skewed toward the ecology of organisms. Using a proxy system model, Foraminifera as Modelled Entities (FAME), we assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera.
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to...