Articles | Volume 16, issue 1
https://doi.org/10.5194/cp-16-409-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-409-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate-induced speleothem radiocarbon variability on Socotra Island from the Last Glacial Maximum to the Younger Dryas
Steffen Therre
CORRESPONDING AUTHOR
Institute of Environmental Physics, Heidelberg University, Heidelberg,
Germany
Jens Fohlmeister
Potsdam Institute for Climate Impact Research, Potsdam, Germany
GFZ German Research Centre for Geosciences, Section Climate Dynamics
and Landscape Development, Potsdam, Germany
Dominik Fleitmann
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Albert Matter
Institute of Geological Sciences, University of Bern, Bern,
Switzerland
Stephen J. Burns
Department of Geosciences, University of Massachusetts, Amherst, USA
Jennifer Arps
Institute of Environmental Physics, Heidelberg University, Heidelberg,
Germany
Andrea Schröder-Ritzrau
Institute of Environmental Physics, Heidelberg University, Heidelberg,
Germany
Ronny Friedrich
Curt-Engelhorn-Centre Archaeometry gGmbH, Mannheim, Germany
Norbert Frank
Institute of Environmental Physics, Heidelberg University, Heidelberg,
Germany
Related authors
No articles found.
Inga Kristina Kerber, Fabian Kontor, Aaron Mielke, Sophie Warken, and Norbert Frank
Geochronology, 7, 1–13, https://doi.org/10.5194/gchron-7-1-2025, https://doi.org/10.5194/gchron-7-1-2025, 2025
Short summary
Short summary
A stand-alone data analysis application for Th/U dating on multi-collector inductively coupled plasma mass spectrometers features a Python-based algorithm with a graphical user interface. It handles data treatment, corrections, age calculus, and error estimation and supports various detector layouts including Faraday and electron multiplier detectors. Key features include reproducibility, user-friendly reanalysis, and automated data storage. A case study demonstrates the software’s performance.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Nick Scroxton, Stephen J. Burns, David McGee, Laurie R. Godfrey, Lovasoa Ranivoharimanana, and Peterson Faina
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-138, https://doi.org/10.5194/cp-2020-138, 2020
Revised manuscript not accepted
Short summary
Short summary
The end of the Harappan civilization in the Indus Valley around 4,200 years ago has been attributed to monsoon failure associated with a global megadrought. Using a suite of high resolution paleoclimate records from around the Indian Ocean basin we find that two consecutive droughts contributed to the end of the Harappa. A winter drought starting 4,200 years ago was followed by monsoon failure at 3,900 years ago. The double hit caused civilization decline first, and abandonment later.
Nick Scroxton, Stephen J. Burns, David McGee, Laurie R. Godfrey, Lovasoa Ranivoharimanana, and Peterson Faina
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-137, https://doi.org/10.5194/cp-2020-137, 2020
Revised manuscript not accepted
Short summary
Short summary
The 4.2 kyr climatic event caused drought in the Mediterranean and Middle East and the collapse of the Akkadian Civilization. Outside of this region the global footprint of this event, be it drought or flood conditions, is poorly understood. This study uses a stalagmite from Madagascar to determine how the 4.2 kyr event influenced the South-East African Monsoon. We find drought in Madagascar and around Lake Malawi but wet conditions elsewhere, a pattern that resembles modern climate variability.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47, https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
A stalagmite from Hermes Cave (Greece) provides new insights into the climate evolution from 5.3−0.8 ka. Its close proximity to Mycenae and Corinth allows for a future comparative assessment of societal changes in a climatic context. Proxy data suggest significant centennial scale climate variability (i.e., wet vs. dry) with a long-term trend towards drier conditions from ca 3.7 to ~ 2.0 ka. The largest proxy variation of the whole record is found around the 4.2 ka event.
Susanne Preunkert, Michel Legrand, Stanislav Kutuzov, Patrick Ginot, Vladimir Mikhalenko, and Ronny Friedrich
Atmos. Chem. Phys., 19, 14119–14132, https://doi.org/10.5194/acp-19-14119-2019, https://doi.org/10.5194/acp-19-14119-2019, 2019
Short summary
Short summary
This paper reports on an ice core drilled to bedrock at Mt Elbrus (5115 m a.s.l., Russia) to reconstruct the atmospheric pollution since the 19th century in south-eastern Europe. The annual dust-free sulfate record indicates a 7-fold increase from prior to 1900 to 1980–1995. Consistent with past SO2 emission inventories, a much earlier onset and a more pronounced decrease in the sulfur pollution over the last 3 decades are observed in western Europe than in south-eastern and eastern Europe.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
S. J. Burns, L. C. Kanner, H. Cheng, and R. Lawrence Edwards
Clim. Past, 11, 931–938, https://doi.org/10.5194/cp-11-931-2015, https://doi.org/10.5194/cp-11-931-2015, 2015
F. Spadin, D. Marti, R. Hidalgo-Staub, J. Rička, D. Fleitmann, and M. Frenz
Clim. Past, 11, 905–913, https://doi.org/10.5194/cp-11-905-2015, https://doi.org/10.5194/cp-11-905-2015, 2015
Short summary
Short summary
Fluid inclusions inside stalagmites retain information on the cave temperature at the time they formed and thus can be used to reconstruct the continental climate of the past. A method for extracting this information based on a thermodynamic model and size measurements of femtosecond-laser-induced vapour bubbles is presented. Applying our method to stalagmites taken from the Milandre cave in the Swiss Jura Mountains demonstrate that palaeotemperatures can be determined with an accuracy of ±1°C.
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz
Clim. Past, 10, 939–954, https://doi.org/10.5194/cp-10-939-2014, https://doi.org/10.5194/cp-10-939-2014, 2014
K. M. K. Wilkie, B. Chapligin, H. Meyer, S. Burns, S. Petsch, and J. Brigham-Grette
Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, https://doi.org/10.5194/cp-9-335-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
N. Vogel, Y. Scheidegger, M. S. Brennwald, D. Fleitmann, S. Figura, R. Wieler, and R. Kipfer
Clim. Past, 9, 1–12, https://doi.org/10.5194/cp-9-1-2013, https://doi.org/10.5194/cp-9-1-2013, 2013
Cited articles
Adolphi, F., Muscheler, R., Friedrich, M., Güttler, D., Wacker, L.,
Talamo, S., and Kromer, B.: Radiocarbon calibration uncertainties during the
last deglaciation: Insights from new floating tree-ring chronologies,
Quaternary Sci. Rev., 170, 98–108, https://doi.org/10.1016/j.quascirev.2017.06.026, 2017.
Arnold, J. R. and Libby, W. F.: Age determinations by radiocarbon content:
Checks with samples of known age, Science, 110, 678–680,
https://doi.org/10.1126/science.110.2869.678, 1949.
Arps, J.: Towards ε-Precision of U-series Age Determinations of
Secondary Carbonates, Heidelberg University, 2017.
Bajo, P., Borsato, A., Drysdale, R., Hua, Q., Frisia, S., Zanchetta, G.,
Hellstrom, J., and Woodhead, J.: Stalagmite carbon isotopes and dead carbon
proportion (DCP) in a near-closed-system situation: An interplay between
sulphuric and carbonic acid dissolution, Geochim. Cosmochim. Ac., 210,
208–227, https://doi.org/10.1016/j.gca.2017.04.038, 2017.
Beck, J. W., Richards, D. A., Edwards, R. L., Silverman, B. W., Smart, P.
L., Donahue, D. J., Hererra-Osterheld, S., Burr, G. S., Calsoyas, L., Jull,
A. J. T., and Biddulph, D.: Extremely large variations of atmospheric 14C
concentration during the last glacial period, Science, 292,
2453–2458, https://doi.org/10.1126/science.1056649, 2001.
Burns, S. J.: Indian Ocean Climate and an Absolute Chronology over
Dansgaard/Oeschger Events 9 to 13, Science, 301, 1365–1367,
https://doi.org/10.1126/science.1086227, 2003.
Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., and
Asmerom, Y.: The half-lives of uranium-234 and thorium-230, Chem.
Geol., 169, 17–33, https://doi.org/10.1016/S0009-2541(99)00157-6, 2000.
Cheng, H., Spötl, C., Breitenbach, S. F. M., Sinha, A., Wassenburg, J.
A., Jochum, K. P., Scholz, D., Li, X., Yi, L., Peng, Y., Lv, Y., Zhang, P.,
Votintseva, A., Loginov, V., Ning, Y., Kathayat, G., and Edwards, R. L.:
Climate variations of Central Asia on orbital to millennial timescales, Sci.
Rep., 6, 36975, https://doi.org/10.1038/srep36975, 2016.
Cheng, H., Lawrence Edwards, R., Southon, J., Matsumoto, K., Feinberg, J.
M., Sinha, A., Zhou, W., Li, H., Li, X., Xu, Y., Chen, S., Tan, M., Wang,
Q., Wang, Y., and Ning, Y.: Atmospheric 14C∕12C changes during the last
glacial period from Hulu Cave, Science, 362, 1293–1297,
https://doi.org/10.1126/science.aau0747, 2018.
Coleborn, K., Spate, A., Tozer, M., Andersen, M. S., Fairchild, I. J.,
MacKenzie, B., Treble, P. C., Meehan, S., Baker, A., and Baker, A.: Effects
of wildfire on long-term soil CO2 concentration: implications for karst
processes, Environ. Earth Sci., 75, 330, https://doi.org/10.1007/s12665-015-4874-9, 2016.
DiNezio, P. N., Tierney, J. E., Otto-Bliesner, B. L., Timmermann, A.,
Bhattacharya, T., Rosenbloom, N., and Brady, E.: Glacial changes in tropical
climate amplified by the Indian Ocean, Sci. Adv.,
4, 12, https://doi.org/10.1126/sciadv.aat9658, 2018.
Douville, E., Sallé, E., Frank, N., Eisele, M., Pons-Branchu, E., and
Ayrault, S.: Rapid and accurate U-Th dating of ancient carbonates using
inductively coupled plasma-quadrupole mass spectrometry, Chem. Geol.,
272, 1–11, https://doi.org/10.1016/j.chemgeo.2010.01.007, 2010.
Dreybrodt, W.: Chemical kinetics, speleothem growth and climate, Boreas,
28, 347–356, https://doi.org/10.1111/j.1502-3885.1999.tb00224.x, 1999.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M.,
Lin, Y., Qing, J., An, Z., and Revenaugh, J.: A high-resolution,
absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave,
China, Earth Planet. Sc. Lett., 233, 71–86,
https://doi.org/10.1016/j.epsl.2005.01.036, 2005.
Fairchild, I. J. and Treble, P. C.: Trace elements in speleothems as
recorders of environmental change, Quaternary Sci. Rev.,
28, 449–468, https://doi.org/10.1016/j.quascirev.2008.11.007, 2009.
Fairchild, I. J., Borsato, A., Tooth, A. F., Frisia, S., Hawkesworth, C. J.,
Huang, Y., McDermott, F., and Spiro, B.: Controls on trace element (Sr-Mg)
compositions of carbonate cave waters: Implications for speleothem climatic
records, Chem. Geol., 166, 255–269, https://doi.org/10.1016/S0009-2541(99)00216-8, 2000.
Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini,
A., and Matter, A.: Holocene forcing of the Indian monsoon recorded in a
stalagmite from southern Oman, Science, 300, 1737–9,
https://doi.org/10.1126/science.1083130, 2003.
Fleitmann, D., Burns, S. J., Mangini, A., Mudelsee, M., Kramers, J., Villa,
I., Neff, U., Al-Subbary, A. A., Buettner, A., Hippler, D., and Matter, A.:
Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman
and Yemen (Socotra), Quaternary Sci. Rev., 26, 170–188,
https://doi.org/10.1016/j.quascirev.2006.04.012, 2007.
Flohr, P., Fleitmann, D., Zorita, E., Sadekov, A., Cheng, H., Bosomworth,
M., Edwards, L., Matthews, W., and Matthews, R.: Late Holocene droughts in
the Fertile Crescent recorded in a speleothem from northern Iraq, Geophys.
Res. Lett., 44, 1528–1536, https://doi.org/10.1002/2016GL071786, 2017.
Fohlmeister, J., Kromer, B., and Mangini, A.: The influence of soil organic
matter age spectrum on the reconstruction of atmospheric 14C levels via
stalagmites, Radiocarbon, 53, 99–115, https://doi.org/10.1017/S003382220003438X, 2011.
Genty, D., Massault, M., Gilmour, M., Baker, A., Verheyden, S., and Kepens,
E.: Calculation of past dead carbon proportion and variability by the
comparison of AMS(14)C and TIMS U/Th ages on two holocene stalagmites,
Radiocarbon, 41, 251–270, https://doi.org/10.1017/S003382220005712X, 1999.
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu,
E., and Hamelin, B.: Dead carbon in stalagmites: Carbonate bedrock
paleodissolution vs. ageing of soil organic matter. Implications for 13C
variations in speleotherms, Geochim. Cosmochim. Ac., 65, 3443–3457,
https://doi.org/10.1016/S0016-7037(01)00697-4, 2001.
Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Frisia, S., Zhao, J. xin,
Ayliffe, L. K., Hantoro, W. S., Hellstrom, J. C., Fischer, M. J., Feng, Y.
X., and Suwargadi, B. W.: Evidence for Holocene changes in
Australian-Indonesian monsoon rainfall from stalagmite trace element and
stable isotope ratios, Earth Planet. Sc. Lett.,
292, 27–38, https://doi.org/10.1016/j.epsl.2010.01.002, 2010.
Griffiths, M. L., Fohlmeister, J., Drysdale, R. N., Hua, Q., Johnson, K. R.,
Hellstrom, J. C., Gagan, M. K., and Zhao, J. x.: Hydrological control of the
dead carbon fraction in a Holocene tropical speleothem, Quat. Geochronol.,
14, 81–93, https://doi.org/10.1016/j.quageo.2012.04.001, 2012.
Gupta, A. K., Anderson, D. M., and Overpeck, J. T.: Abrupt changes in the
Asian southwest monsoon during the holocene and their links to the North
Alantic Ocean, Nature, 421, 354–357, https://doi.org/10.1038/nature01340, 2003.
Hendy, C.: The isotopic geochemistry of speleothems – I. The calculation of
the effects of different modes of formaion on the isotopic composition of
speleothems and their applicability as paleoclimatic indicators, Geochim.
Cosmochim. Ac., 35, 801–824, https://doi.org/10.1016/0016-7037(71)90127-X, 1971.
Hoffmann, D. L., Beck, J. W., Richards, D. A., Smart, P. L., Singarayer, J.
S., Ketchmark, T., and Hawkesworth, C. J.: Towards radiocarbon calibration
beyond 28 ka using speleothems from the Bahamas, Earth Planet. Sc. Lett.,
289, 1–10, https://doi.org/10.1016/j.epsl.2009.10.004, 2010.
Hua, Q., Barbetti, M., Fink, D., Kaiser, K. F., Friedrich, M., Kromer, B.,
Levchenko, V. A., Zoppi, U., Smith, A. M., and Bertuch, F.: Atmospheric 14C
variations derived from tree rings during the early Younger Dryas, Quaternary Sci. Rev., 28, 2982–2990, https://doi.org/10.1016/j.quascirev.2009.08.013, 2009.
Ivanochko, T. S., Ganeshram, R. S., Brummer, G. J. A., Ganssen, G., Jung, S.
J. A., Moreton, S. G., and Kroon, D.: Variations in tropical convection as an
amplifier of global climate change at the millennial scale, Earth Planet.
Sc. Lett., 235, 302–314, https://doi.org/10.1016/j.epsl.2005.04.002, 2005.
Kaufmann, G.: Stalagmite growth and palaeo-climate: The numerical
perspective, Earth Planet. Sc. Lett., 214, 251–266, https://doi.org/10.1016/S0012-821X(03)00369-8,
2003.
Kaufmann, G. and Dreybrodt, W.: Stalagmite growth and palaeo-climate: An
inverse approach, Earth Planet. Sc. Lett., 224, 529–545, https://doi.org/10.1016/j.epsl.2004.05.020,
2004.
Kromer, B., Lindauer, S., Synal, H. A., and Wacker, L.: MAMS – A new AMS
facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany,
Nucl. Instrum. Meth. B, 294, 11–13, https://doi.org/10.1016/j.nimb.2012.01.015, 2013.
Lechleitner, F. A., Baldini, J. U. L., Breitenbach, S. F. M., Fohlmeister,
J., Mcintyre, C., Goswami, B., Jamieson, R. A., van der Voort, T. S.,
Prufer, K., Marwan, N., Culleton, B. J., Kennett, D. J., Asmerom, Y.,
Polyak, V., and Eglinton, T. I.: Hydrological and climatological influences
on a very high resolution tropical stalagmite radiocarbon record, Geochim.
Cosmochim. Ac., 194, 233–252,
https://doi.org/10.1016/j.gca.2016.08.039, 2016.
Lotsch, A., Friedl, M. A., Anderson, B. T., and Tucker, C. J.: Coupled
vegetation-precipitation variability observed from satellite and climate
records, Geophys. Res. Lett., 30, 14, https://doi.org/10.1029/2003GL017506, 2003.
Markowska, M., Fohlmeister, J., Treble, P. C., Baker, A., Andersen, M. S.,
and Hua, Q.: Modelling the 14C bomb-pulse in young speleothems using a soil
carbon continuum model, Geochim. Cosmochim. Ac., 261, 342–367,
https://doi.org/10.1016/J.GCA.2019.04.029, 2019.
Mies, B. and Beyhl, F. E.: The vegetation ecology of Soqotra, in: Proceedings of the First International Symposium on Soqotra Island: Present and Future, Aden (March 1996), edited by: Dumont, H., Vol. 1, 35–82, United Nations Publications, Global Environment Facility, Conservation and Sustainable Use of Biodiversity of Soqotra Archipelago, Vol. 1, ISBN 90-804341-1-6, New York, NY, USA, 1998.
Myers, C. G., Oster, J. L., Sharp, W. D., Bennartz, R., Kelley, N. P.,
Covey, A. K., and Breitenbach, S. F. M.: Northeast Indian stalagmite records
Pacific decadal climate change: Implications for moisture transport and
drought in India, Geophys. Res. Lett., 42, 4124–4132, https://doi.org/10.1002/2015GL063826, 2015.
Noronha, A. L., Johnson, K. R., Hu, C., Ruan, J., Southon, J. R., and
Ferguson, J. E.: Assessing influences on speleothem dead carbon variability
over the Holocene: Implications for speleothem-based radiocarbon
calibration, Earth Planet. Sc. Lett., 394, 20–29,
https://doi.org/10.1016/j.epsl.2014.03.015, 2014.
Overpeck, J., Anderson, D., Trumbore, S., and Prell, W.: The southwest Indian
Monsoon over the last 18000 years, Clim. Dynam., 12, 213–225, https://doi.org/10.1007/BF00211619, 1996.
Popov, G. B.: The vegetation of Socotra, Bot. J. Linn. Soc., 55,
706–720, https://doi.org/10.1111/j.1095-8339.1957.tb00031.x, 2008.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer,
B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 Years cal
BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rudzka, D., McDermott, F., Baldini, L. M., Fleitmann, D., Moreno, A., and
Stoll, H.: The coupled δ13C-radiocarbon systematics of three Late
Glacial/early Holocene speleothems; insights into soil and cave processes at
climatic transitions, Geochim. Cosmochim. Ac., 75, 4321–4339,
https://doi.org/10.1016/j.gca.2011.05.022, 2011.
Schaub, M., Büntgen, U., Kaiser, K. F., Kromer, B., Talamo, S.,
Andersen, K. K., and Rasmussen, S. O.: Lateglacial environmental variability
from Swiss tree rings, Quaternary Sci. Rev., 27, 29–41, https://doi.org/10.1016/j.quascirev.2007.01.017,
2008.
Schlüter, T.: Geological Atlas of Africa: with Notes on Stratigraphy,
Tectonics, Economic Geology, Geohazard and Geosites of Each Country, Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/3-540-29145-8, 2006.
Scholte, P. and De Geest, P.: The climate of Socotra Island (Yemen): A
first-time assessment of the timing of the monsoon wind reversal and its
influence on precipitation and vegetation patterns, J. Arid Environ.,
74, 1507–1515, https://doi.org/10.1016/j.jaridenv.2010.05.017, 2010.
Scholz, D. and Hoffmann, D. L.: StalAge – An algorithm designed for
construction of speleothem age models, Quat. Geochronol., 6, 369–382,
https://doi.org/10.1016/j.quageo.2011.02.002, 2011.
Schulz, H., van Rad, U., and Erlenkeuser, H.: Correlation between Arabian Sea
and Greenland climate oscillations of the past 110 000 years, Nature,
393, 54–57, https://doi.org/10.1038/31750, 1998.
Shakun, J. D., Burns, S. J., Fleitmann, D., Kramers, J., Matter, A., and
Al-Subbary, A. A.: A high-resolution, absolute-dated deglacial speleothem
record of Indian Ocean climate from Socotra Island, Yemen, Earth Planet.
Sc. Lett., 259, 442–456, https://doi.org/10.1016/j.epsl.2007.05.004, 2007.
Soulet, G., Skinner, L. C., Beaupré, S. R., and Galy, V.: A note on
reporting of reservoir 14C disequilibria and age offsets, Radiocarbon,
58, 205–211, https://doi.org/10.1017/RDC.2015.22, 2016.
Southon, J., Noronha, A. L., Cheng, H., Edwards, R. L., and Wang, Y.: A
high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82,
Quaternary Sci. Rev., 33, 32–41, https://doi.org/10.1016/j.quascirev.2011.11.022, 2012.
Synal, H. A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon
AMS system, Nucl. Instrum. Meth. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Therre, S., Fohlmeister, J., Fleitmann, D., Matter, A., Burns, S. J., Arps, J., Schröder-Ritzrau, A., Friedrich, R., and Frank, N.: U-series and radiocarbon dating results of stalagmite M1-5 from Moomi Cave, Socotra Island, PANGAEA, https://doi.org/10.1594/PANGAEA.906003, 2019.
Treble, P. C., Fairchild, I. J., Baker, A., Meredith, K. T., Andersen, M.
S., Salmon, S. U., Bradley, C., Wynn, P. M., Hankin, S. I., Wood, A., and
McGuire, E.: Roles of forest bioproductivity, transpiration and fire in a
nine-year record of cave dripwater chemistry from southwest Australia,
Geochim. Cosmochim. Ac., 184, 132–150, https://doi.org/10.1016/j.gca.2016.04.017,
2016.
Trumbore, S.: Radiocarbon and Soil Carbon Dynamics, Annu. Rev. Earth Pl.
Sc., 37, 47–66, https://doi.org/10.1146/annurev.earth.36.031207.124300, 2009.
Unkel, I.: AMS-14C-Analysen zur Rekonstruktion der Landschafts- und
Kulturgeschichte in der Region Palpa (S-Peru), Heidelberg University, 2006.
Warken, S. F., Fohlmeister, J., Schröder-Ritzrau, A., Constantin, S.,
Spötl, C., Gerdes, A., Esper, J., Frank, N., Arps, J., Terente, M.,
Riechelmann, D. F. C., Mangini, A., and Scholz, D.: Reconstruction of late
Holocene autumn/winter precipitation variability in SW Romania from a
high-resolution speleothem trace element record, Earth Planet. Sc. Lett.,
499, 122–133, https://doi.org/10.1016/j.epsl.2018.07.027, 2018.
Wefing, A. M., Arps, J., Blaser, P., Wienberg, C., Hebbeln, D., and Frank,
N.: High precision U-series dating of scleractinian cold-water corals using
an automated chromatographic U and Th extraction, Chem. Geol., 475,
140–148, https://doi.org/10.1016/j.chemgeo.2017.10.036, 2017.
Zhou, J., Lundstrom, C. C., Fouke, B., Panno, S., Hackley, K., and Curry, B.:
Geochemistry of speleothem records from southern Illinois: Development of
(234U)/(238U) as a proxy for paleoprecipitation, Chem. Geol., 221,
1–20, https://doi.org/10.1016/j.chemgeo.2005.02.005, 2005.
Short summary
The radiocarbon (14C) levels of a stalagmite (grown 27–11 kyr before today) from Socotra Island (Arabian Sea) show drastic changes across the last termination. Our study highlights the influence of a warming climate with increasing precipitation towards the ending glacial on stalagmite 14C. High-resolution measurements suggest 14C is linked to a denser vegetation coverage on the island. Therefore, stalagmite 14C can be used as a climate tracer on millennial to sub-centennial timescales.
The radiocarbon (14C) levels of a stalagmite (grown 27–11 kyr before today) from Socotra Island...