Articles | Volume 16, issue 1
https://doi.org/10.5194/cp-16-227-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-227-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
Louis Honegger
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Geneva, Rue des
Maraîchers 13, 1205 Geneva, Switzerland
Thierry Adatte
Institut of Earth Sciences, Géopolis, University of Lausanne, 1015 Lausanne, Switzerland
Jorge E. Spangenberg
Institute of Earth Surface Dynamics (IDYST), Géopolis, University of Lausanne, 1015 Lausanne, Switzerland
Jeremy K. Caves Rugenstein
The Land in the Earth System Department, Max Planck Institute for Meteorology, Bundesstraße 53, 20146,
Hamburg, Germany
Miquel Poyatos-Moré
Department of Geosciences, University of Oslo, Sem Sælands vei 1, 0371 Oslo, Norway
Cai Puigdefàbregas
Department of Earth and Ocean Dynamics, University of Barcelona, C/
Martí i Franquès, s/n, 08028 Barcelona, Spain
Emmanuelle Chanvry
IC2MP UMR 7285, Université de Poitiers, 86000 Poitiers, France
Julian Clark
Equinor Research Center, 6300 Bridge Point Parkway, Building 2, Suite
100, Austin, Texas, USA
Andrea Fildani
Equinor Research Center, 6300 Bridge Point Parkway, Building 2, Suite
100, Austin, Texas, USA
Eric Verrechia
Institut of Earth Sciences, Géopolis, University of Lausanne, 1015 Lausanne, Switzerland
Kalin Kouzmanov
Department of Earth Sciences, University of Geneva, Rue des
Maraîchers 13, 1205 Geneva, Switzerland
Matthieu Harlaux
Department of Earth Sciences, University of Geneva, Rue des
Maraîchers 13, 1205 Geneva, Switzerland
Sébastien Castelltort
Department of Earth Sciences, University of Geneva, Rue des
Maraîchers 13, 1205 Geneva, Switzerland
Related authors
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Livia Manser, Tyler Kukla, and Jeremy K. C. Rugenstein
Clim. Past, 20, 1039–1065, https://doi.org/10.5194/cp-20-1039-2024, https://doi.org/10.5194/cp-20-1039-2024, 2024
Short summary
Short summary
The Great Plains host the single most important climatic boundary in North America, separating the humid east from the semi-arid west. How this boundary will move as the world warms holds implications for the societies and ecosystems of the Plains. We study how this boundary changed in the past during a period of globally warmer temperatures. We find that this climatic boundary appears to be in the same location as today, suggesting that the Great Plains climate is resilient to global changes.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Cécile Charles, Nora Khelidj, Lucia Mottet, Bao Ngan Tu, Thierry Adatte, Brahimsamba Bomou, Micaela Faria, Laetitia Monbaron, Olivier Reubi, Natasha de Vere, Stéphanie Grand, and Gianalberto Losapio
EGUsphere, https://doi.org/10.5194/egusphere-2024-991, https://doi.org/10.5194/egusphere-2024-991, 2024
Preprint archived
Short summary
Short summary
We found that novel ecosystems created by glacier retreat are first characterized by an increase in plant diversity that is driven by a shift in soil texture. Plant diversity in turn increases soil organic matter and nutrient. Soils gradually acidifies and leads to a final stage where a dominance of few plant species reduces plant diversity. Understanding plant–soil interactions is crucial to anticipate how glacier retreat shapes biodiversity and landscapes.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2024-351, https://doi.org/10.5194/egusphere-2024-351, 2024
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein
Geosci. Model Dev., 16, 5515–5538, https://doi.org/10.5194/gmd-16-5515-2023, https://doi.org/10.5194/gmd-16-5515-2023, 2023
Short summary
Short summary
The CH2O-CHOO TRAIN model can simulate how climate and the long-term carbon cycle interact across millions of years on a standard PC. While efficient, the model accounts for many factors including the location of land masses, the spatial pattern of the water cycle, and fundamental climate feedbacks. The model is a powerful tool for investigating how short-term climate processes can affect long-term changes in the Earth system.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Vincent Mouchi, Camille Godbillot, Vianney Forest, Alexey Ulianov, Franck Lartaud, Marc de Rafélis, Laurent Emmanuel, and Eric P. Verrecchia
Biogeosciences, 17, 2205–2217, https://doi.org/10.5194/bg-17-2205-2020, https://doi.org/10.5194/bg-17-2205-2020, 2020
Short summary
Short summary
Rare earth elements (REEs) in coastal seawater are included in bivalve shells during growth, and a regional fingerprint can be defined for provenance and environmental monitoring studies. We present a large dataset of REE abundances from oysters from six locations in France. The cupped oyster can be discriminated from one locality to another, but this is not the case for the flat oyster. Therefore, provenance studies using bivalve shells based on REEs are not adapted for the flat oyster.
Related subject area
Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Cenozoic
Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up
Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany)
Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores
Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming
Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary
Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, and Andreas Mulch
Clim. Past, 15, 1741–1755, https://doi.org/10.5194/cp-15-1741-2019, https://doi.org/10.5194/cp-15-1741-2019, 2019
Short summary
Short summary
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen, DE) and assess paleoenvironmental changes in midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast (Schöningen, Cobham, Vasterival). These records share major characteristics of a reduced CIE (~ -1.3 ‰) in terms of bulk organic matter, increased fire activity (pre-CIE), minor plant species changes, and drowning of near-coastal mires during the CIE.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
Margret Steinthorsdottir, Amanda S. Porter, Aidan Holohan, Lutz Kunzmann, Margaret Collinson, and Jennifer C. McElwain
Clim. Past, 12, 439–454, https://doi.org/10.5194/cp-12-439-2016, https://doi.org/10.5194/cp-12-439-2016, 2016
Short summary
Short summary
Our manuscript "Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary" reports that ~ 40 % decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene–Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene–Oligocene climate change, and a "tipping point" was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.
D. V. Kent and G. Muttoni
Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, https://doi.org/10.5194/cp-9-525-2013, 2013
Cited articles
Abels, H. A., Clyde, W. C., Gingerich, P. D., Hilgen, F. J., Fricke, H. C.,
Bowen, G. J., and Lourens, L. J.: Terrestrial carbon isotope excursions and
biotic change during Palaeogene hyperthermals, Nat. Geosci., 5, 326–329,
https://doi.org/10.1038/ngeo1427, 2012.
Abels, H. A., Lauretano, V., van Yperen, A. E., Hopman, T., Zachos, J. C., Lourens, L. J., Gingerich, P. D., and Bowen, G. J.: Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming, Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, 2016.
Arostegi, J., Baceta, J. I., Pujalte, V., and Carracedo, M.: Late Cretaceous
– Palaeocene mid-latitude climates: inferences from clay mineralogy of
continental-coastal sequences (Tremp-Graus area, southern Pyrenees, N
Spain), Clay Miner., 46, 105–126, https://doi.org/10.1180/claymin.2011.046.1.105, 2011.
Badiola, A., Checa, L., Cuesta, M. A., Quer, R., Hooker, J. J., and Astibia, H.: The role of new Iberian
finds in understanding European Eocene mammalian paleobiogeography, Geol. Acta, 7, 243–258,
https://doi.org/10.1344/105.000000281, 2009.
Bentham, P. and Burbank, D. W.: Chronology of Eocene foreland basin
evolution along the western oblique margin of the South-Central Pyrenees,
Tert. Basins Spain. Stratigr. Rec. Crustal Kinematics. World Reg. Geol., 6,
144–152, 1996.
Bolle, M.-P. and Adatte, T.: Palaeocene- early Eocene climatic evolution in
the Tethyan realm: clay mineral evidence, Clay Miner., 36, 249–261,
https://doi.org/10.1180/000985501750177979, 2001.
Bowen, G. J., Koch, P. L., Gingerich, P. D., Norris, R. D., Bains, S., and
Corfield, R. M.: Refined isotope stratigraphy across the continental
Paleocene-Eocene boundary on Polecat Bench in the northern Bighorn Basin,
Int. Conf. Clim. biota early Paleogene, Powell, WY, United States, 3–8 July
2001, 33, 73–88, 2001.
Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum,
T.: A humid climate state during the Palaeocene/Eocene thermal maximum,
Nature, 432, 495–499, https://doi.org/10.1038/nature03115, 2004.
Bowen, G. J., Bralower, T. J., Delaney, M. L., Dickens, G. R., Kelly, D. C.,
Koch, P. L., Kump, L. R., Meng, J., Sloan, L. C., Thomas, E., Wing, S. L.
and Zachos, J. C.: Eocene hyperthermal event offers insight into greenhouse
warming, EOS T. Am. Geophys. Un., 87, 165–169, https://doi.org/10.1029/2006EO170002,
2006.
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Röhl, U., Westerhold, T.,
Steimke, A., Gingerich, P. D., Wing, S. L., and Clyde, W. C.: Two massive,
rapid releases of carbon during the onset of the Palaeocene–Eocene thermal
maximum, Nat. Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316, 2015.
Bull, W. B.: Geomorphic Responses to Climatic Change, Oxford Univ. Press, Oxford, 1991.
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A.,
Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A.,
Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.:
Hydrological and associated biogeochemical consequences of rapid global
warming during the Paleocene-Eocene Thermal Maximum, Global Planet. Change,
157, 114–138, https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Castelltort, S. and Van Den Driessche, J.: How plausible are high-frequency
sediment supply-driven cycles in the stratigraphic record?, Sediment. Geol.,
157, 3–13, https://doi.org/10.1016/S0037-0738(03)00066-6, 2003.
Castelltort, S., Honegger, L., Adatte, T., Clark, J. D., Puigdefàbregas,
C., Spangenberg, J. E., Dykstra, M. L., and Fildani, A.: Detecting eustatic
and tectonic signals with carbon isotopes in deep-marine strata, Eocene
Ainsa Basin, Spanish Pyrenees, Geology, 45, 707–710, https://doi.org/10.1130/G39068.1,
2017.
Caves, J. K., Moragne, D. Y., Ibarra, D. E., Bayshashov, B. U., Gao, Y.,
Jones, M. M., Zhamangara, A., Arzhannikova, A. V., Arzhannikov, S. G., and
Chamberlain, C. P.: The Neogene de-greening of Central Asia, Geology, 44,
887–890, https://doi.org/10.1130/G38267.1, 2016.
Caves Rugenstein, J. K. and Chamberlain, C. P.: The evolution of
hydroclimate in Asia over the Cenozoic: A stable-isotope perspective,
Earth-Sci. Rev., 185, 1129–1156, https://doi.org/10.1016/j.earscirev.2018.09.003,
2018.
Cerling, T. E.: The stable isotopic composition of modern soil carbonate and
its relation to climate, Earth Planet. Sc. Lett., 71, 229–240, 1984.
Cerling, T. E. and Quade, J.: Stable Carbon and Oxygen Isotopes in Soil
Carbonates, Clim. Chang. Cont. Isot. Rec., 78, 217–231, https://doi.org/10.1029/GM078p0217,
1993.
Chanvry, E., Deschamps, R., Joseph, P., Puigdefàbregas, C.,
Poyatos-Moré, M., Serra-Kiel, J., Garcia, D., and Teinturier, S.: The
influence of intrabasinal tectonics in the stratigraphic evolution of
piggyback basin fills: Towards a model from the Tremp-Graus-Ainsa Basin
(South-Pyrenean Zone, Spain), Sediment. Geol., 377, 34–62,
https://doi.org/10.1016/j.sedgeo.2018.09.007, 2018.
Chen, C., Guerit, L., Foreman, B. Z., Hassenruck-Gudipati, H. J., Adatte,
T., Honegger, L., Perret, M., Sluijs, A., and Castelltort, S.: Estimating
regional flood discharge during Palaeocene-Eocene global warming, Sci. Rep.,
8, 1–8, https://doi.org/10.1038/s41598-018-31076-3, 2018.
Clevis, Q., de Jager, G., Nijman, W., and de Boer, P. L.: Stratigraphic
signatures of translation of thrust-sheet top basins over low-angle
detachment faults, Basin Res., 16, 145–163,
https://doi.org/10.1046/j.1365-2117.2003.00226.x, 2004.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M. P.: Orbital climate
forcing of δ13C excursions in the late Paleocene-early Eocene
(chrons C24n-C25n), Paleoceanography, 18, 1–25, https://doi.org/10.1029/2003PA000909,
2003.
Croudace, I. W. and Rothwell, R. G.: Micro-XRF Studies of Sediment Cores,
edited by: Croudace, I. W. and Rothwell, R. G., Springer, Netherlands,
Dordrecht, 2015.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Davidson, E. A., Trumbore, S. E., Amundson, R., and Davidson, R.:
Question the Validity of Our Conclusions on the Grounds That Differences in
Disturbance, High Variability Among Sites, and the Use of a Single-Pool
Model To Estimate Turnover, Nat. Nat. Nat. Biotropica Nat. Trumbore, S. E.
Ecol. Appl A. Amundson, R. A. Sci. Chang. Biol. Nat. Sci., 48, 21–51,
2000.
Deconto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang,
T., Pollard, D., and Beerling, D. J.: Past extreme warming events linked to
massive carbon release from thawing permafrost, Nature, 484, 87–91,
https://doi.org/10.1038/nature10929, 2012.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova
Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E.,
and Boeckx, P.: Soil carbon storage controlled by interactions between
geochemistry and climate, Nat. Geosci., 8, 780–783, https://doi.org/10.1038/ngeo2516,
2015.
Duller, R. A., Armitage, J. J., Manners, H. R., Grimes, S., and Jones, T. D.:
Delayed sedimentary response to abrupt climate change at the
Paleocene-Eocene boundary, northern Spain, Geology, 47, 159–162,
https://doi.org/10.1130/G45631.1, 2019.
Dunkley Jones, T., Manners, H. R., Hoggett, M., Kirtland Turner, S., Westerhold, T., Leng, M. J., Pancost, R. D., Ridgwell, A., Alegret, L., Duller, R., and Grimes, S. T.: Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, 2018.
Farrell, S. G., Williams, G. D., and Atkinson, C. D.: Constraints on the age
of movement of the Montsech and Cotiella Thrusts, south central Pyrenees,
Spain, J. Geol. Soc. London., 144, 907–914, https://doi.org/10.1144/gsjgs.144.6.0907,
1987.
Foreman, B. Z. and Straub, K. M.: Autogenic geomorphic processes determine
the resolution and fidelity of terrestrial paleoclimate records, Sci. Adv.,
3, 1–12, https://doi.org/10.1126/sciadv.1700683, 2017.
Foreman, B. Z., Heller, P. L., and Clementz, M. T.: Fluvial response to
abrupt global warming at the Palaeocene/Eocene boundary, Nature, 490,
92–95, https://doi.org/10.1038/nature11513, 2012.
Gallagher, T. M. and Sheldon, N. D.: Combining soil water balance and
clumped isotopes to understand the nature and timing of pedogenic carbonate
formation, Chem. Geol., 435, 79–91, https://doi.org/10.1016/j.chemgeo.2016.04.023, 2016.
Giusberti, L., Boscolo Galazzo, F., and Thomas, E.: Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section), Clim. Past, 12, 213–240, https://doi.org/10.5194/cp-12-213-2016, 2016.
Hasiotis, S. T.: Reconnaissance of Upper Jurassic Morrison Formation
ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic,
and paleoclimatic significance of terrestrial and freshwater ichnocoenoses,
Sediment. Geol., 167, 177–268, https://doi.org/10.1016/j.sedgeo.2004.01.006, 2004.
Hessler, A. M., Zhang, J., Covault, J., and Ambrose, W.: Continental
weathering coupled to Paleogene climate changes in North America, Geology,
45, 911–914, https://doi.org/10.1130/G39245.1, 2017.
Hunger, T.: Climatic signals in the Paleocene fluvial formation of the
Tremp-Graus Basin, Pyrenees, Spain, MSc Thesis, Université de
Genève, 123 pp., available at: https://archive-ouverte.unige.ch/unige:124264 (last access: 30 January 2020),
2018.
Hyland, E. G. and Sheldon, N. D.: Coupled CO2-climate response during the
Early Eocene Climatic Optimum, Palaeogeogr. Palaeocl.,
369, 125–135, https://doi.org/10.1016/j.palaeo.2012.10.011, 2013.
Kapellos, C. and Schaub, H.: Zur Korrelation von Biozonierungen mit
Grossforaminiferen und Nannoplankton im Paläogen der Pyrenäen,
Eclogae Geol. Helv., 66, 687–737, 1973.
Khozyem Saleh, H. M. A.: Sedimentology, geochemistry and mineralogy of the
Paleocene-Eocene thermal maximum (PETM): sediment records from Egypt, India
and Spain, PhD Thesis, Université de Lausanne,
available at: https://serval.unil.ch/notice/serval:BIB_181B1630AE67,
(last access: 30 January 2020), 2013.
Kirtland-Turner, S., Sexton, P. F., Charles, C. D., and Norris, R. D.:
Persistence of carbon release events through the peak of early Eocene global
warmth, Nat. Geosci., 7, 748–751, https://doi.org/10.1038/NGEO2240, 2014.
Klemmedson, J. O.: Soil organic matter in arid and semiarid ecosystems:
Sources, accumulation, and distribution, Arid Soil Res. Rehab., 3,
99–114, https://doi.org/10.1080/15324988909381194, 1989.
Koch, P. L., Zachos, J. C., and Gingerich, P. D.: Correlation between isotope
records in marine and continental carbon reservoirs near the
Palaeocene/Eocene boundary, Nature, 358, 319–322, https://doi.org/10.1038/358319a0,
1992.
Koch, P. L., Zachos, J., and Dettman, D. L.: Stable isotope stratigraphy and
paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA), Palaeogeogr.
Palaeocl., 115, 61–89, https://doi.org/10.1016/0031-0182(94)00107-J,
1995.
Koch, P. L., Clyde, W. C., Hepple, R. P., Fogel, M. L., Wing, S. L., and
Zachos, J. C.: Carbon and oxygen isotope records from Paleosols spanning the
Paleocene-Eocene boundary, Bighorn Basin, Wyoming, Causes Consequences Glob.
Warm Clim. Early Paleogene, 369, 49–64,
https://doi.org/10.1130/0-8137-2369-8.49, 2003.
Koven, C. D., Hugelius, G., Lawrence, D. M., and Wieder, W. R.: Higher
climatological temperature sensitivity of soil carbon in cold than warm
climates, Nat. Clim. Change, 7, 817–822, https://doi.org/10.1038/nclimate3421, 2017.
Kraus, M. J. and Aslan, A.: Eocene hydromorphic paleosols: significance for
interpreting ancient floodplain processes, J. Sediment. Res., 63, 453–463,
https://doi.org/10.1306/D4267B22-2B26-11D7-8648000102C1865D, 1993.
Kraus, M. J. and Riggins, S.: Transient drying during the Paleocene-Eocene
Thermal Maximum (PETM): Analysis of paleosols in the bighorn basin, Wyoming,
Palaeogeogr. Palaeocl., 245, 444–461,
https://doi.org/10.1016/j.palaeo.2006.09.011, 2007.
Kraus, M. J., Woody, D. T., Smith, J. J., and Dukic, V.: Alluvial response to
the Paleocene-Eocene Thermal Maximum climatic event, Polecat Bench, Wyoming
(U.S.A.), Palaeogeogr. Palaeocl., 435, 177–192,
https://doi.org/10.1016/j.palaeo.2015.06.021, 2015.
Kukla, T., Winnick, M. J., Maher, K., Ibarra, D. E., and Chamberlain, C. P.:
The Sensitivity of Terrestrial δ18O Gradients to Hydroclimate
Evolution, J. Geophys. Res.-Atmos., 124, 563–582, https://doi.org/10.1029/2018JD029571,
2019.
Lauretano, V., Littler, K., Polling, M., Zachos, J. C., and Lourens, L. J.: Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum, Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, 2015.
Lauretano, V., Hilgen, F. J., Zachos, J. C., and Lourens, L. J.:
Astronomically tuned age model for the early Eocene carbon isotope events: A
new high-resolution δ13C benthic record of ODP Site 1263 between
∼49 and ∼54 Ma, Newsletters Stratigr., 49,
383–400, https://doi.org/10.1127/nos/2016/0077, 2016.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl,
U., Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to
early Eocene global warming events, Nature, 435, 1083–1087,
https://doi.org/10.1038/nature03814, 2005.
Lunt, D. J., Ridgwell, A., Sluijs, A., Zachos, J., Hunter, S., and Haywood,
A.: A model for orbital pacing of methane hydrate destabilization during the
Palaeogene, Nat. Geosci., 4, 775–778, https://doi.org/10.1038/ngeo1266, 2011.
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V.,
Métivier, F., Gaillardet, J., Lartiges, B., and Mugnier, J.-L.: A
Rouse-based method to integrate the chemical composition of river sediments:
Application to the Ganga basin, J. Geophys. Res., 116, F04012,
https://doi.org/10.1029/2010JF001947, 2011.
Lupker, M., France-Lanord, C., Galy, V., Lavé, J., Gaillardet, J.,
Gajurel, A. P., Guilmette, C., Rahman, M., Singh, S. K., and Sinha, R.:
Predominant floodplain over mountain weathering of Himalayan sediments
(Ganga basin), Geochim. Cosmochim. Ac., 84, 410–432,
https://doi.org/10.1016/j.gca.2012.02.001, 2012.
Marriott, S. B. and Wright, V. P.: Palaeosols as indicators of geomorphic
stability in two Old Red Sandstone alluvial suites, South Wales, J. Geol.
Soc. London, 150, 1109–1120, https://doi.org/10.1144/gsjgs.150.6.1109, 1993.
Marzo, M., Nijman, W., and Puigdefàbregas, C.: Architecture of the
Castissent fluvial sheet sandstones, Eocene, South Pyrenees, Spain,
Sedimentology, 35, 719–738, https://doi.org/10.1111/j.1365-3091.1988.tb01247.x, 1988.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for
the Future, Annu. Rev. Earth Planet. Sc., 39, 489–516,
https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
Melillo, J. M., Steudler, P. A., Aber, J. D. M., Newkirk, K., Lux, H.,
Bowles, F. P., Catricala, C., Magill, A., Ahrens, T., and Morrisseau, S.:
Soil warming and carbon-cycle feedbacks to the climate system, Science, 298,
2173–2176, https://doi.org/10.2172/1129843, 2014.
Milliere, L., Hasinger, O., Bindschedler, S., Cailleau, G., Spangenberg, J.
E., and Verrecchia, E. P.: Stable carbon and oxygen isotope signatures of
pedogenic needle fibre calcite, Geoderma, 161, 74–87,
https://doi.org/10.1016/j.geoderma.2010.12.009, 2011a.
Millière, L., Spangenberg, J. E., Bindschedlera, S., Cailleaua, G., and
Verrecchiaa, E. P.: Reliability of stable carbon and oxygen isotope
compositions of pedogenic needle fibre calcite as environmental indicators:
Examples from Western Europe, Isotopes Environ. Health Stud., 47, 341–358,
https://doi.org/10.1080/10256016.2011.601305, 2011b.
Mutti, E., Séguret, M., and Sgavetti, M.: Sedimentation and Deformation
in the Tertiary Sequences of the Southern Pyrenees, Field Trip Guide-book 7, AAPG Mediterranean Basins Conference, Nice, 169, 1988.
Nicolaides, E.: Analyses des sédiments marins et continentaux
éocènes dans les Pyrénées Espagnoles, BSc Thesis,
Université de Lausanne, 2017.
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple
early Eocene hyperthermals: Their sedimentary expression on the New Zealand
continental margin and in the deep sea, Geology, 35, 699–702,
https://doi.org/10.1130/G23648A.1, 2007.
Nijman, W.: Cyclicity and basin axis shift in a piggyback basin: towards
modelling of the Eocene Tremp-Ager Basin, South Pyrenees, Spain, Geol. Soc.
London, Spec. Publ., 134, 135–162, https://doi.org/10.1144/GSL.SP.1998.134.01.07, 1998.
Nijman, W. and Nio, S.-D.: The Eocene Montañana Delta, Paper presented at Field-Trip Conf., 9th Int. Congr., Int. Assoc. Sedimentol., Nice, 1975.
Nijman, W. and Puigdefabregas, C.: Coarse-grained point bar structure in a
molasse-type fluvial system, Eocene Castisent sandstone Formation, south
Pyrenean Basin, Fluv. Sedimentol. Can Soc Pet. Geol. Mem., 5, 487–510,
1978.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, EOS T. Am. Geophys. Un., 77, 379–379,
https://doi.org/10.1029/96eo00259, 1996.
Payros, A., Tosquella, J., Bernaola, G., Dinarès-Turell, J.,
Orue-Etxebarria, X., and Pujalte, V.: Filling the North European Early/Middle
Eocene (Ypresian/Lutetian) boundary gap: Insights from the Pyrenean
continental to deep-marine record, Palaeogeogr. Palaeocl.,
280, 313–332, https://doi.org/10.1016/j.palaeo.2009.06.018, 2009.
Payros, A., Ortiz, S., Millán, I., Arostegi, J., Orue-Etxebarria, X., and
Apellaniz, E.: Early Eocene climatic optimum: Environmental impact on the
North Iberian continental margin, Bull. Geol. Soc. Am., 127, 1632–1644,
https://doi.org/10.1130/B31278.1, 2015.
Pickering, K. T. and Bayliss, N. J.: Deconvolving tectono-climatic signals
in deep-marine siliciclastics, Eocene Ainsa basin, Spanish Pyrenees: Seesaw
tectonics versus eustasy, Geology, 37, 203–206, https://doi.org/10.1130/G25261A.1,
2009.
Poyatos-Moré, M.: Physical Stratigraphy and Facies Analysis of the
Castissent Tecto-Sedimentary Unit, PhD Thesis, Universidad Autónoma de
Barcelona, 284 pp., available at: https://ddd.uab.cat/record/127119 (last access: 30 January 2020), 2014.
Prochnow, S. J., Nordt, L. C., Atchley, S. C., and Hudec, M. R.: Multi-proxy
paleosol evidence for middle and late Triassic climate trends in eastern
Utah, Palaeogeogr. Palaeocl., 232, 53–72,
https://doi.org/10.1016/j.palaeo.2005.08.011, 2006.
Puigdefabregas, C., Souquet, P., Puigdefàbregas, C., and Souquet, P.:
Tecto-sedimentary cycles and depositional sequences of the mesozoic and
tertiary from the pyrenees, Tectonophysics, 129, 173–203,
https://doi.org/10.1016/0040-1951(86)90251-9, 1986.
Pujalte, V., Baceta, J. I., and Schmitz, B.: A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime, Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, 2015.
Raich, J. and Schlesinger, W.: The global carbon dioxide flux in soil
respiration, Tellus B, 44, 81–99, 1992.
Retallack, G. J.: The environmental factor approach to the interpretation of
paleosols, Factors soil Form. Proc. Symp. Denver, 1991, 33, 31–64, 1994.
Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., and Walsh, J. P.
P.: Environmental signal propagation in sedimentary systems across
timescales, Earth-Sci. Rev., 153, 7–29,
https://doi.org/10.1016/j.earscirev.2015.07.012, 2016.
Schaub, H.: Über die Grossforaminiferen im Untereocaen von Campo
(Ober-Aragonien), Eclogae Geol. Helv., 59, 355–391, 1966.
Schaub, H.: Nummulites et Assilines de la Téthys paléogène.
Taxonomie, phylogenèse et biostratigraphie, Mémoires suisses de
Paléontologie, 104, 236 p., 1981.
Schlunegger, F. and Castelltort, S.: Immediate and delayed signal of slab
breakoff in Oligo/Miocene Molasse deposits from the European Alps, Sci.
Rep., 6, 31010, https://doi.org/10.1038/srep31010, 2016.
Schmitz, B. and Pujalte, V.: Sea-level, humidity, and land-erosion records
across the initial Eocene thermal maximum from a continental-marine transect
in northern Spain, Geology, 31, 689–692, https://doi.org/10.1130/G19527.1, 2003.
Schmitz, B., Pujalte, V., and Núñez-Betelu, K.: Climate and sea-level
perturbations during the Initial Eocene Thermal Maximum: Evidence from
siliciclastic units in the Basque basin (Ermua, Zumaia and Trabakua Pass),
northern Spain, Palaeogeogr. Palaeocl., 165, 299–320,
https://doi.org/10.1016/S0031-0182(00)00167-X, 2001.
Seeland, D.: Late Cretaceous, Paleocene, and Early Eocene Paleogeography
of the Bighorn Basin and Northwestern Wyoming, Cretac. Low. Tert. Rocks
Bighorn Basin, Wyoming Mont. 49th Annu. F. Conf. Guideb., 1–29, 1998.
Sexton, P. F., Norris, R. D., Wilson, P. A., Pälike, H., Westerhold, T.,
Röhl, U., Bolton, C. T., and Gibbs, S.: Eocene global warming events
driven by ventilation of oceanic dissolved organic carbon, Nature, 471,
349–353, https://doi.org/10.1038/nature09826, 2011.
Sheldon, N. D. and Tabor, N. J.: Quantitative paleoenvironmental and
paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 95, 1–52,
https://doi.org/10.1016/j.earscirev.2009.03.004, 2009.
Sheldon, N. D., Retallack, G. J., and Tanaka, S.: Geochemical Climofunctions
from North American Soils and Application to Paleosols across the
Eocene-Oligocene Boundary in Oregon, J. Geol., 110, 687–696,
https://doi.org/10.1086/342865, 2002.
Slessarev, E. W., Lin, Y., Bingham, N. L., Johnson, J. E., Dai, Y., Schimel,
J. P., and Chadwick, O. A.: Water balance creates a threshold in soil pH at
the global scale, Nature, 540, 567–569, https://doi.org/10.1038/nature20139, 2016.
Slotnick, B. S., Dickens, G. R., Nicolo, M. J., Hollis, C. J., Crampton, J.
S., Zachos, J. C., and Sluijs, A.: Large-Amplitude Variations in Carbon
Cycling and Terrestrial Weathering during the Latest Paleocene and Earliest
Eocene: The Record at Mead Stream, New Zealand, J. Geol., 120, 487–505,
https://doi.org/10.1086/666743, 2012.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C of
sedimentary components and the global exogenic carbon pool across early
Paleogene carbon cycle perturbations, Global Biogeochem. Cy., 26, 1–14,
https://doi.org/10.1029/2011GB004224, 2012.
Checa Soler, L. C.: Revisión del género Diacodexis (Artiodactyla,
Mammalia) en el Eoceno inferior del Noreste de España, Geobios, 37,
325–335, https://doi.org/10.1016/j.geobios.2004.03.001, 2004.
Stap, L., Lourens, L. J., Thomas, E., Sluijs, A., Bohaty, S., and Zachos, J.
C.: High-resolution deep-sea carbon and oxygen isotope records of Eocene
Thermal Maximum 2 and H2, Geology, 38, 607–610, https://doi.org/10.1130/G30777.1, 2010.
Straub, K. M. and Foreman, B. Z.: Geomorphic stasis and spatiotemporal
scales of stratigraphic completeness, Geology, 46, 311–314,
https://doi.org/10.1130/G40045.1, 2018.
Teixell, A.: Crustal structure and orogenic material budget in the west
central Pyrenees, Tectonics, 17, 395–406, https://doi.org/10.1029/98TC00561, 1998.
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., and
Hendricks, D. M.: Mineral control of soil organic carbon storage and
turnover, Nature, 389, 170–173, https://doi.org/10.1038/38260, 1997.
Tosquella, J.: Els Nummulitinae del Paleocè-Eocè inferior de la
conca sudpirinenca, Unpublished PhD Thesis, Universitat de Barcelona, 1995.
Tosquella, J., Serra-Kiel, J., Ferràndez, C., and Samsó, J. M.: Las
biozonas de nummulitidos del Paleoceno Superior-Eoceno Inferior de la Cuenca
Pirenaica, Acta Geol. Hisp., 31, 23–36, 1998.
Trampush, S. M., Hajek, E. A., Straub, K. M., and Chamberlin, E. P.:
Identifying autogenic sedimentation in fluvial-deltaic stratigraphy:
Evaluating the effect of outcrop-quality data on the compensation statistic,
J. Geophys. Res.-Earth, 122, 91–113, https://doi.org/10.1002/2016JF004067, 2017.
Trumbore, S. E., Chadwick, O. A., and Amundson, R.: Rapid exchange between
soil carbon and atmospheric carbon dioxide driven by temperature change,
Science, 272, 393–396, https://doi.org/10.1126/science.272.5260.393, 1996.
Turner, J. N., Jones, A. F., Brewer, P. A., Macklin, M. G., and Rassner, S.
M.: Micro-XRF Applications in Fluvial Sedimentary Environments of Britain
and Ireland: Progress and Prospects, in: In Micro-XRF Studies of Sediment
Cores, 227–265, Springer, Dordrecht, 2015.
Wang, Y., Straub, K. M., and Hajek, E. a.: Scale-dependent compensational
stacking: An estimate of autogenic time scales in channelized sedimentary
deposits, Geology, 39, 811–814, https://doi.org/10.1130/G32068.1, 2011.
Westerhold, T. and Röhl, U.: High resolution cyclostratigraphy of the early Eocene – new insights into the origin of the Cenozoic cooling trend, Clim. Past, 5, 309–327, https://doi.org/10.5194/cp-5-309-2009, 2009.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global Extent of
Early Eocene Hyperthermal Events: A New Pacific Benthic Foraminiferal
Isotope Record From Shatsky Rise (ODP Site 1209), Palaeogeogr. Palaeocl., 33, 626–642, https://doi.org/10.1029/2017PA003306, 2018.
Whitchurch, A. L., Carter, A., Sinclair, H. D., Duller, R. A., Whittaker, A.
C., and Allen, P. A.: Sediment routing system evolution within a
diachronously uplifting orogen: Insights from detrital zircon
thermochronological analyses from the South-Central Pyrenees, Am. J. Sci.,
311, 442–482, https://doi.org/10.2475/05.2011.03, 2011.
Winnick, M. J., Caves, J. K., and Chamberlain, C. P.: A mechanistic analysis
of early Eocene latitudinal gradients of isotopes in precipitation, Geophys.
Res. Lett., 42, 8216–8224, https://doi.org/10.1002/2015GL064829, 2015.
Zachos, J., Pagani, H., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J., Dickens, G., and Zeebe, R.: An early Cenozoic perspective on
greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283,
https://doi.org/10.1038/nature06588, 2008.
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal...