Articles | Volume 16, issue 5
https://doi.org/10.5194/cp-16-1999-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1999-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacial history of Inglefield Land, north Greenland from combined in situ 10Be and 14C exposure dating
Anne Sofie Søndergaard
CORRESPONDING AUTHOR
Department of Geoscience, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus C, Denmark
Nicolaj Krog Larsen
Department of Geoscience, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus C, Denmark
Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
Olivia Steinemann
Department of Physics, Institute for Particle Physics and
Astrophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
Jesper Olsen
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
Svend Funder
Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
David Lundbek Egholm
Department of Geoscience, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus C, Denmark
Kurt Henrik Kjær
Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
Related authors
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, and Javed Hassan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-348, https://doi.org/10.5194/essd-2024-348, 2024
Preprint under review for ESSD
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and useful for GIS ice sheet modelling.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Christof Pearce, Karen Søby Özdemir, Ronja Forchhammer Mathiasen, Henrieka Detlef, and Jesper Olsen
Geochronology, 5, 451–465, https://doi.org/10.5194/gchron-5-451-2023, https://doi.org/10.5194/gchron-5-451-2023, 2023
Short summary
Short summary
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with marine sediment cores, the most common dating tool for recent sediments is radiocarbon, but this requires calibration to convert it to calendar ages. This calibration requires knowledge of the marine radiocarbon reservoir age, and this is known to vary in space and time. In this study we provide 92 new radiocarbon measurements to improve our knowledge of the reservoir age around Greenland.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020, https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Jacob C. Yde, Niels T. Knudsen, Jørgen P. Steffensen, Jonathan L. Carrivick, Bent Hasholt, Thomas Ingeman-Nielsen, Christian Kronborg, Nicolaj K. Larsen, Sebastian H. Mernild, Hans Oerter, David H. Roberts, and Andrew J. Russell
Hydrol. Earth Syst. Sci., 20, 1197–1210, https://doi.org/10.5194/hess-20-1197-2016, https://doi.org/10.5194/hess-20-1197-2016, 2016
C. F. Brædstrup, D. L. Egholm, S. V. Ugelvig, and V. K. Pedersen
Earth Surf. Dynam., 4, 159–174, https://doi.org/10.5194/esurf-4-159-2016, https://doi.org/10.5194/esurf-4-159-2016, 2016
Short summary
Short summary
When studying long-term glacial landscape evolution one must make simplifying assumptions about the nature of glacial flow. In this study we show that for two different numerical models such simplifications are mostly unimportant in the setting of glacial landscape evolution. Following this we find that glacial erosion is most intense in the early stages of glaciation and its effects are reduced with time due to flow patterns in the ice removing areas of highest resistance to flow.
A. Damsgaard, D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and C. F. Brædstrup
The Cryosphere, 9, 2183–2200, https://doi.org/10.5194/tc-9-2183-2015, https://doi.org/10.5194/tc-9-2183-2015, 2015
Short summary
Short summary
This paper details a new algorithm for performing computational experiments of subglacial granular deformation. The numerical approach allows detailed studies of internal sediment and pore-water dynamics under shear. Feedbacks between sediment grains and pore water can cause rate-dependent strengthening, which additionally contributes to the plastic shear strength of the granular material. Hardening can stabilise patches of the subglacial beds with implications for landform development.
J. L. Andersen, D. L. Egholm, M. F. Knudsen, J. D. Jansen, and S. B. Nielsen
Earth Surf. Dynam., 3, 447–462, https://doi.org/10.5194/esurf-3-447-2015, https://doi.org/10.5194/esurf-3-447-2015, 2015
Short summary
Short summary
An increasing number of studies demonstrates links between the intensity of periglacial processes and bedrock erosion in steep mountain landscapes. Here, we quantify the dependence of periglacial processes on temperature and sediment thickness. This allows us to model frost processes across the full range of settings encountered in mountain landscapes. We find that sediment mantle thickness strongly modulates the relation between climate and periglacial weathering and sediment transport.
D. L. Egholm, J. L. Andersen, M. F. Knudsen, J. D. Jansen, and S. B. Nielsen
Earth Surf. Dynam., 3, 463–482, https://doi.org/10.5194/esurf-3-463-2015, https://doi.org/10.5194/esurf-3-463-2015, 2015
Short summary
Short summary
We incorporate relations between climate, sediment thickness and periglacial processes quantified in the accompanying paper into a landscape evolution model. This allows us to time-integrate the periglacial contribution to mountain topography on million-year time scales. It is a robust result of our simulations that periglacial processes lead to topographic smoothing. Owing to the climate dependency, this smoothing leads to formation of low-relief surfaces at altitudes controlled by temperature.
Related subject area
Subject: Ice Dynamics | Archive: Terrestrial Archives | Timescale: Holocene
Spatial variability of marine-terminating ice sheet retreat in the Puget Lowland
Duration and ice thickness of a Late Holocene outlet glacier advance near Narsarsuaq, southern Greenland
Glacier response to Holocene warmth inferred from in situ 10Be and 14C bedrock analyses in Steingletscher's forefield (central Swiss Alps)
In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size
Wet avalanches: long-term evolution in the Western Alps under climate and human forcing
Marion A. McKenzie, Lauren E. Miller, Allison P. Lepp, and Regina DeWitt
Clim. Past, 20, 891–908, https://doi.org/10.5194/cp-20-891-2024, https://doi.org/10.5194/cp-20-891-2024, 2024
Short summary
Short summary
Records of the interaction between land and glacial ice movement in the Puget Lowland of Washington State are used to interpret that solid Earth movement provided stability to this marine-terminating glacial ice for at least 500 years. These results are significant because this landscape is similar to parts of the Greenland Ice Sheet and the Antarctic Peninsula, indicating that the interactions seen in this area are applicable to modern glaciated regions.
Peter J. K. Puleo and Yarrow Axford
Clim. Past, 19, 1777–1791, https://doi.org/10.5194/cp-19-1777-2023, https://doi.org/10.5194/cp-19-1777-2023, 2023
Short summary
Short summary
We used two lake sediment records at different elevations and landscape evidence to find that a southern Greenland outlet glacier advanced ~ 3700 years ago and then retreated ~ 1600 years ago. This retreat is unlike other nearby outlet glaciers, possibly because of the complex local ice structure or greater sensitivity to snowfall. We also find that the advanced ice surface had an elevation of ~ 670 m a.s.l. (~ 250 m higher than today) from ~ 3700 to 1600 years ago.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Laurent Fouinat, Pierre Sabatier, Fernand David, Xavier Montet, Philippe Schoeneich, Eric Chaumillon, Jérôme Poulenard, and Fabien Arnaud
Clim. Past, 14, 1299–1313, https://doi.org/10.5194/cp-14-1299-2018, https://doi.org/10.5194/cp-14-1299-2018, 2018
Short summary
Short summary
In the context of a warming climate, mountain environments are especially vulnerable to a change in the risk pattern. Our study focuses on the past evolution of wet avalanches, likely triggered by warmer temperatures destabilizing the snow cover. In the last 3300 years we observed an increase of wet avalanche occurrence related to human activities, intensifying pressure on forest cover, as well as favorable climate conditions such as warmer temperatures coinciding with retreating glacier phases.
Cited articles
Axford, Y., Lasher, G. E., Kelly, M. A., Osterberg, E. C., Landis, J.,
Schellinger, G. C., Pfeiffer, A., Thompson, E., and Francis, D. R.: Holocene
temperature history of northwest Greenland – With new ice cap constraints
and chironomid assemblages from Deltasø, Quaternary Sci. Rev., 215,
160–172, https://doi.org/10.1016/j.quascirev.2019.05.011, 2019.
Balco, G.: Glacier Change and Paleoclimate Applications of
Cosmogenic-Nuclide Exposure Dating, Annu. Rev. Earth Pl.
Sc., 48, 1.1–1.28, https://doi.org/10.1146/annurev-earth-081619-052609, 2020.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Bennike, O.: Late Quaternary history of Washington Land, North Greenland,
Boreas, 31, 260–272, 2002.
Bennike, O.: An early Holocene Greenland whale from Melville Bugt,
Greenland, Quaternary Res., 69, 72–76, https://doi.org/10.1016/j.yqres.2007.10.004,
2008.
Bennike, O. and Björck, S.: Chronology of the last recession of the
Greenland Ice Sheet, J. Quaternary Sci., 17, 211–219, https://doi.org/10.1002/jqs.670, 2002.
Bennike, O. and Weidick, A.: Late Quaternary history around
Nioghalvfjerdsfjorden and Jøkelbugten, North-East Greenland, Boreas, 30,
205–227, 2001.
Blake, W., Boucherle, M. M., Fredskild, B., Janssens, J. A., and Smol, J.
P.: The geomorphological setting, glacial history and Holocene developement
of “Kap Inglefield Sø”, Inglefield Land, North-West Greenland,
Meddelelser om Grønland, Geoscience, 27, 42, 1992.
Briner, J. P., Håkansson, L., and Bennike, O.: The deglaciation and
neoglaciation of Upernavik Isstrøm, Greenland, Quaternary Res., 80,
459–467, https://doi.org/10.1016/j.yqres.2013.09.008, 2013.
Briner, J. P., Kaufman, D. S., Bennike, O., and Kosnik, M. A.: Amino acid
ratios in reworked marine bivalve shells constrain Greenland Ice Sheet
history during the Holocene, Geology, 42, 75–78, https://doi.org/10.1130/g34843.1, 2014.
Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de
Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K.,
Jennings, A., Kaufman, D. S., Miller, G., Rouston, C., and Wagner, B.:
Holocene climate change in Arctic Canada and Greenland, Quaternary Sci. Rev., 147, 340–364, https://doi.org/10.1016/j.quascirev.2016.02.010, 2016.
Brock, F., Higham, T., Ditchfield, P., and Ramsey, C. B.: Current
Pretreatment Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon
Accelerator Unit (Orau), Radiocarbon, 52, 103–112, https://doi.org/10.1017/s0033822200045069, 2010.
Buizert, C., Keisling, B. A., Box, J. E., He, F., Carlson, A. E., Sinclair,
G., and DeConto, R. M.: Greenland-Wide Seasonal Temperatures During the Last
Deglaciation, Geophys. Res. Lett., 45, 1905–1914, https://doi.org/10.1002/2017gl075601, 2018.
Caron, M., Montero-Serrano, J. C., St-Onge, G., and Rochon, A.: Quantifying
provenance and transport pathways of Holocene sediments from the
northwestern Greenland margin, Paleoceanography and Paleoclimatology, 35, e2019PA003809, https://doi.org/10.1029/2019pa003809, 2020.
Ceperley, E. G., Marcott, S. A., Reusche, M. M., Barth, A. M., Mix, A. C.,
Brook, E. J., and Caffee, M.: Widespread early Holocene deglaciation,
Washington Land, northwest Greenland, Quaternary Sci. Rev., 231, 106181, https://doi.org/10.1016/j.quascirev.2020.106181, 2020.
Corbett, L. B., Bierman, P. R., Graly, J. A., Neumann, T. A., and Rood, D.
H.: Constraining landscape history and glacial erosivity using paired
cosmogenic nuclides in Upernavik, northwest Greenland, Geol. Soc.
Am. Bull., 125, 1539–1553, https://doi.org/10.1130/b30813.1, 2013.
Corbett, L. B., Bierman, P. R., Lasher, G. E., and Rood, D. H.: Landscape
chronology and glacial history in Thule, northwest Greenland, Quaternary Sci. Rev., 109, 57–67, https://doi.org/10.1016/j.quascirev.2014.11.019, 2015.
Corbett, L. B., Bierman, P. R., and Rood, D. H.: An approach for optimizing
in situ cosmogenic 10Be sample preparation, Quat. Geochronol., 33,
24–34, https://doi.org/10.1016/j.quageo.2016.02.001, 2016.
Dalton, A. S., Margold, M., Stokes, C. R., Tarasov, L., Dyke, A. S., Adams,
R. S., Allard, S., Arends, H. E., Atkinson, N., Attig, J. W., Barnett, P.
J., Barnett, R. L., Batterson, M., Bernatchez, P., Borns, H. W.,
Breckenridge, A., Briner, J. P., Brouard, E., Campbell, J. E., Carlson, A.
E., Clague, J. J., Curry, B. B., Daigneault, R.-A., Dubé-Loubert, H.,
Easterbrook, D. J., Franzi, D. A., Friedrich, H. G., Funder, S., Gauthier,
M. S., Gowan, A. S., Harris, K. L., Hétu, B., Hooyer, T. S., Jennings,
C. E., Johnson, M. D., Kehew, A. E., Kelley, S. E., Kerr, D., King, E. L.,
Kjeldsen, K. K., Knaeble, A. R., Lajeunesse, P., Lakeman, T. R., Lamothe,
M., Larson, P., Lavoie, M., Loope, H. M., Lowell, T. V., Lusardi, B. A.,
Manz, L., McMartin, I., Nixon, F. C., Occhietti, S., Parkhill, M. A., Piper,
D. J. W., Pronk, A. G., Richard, P. J. H., Ridge, J. C., Ross, M., Roy, M.,
Seaman, A., Shaw, J., Stea, R. R., Teller, J. T., Thompson, W. B.,
Thorleifson, L. H., Utting, D. J., Veillette, J. J., Ward, B. C., Weddle, T.
K., and Wright, H. E.: An updated radiocarbon-based ice margin chronology
for the last deglaciation of the North American Ice Sheet Complex,
Quaternary Sci. Rev., 234, 106223, https://doi.org/10.1016/j.quascirev.2020.106223, 2020.
Dawes, P. R.: Explanatory notes to the Geological map of Greenland, 1 : 500 000, Humbolt Gletscher, Sheet 6, Geological Survey of Denmark and Greenland Map Series 1, Copenhagen, Denmark, 48 pp., 2004.
Dyke, A. S., Dale, J. E., and McNeely, R. N.: Marine Molluscs as Indicators
of Environmental Change in Glaciated North America and Greenland During the
Last 18 000 Years, Geogr. Phys. Quatern., 50, 125–184, https://doi.org/10.7202/033087ar, 1996.
England, J.: Coalescent Greenland and Innuitian ice during the Last Glacial
Maximum: revising the Quaternary of the Canadian High Arctic, Quaternary Sci. Rev., 18, 421–446, 1999.
England, J., Atkinson, N., Bednarski, J., Dyke, A. S., Hodgson, D. A., and
Ó Cofaigh, C.: The Innuitian Ice Sheet: configuration, dynamics and
chronology, Quaternary Sci. Rev., 25, 689–703, https://doi.org/10.1016/j.quascirev.2005.08.007, 2006.
Farnsworth, L. B., Kelly, M. A., Bromley, G. R. M., Axford, Y., Osterberg,
E. C., Howley, J. A., Jackson, M. S., and Zimmerman, S. R.: Holocene history
of the Greenland Ice-Sheet margin in Northern Nunatarssuaq, Northwest
Greenland, Arktos, 4, 10, https://doi.org/10.1007/s41063-018-0044-0, 2018.
Funder, S. and Hansen, L.: The Greenland ice sheet – a model for its
culmination and decay during and after the last glacial maximum, B. Geol. Soc. Denmark, 42, 137–152, 1996.
Funder, S., Kjeldsen, K. K., Kjær, K. H., and Ó Cofaigh, C.: The
Greenland Ice Sheet During the Past 300,000 Years: A Review, Developments in Quaternary Sciences, 15, 699–713, https://doi.org/10.1016/b978-0-444-53447-7.00050-7, 2011.
Garde, A. A., Søndergaard, A. S., Guvad, C., Dahl-Møller, J., Nehrke,
G., Sanei, H., Weikusat, C., Funder, S., Kjær, K. H., and Larsen, N. K.:
Pleistocene organic matter modified by the Hiawatha impact, northwest
Greenland, Geology, 48, 867–871, https://doi.org/10.1130/g47432.1, 2020.
Georgiadis, E., Giraudeau, J., Martinez, P., Lajeunesse, P., St-Onge, G., Schmidt, S., and Massé, G.: Deglacial to postglacial history of Nares Strait, Northwest Greenland: a marine perspective from Kane Basin, Clim. Past, 14, 1991–2010, https://doi.org/10.5194/cp-14-1991-2018, 2018.
Gibb, O. T., Steinhauer, S., Fréchette, B., De Vernal, A., and Hillaire-Marcel, C.: Diachronous evolution of sea surface conditions in the Labrador Sea and Baffin Bay since the last deglaciation, Holocene, 25, 1882–1897, 2015.
Goehring, B. M., Wilson, J., and Nichols, K.: A fully automated system for
the extraction of in situ cosmogenic carbon-14 in the Tulane University
cosmogenic nuclide laboratory, Nucl. Instrum. Meth. B, 455,
284–292, https://doi.org/10.1016/j.nimb.2019.02.006, 2019.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides:
theory and application, Quaternary Sci. Rev., 20, 1475–1560, 2001.
Graham, B. L., Briner, J. P., Schweinsberg, A. D., Lifton, N. A., and
Bennike, O.: New in situ 14C data indicate the absence of nunataks in west
Greenland during the Last Glacial Maximum, Quaternary Sci. Rev., 225, 105981, https://doi.org/10.1016/j.quascirev.2019.105981, 2019.
Håkansson, L., Graf, A., Strasky, S., Ivy-ochs, S., Kubik, P. W., Hjort,
C., and Schlüchter, C.: Cosmogenic 10Be-ages from the store koldewey
island, ne greenland, Geogr. Ann. A, 89,
195–202, https://doi.org/10.1111/j.1468-0459.2007.00318.x, 2016.
Heyman, J., Stroeven, A. P., Harbor, J. M., and Caffee, M. W.: Too young or
too old: Evaluating cosmogenic exposure dating based on an analysis of
compiled boulder exposure ages, Earth Planet. Sc. Lett., 302,
71–80, https://doi.org/10.1016/j.epsl.2010.11.040, 2011.
Hill, E. A., Carr, J. R., and Stokes, C. R.: A Review of Recent Changes in
Major Marine-Terminating Outlet Glaciers in Northern Greenland, Front.
Earth Sci., 4, 111, https://doi.org/10.3389/feart.2016.00111, 2017.
Hippe, K.: Constraining processes of landscape change with combined in situ
cosmogenic 14C-10Be analysis, Quaternary Sci. Rev., 173, 1–19, https://doi.org/10.1016/j.quascirev.2017.07.020, 2017.
Hippe, K. and Lifton, N. A.: Calculating Isotope Ratios and Nuclide
Concentrations for In Situ Cosmogenic 14C Analyses, Radiocarbon, 56,
1167–1174, https://doi.org/10.2458/56.17917, 2016.
Hippe, K., Kober, F., Baur, H., Ruff, M., Wacker, L., and Wieler, R.: The
current performance of the in situ 14C extraction line at ETH, Quat. Geochronol., 4, 493–500, https://doi.org/10.1016/j.quageo.2009.06.001, 2009.
Ivy-Ochs, S. and Kober, F.: Surface exposure dating with cosmogenic
nuclides, Quaternary Sci. J., 57, 179–209, 2008.
Jakobsson, M., Hogan, K. A., Mayer, L. A., Mix, A., Jennings, A., Stoner,
J., Eriksson, B., Jerram, K., Mohammad, R., Pearce, C., Reilly, B., and
Stranne, C.: The Holocene retreat dynamics and stability of Petermann
Glacier in northwest Greenland, Nat. Commun., 9, 2104, https://doi.org/10.1038/s41467-018-04573-2, 2018.
Jennings, A. E., Sheldon, C., Cronin, T. M., Francus, P., Stoner, J., and
Andrews, J.: The Holocene history of Nares Strait: Transition from Glacial
Bay to Arctic-Atlamntic Throughflow, Oceanography, 24, 27–41, 2011.
Jennings, A. E., Andrews, J. T., Oliver, B., Walczak, M., and Mix, A.:
Retreat of the Smith Sound Ice Stream in the Early Holocene, Boreas, 48,
825–840, https://doi.org/10.1111/bor.12391, 2019.
Kelly, M. A., Lowell, T. V., Hall, B. L., Schaefer, J. M., Finkel, R. C.,
Goehring, B. M., Alley, R. B., and Denton, G. H.: A 10Be chronology of
lateglacial and Holocene mountain glaciation in the Scoresby Sund region,
east Greenland: implications for seasonality during lateglacial time,
Quaternary Sci. Rev., 27, 2273–2282, https://doi.org/10.1016/j.quascirev.2008.08.004,
2008.
Khan, S. A., Aschwanden, A., Bjork, A. A., Wahr, J., Kjeldsen, K. K., and
Kjaer, K. H.: Greenland ice sheet mass balance: a review, Rep. Prog. Phys., 78,
046801, https://doi.org/10.1088/0034-4885/78/4/046801, 2015.
Kjær, K. H., Larsen, N. K., Binder, T., Bjørk, A. A., Eisen, O.,
Fahnestock, M. A., Funder, S., Garde, A. A., Haack, H., Helm, V.,
Houmark-Nielsen, M., Kjeldsen, K. K., Khan, S. A., Machguth, H., McDonald,
I., Morlighem, M., Mouginot, J., Paden, J. D., Waight, T. E., Weikusat, C.,
Willerslev, E., and MacGreor, J. A.: A large impact crater beneath Hiawatha
Glacier in northwest Greenland, Sci. Adv., 4, 1–11, 2018.
Kolb, J., Keiding, J. K., Steenfelt, A., Secher, K., Keulen, N., Rosa, D.,
and Stensgaard, B. M.: Metallogeny of Greenland, Ore Geol. Rev., 78,
493–555, https://doi.org/10.1016/j.oregeorev.2016.03.006, 2016.
Lal, D.: Cosmic ray labeling of erosion surface: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439,
1991.
Larsen, N. K., Funder, S., Kjær, K. H., Kjeldsen, K. K., Knudsen, M. F.,
and Linge, H.: Rapid early Holocene ice retreat in West Greenland,
Quaternary Sci. Rev., 92, 310–323, https://doi.org/10.1016/j.quascirev.2013.05.027,
2014.
Larsen, N. K., Levy, L. B., Carlson, A. E., Buizert, C., Olsen, J., Strunk,
A., Bjork, A. A., and Skov, D. S.: Instability of the Northeast Greenland
Ice Stream over the last 45,000 years, Nat. Commun., 9, 1872, https://doi.org/10.1038/s41467-018-04312-7, 2018.
Larsen, N. K., Levy, L. B., Strunk, A., Søndergaard, A. S., Olsen, J.,
and Lauridsen, T. L.: Local ice caps in Finderup Land, North Greenland,
survived the Holocene Thermal Maximum, Boreas, 48, 551–562, https://doi.org/10.1111/bor.12384, 2019.
Larsen, N. K., Søndergaard, A. S., Levy, L. B., Olsen, J., Strunk, A.,
Bjørk, A. A., and Skov, D. S.: Contrasting modes of delaciation between
fjords and inter-fjord areas in eastern North Greenland, Boreas, 12475, https://doi.org/10.1111/bor.12475, online first, 2020.
Lasher, G. E., Axford, Y., McFarlin, J. M., Kelly, M. A., Osterberg, E. C.,
and Berkelhammer, M. B.: Holocene temperatures and isotopes of precipitation
in Northwest Greenland recorded in lacustrine organic materials, Quaternary Sci. Rev., 170, 45–55, https://doi.org/10.1016/j.quascirev.2017.06.016, 2017.
Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L.,
Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke,
A. S.: High Arctic Holocene temperature record from the Agassiz ice cap and
Greenland ice sheet evolution, P. Natl. Acad. Sci. USA, 114, 5952–5957, https://doi.org/10.1073/pnas.1616287114, 2017.
Levac, E., Vernal, A. D., and Blake Jr, W.: Sea-surface conditions in
northernmost Baffin Bay during the Holocene: palynological evidence, J. Quaternary Sci., 16, 353–363, https://doi.org/10.1002/jqs.614, 2001.
Lifton, N. A., Jull, A. J. T., and Quade, J.: A new extraction technique and
production rate estimate for in situ cosmogenic 14C in quartz, Geochim.
Cosmochim. Ac., 65, 1953–1969, 2001.
Lifton, N., Goehring, B., Wilson, J., Kubley, T., and Caffee, M.: Progress
in automated extraction and purification of in situ 14C from quartz: Results from the Purdue in situ 14C laboratory, Nucl. Instrum. Meth. B, 361,
381–386, https://doi.org/10.1016/j.nimb.2015.03.028, 2015.
Livingstone, S. J., Chu, W., Ely, J. C., and Kingslake, J.: Paleofluvial and
subglacial channel networks beneath Humboldt Glacier, Greenland, Geology,
45, 551–554, https://doi.org/10.1130/g38860.1, 2017.
Lupker, M., Hippe, K., Wacker, L., Steinemann, O., Tikhomirov, D., Maden,
C., Haghipour, N., and Synal, H.-A.: In situ cosmogenic 14C analysis at ETH
Zürich: Characterization and performance of a new extraction system,
Nucl. Instrum. Meth. B, 457, 30–36, https://doi.org/10.1016/j.nimb.2019.07.028, 2019.
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow,
G. D., Colgan, W. T., Gogineni, S. P., Morlighem, M., Nowicki, S. M. J.,
Paden, J. D., Price, S. F., and Seroussi, H.: A synthesis of the basal
thermal state of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 121, 1328–1350, https://doi.org/10.1002/2015JF003803, 2016.
Mason, O. K.: Beach Ridge Geomorphology at Cape Grinnell, northern
Greenland: A Less Icy Arctic in the Mid-Holocene, Danish Journal of
Geography, 110, 337–355, 2010.
McFarlin, J. M., Axford, Y., Osburn, M. R., Kelly, M. A., Osterberg, E. C.,
and Farnsworth, L. B.: Pronounced summer warming in northwest Greenland
during the Holocene and Last Interglacial, P. Natl. Acad. Sci. USA, 115,
6357–6362, https://doi.org/10.1073/pnas.1720420115, 2018.
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.:
Deeply incised submarine glacial valleys beneath the Greenland ice sheet,
Nat. Geosci., 7, 418–422, https://doi.org/10.1038/ngeo2167, 2014.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauche, N., Dowdeswell, J. A., Dorschel, B., Fenty, I.,
Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen,
K. K., Millan, R., Mayer, L., Mouginot, J., Noel, B. P. Y., O'Cofaigh, C.,
Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo,
F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.:
BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of
Greenland From Multibeam Echo Sounding Combined With Mass Conservation,
Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017.
Mörner, N. A. and Funder, S. V.: C-14 dating of samples collected
during the NORDQUA 86 expedition, and notes on the marine reservoir effect,
Meddelelser om Grønland, 22, 57–59, 1990.
Mouginot, J., Rignot, E., Bjork, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noel, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Nichols, R., L: Geomorphology of Inglefield Land, North Greenland,
Meddelelser om Grønland, 188, 109 pp., 1969.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C.,
and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl.
Instrum. Meth. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
Noël, B., van de Berg, W. J., Lhermitte, S., and van der Broeke, M. R.:
Rapid ablation zone expansion amplifies north Greenland mass loss, Sci.
Adva., 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123, 2019.
Olsen, J., Tikhomirov, D., Grosen, C., Heinemeier, J., and Klein, M.:
Radiocarbon Analysis on the New AARAMS 1MV Tandetron, Radiocarbon, 59,
905–913, https://doi.org/10.1017/rdc.2016.85, 2016.
Ouellet-Bernier, M.-M., De Vernal, A., Hillaire-Marcel, C., and Moros, M.: Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene, Holocene, 24, 1573–1583, 2014.
Ramsey, B. C.: Bayesian Analysis of Radiocarbon Dates, Radiocarbon, 51,
337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Reilly, B. T., Stoner, J. S., Mix, A. C., Walczak, M. H., Jennings, A.,
Jakobsson, M., Dyke, L., Glueder, A., Nicholls, K., Hogan, K. A., Mayer, L.
A., Hatfield, R. G., Albert, S., Marcott, S., Fallon, S., and Cheseby, M.:
Holocene break-up and reestablishment of the Petermann Ice Tongue, Northwest
Greenland, Quaternary Sci. Rev., 218, 322–342, https://doi.org/10.1016/j.quascirev.2019.06.023, 2019.
Reimer, J. P., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.
J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 4, 1869–1887, 2013.
Reusche, M. M., Marcott, S. A., Ceperley, E. G., Barth, A. M., Brook, E. J.,
Mix, A. C., and Caffee, M. W.: Early to Late Holocene Surface Exposure Ages
From Two Marine-Terminating Outlet Glaciers in Northwest Greenland,
Geophys. Res. Lett., 45, 7028–7039, https://doi.org/10.1029/2018gl078266, 2018.
Rignot, E. and Kanagaratnam, P.: Changes in the Velocity Structure of the
Greenland Ice Sheet, Science, 311, 986–990, 2006.
Sinclair, G., Carlson, A. E., Mix, A. C., Lecavalier, B. S., Milne, G.,
Mathias, A., Buizert, C., and DeConto, R.: Diachronous retreat of the
Greenland ice sheet during the last deglaciation, Quaternary Sci. Rev., 145, 243–258, https://doi.org/10.1016/j.quascirev.2016.05.040, 2016.
Skov, D. S., Egholm, D. L., Larsen, N. K., Jansen, J. D., Knudsen, M. F.,
Jacobsen, B. H., Olsen, J., and Andersen, J. L.: Constraints from cosmogenic
nuclides on the glaciation and erosion history of Dove Bugt, northeast
Greenland, GSA Bulletin, B35410.1, https://doi.org/10.1130/b35410.1, online first, 2020.
Søndergaard, A. S., Larsen, N. K., Olsen, J., Strunk, A., and Woodroffe,
S.: Glacial history of the Greenland Ice Sheet and a local ice cap in
Qaanaaq, northwest Greenland, J. Quaternary Sci., 34, 536–547, https://doi.org/10.1002/jqs.3139, 2019.
Søndergaard, A. S., Larsen, N. K., Lecavalier, B. S., Olsen, J.,
Fitzpatrick, N. P., Kjær, K. H., and Khan, S. A.: Early Holocene
collapse of marine-based ice in northwest Greenland triggered by atmospheric
warming, Quaternary Sci. Rev., 239, 106360, https://doi.org/10.1016/j.quascirev.2020.106360, 2020.
Stone, J. O.: Air pressure and cosmogenic isotope production,
J. Geophys. Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000jb900181,
2000.
Synal, H.-A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon
AMS system, Nucl. Instrum. Meth. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Tedrow, J. C. F.: Soil investigation in Inglefield Land, Greenland,
Meddelelser om Grønland, 188, 94 pp., 1970.
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Němec,
M., Ruff, M., Suter, M., Synal, H. A., and Vockenhuber, C.: MICADAS: Routine
and High-Precision Radiocarbon Dating, Radiocarbon, 52, 252–262, https://doi.org/10.1017/s0033822200045288, 2010.
Young, N. E., Briner, J. P., Rood, D. H., Finkel, R. C., Corbett, L. B., and
Bierman, P. R.: Age of the Fjord Stade moraines in the Disko Bugt region,
western Greenland, and the 9.3 and 8.2 ka cooling events, Quaternary Sci. Rev., 60, 76–90, https://doi.org/10.1016/j.quascirev.2012.09.028, 2012.
Young, N. E., Schaefer, J. M., Briner, J. P., and Goehring, B. M.: A 10Be
production-rate calibration for the Arctic, J. Quaternary Sci.,
28, 515–526, https://doi.org/10.1002/jqs.2642, 2013.
Young, N. E., Schaefer, J. M., Goehring, B., Lifton, N., Schimmelpfennig,
I., and Briner, J. P.: West Greenland and globalin situ 14C production-rate
calibrations, J. Quaternary Sci., 29, 401–406, https://doi.org/10.1002/jqs.2717,
2014.
Young, N. E., Lamp, J., Koffman, T., Briner, J. P., Schaefer, J.,
Gjermundsen, E. F., Linge, H., Zimmerman, S., Guilderson, T. P., Fabel, D.,
and Hormes, A.: Deglaciation of coastal south-western Spitsbergen dated with
in situ cosmogenic 10Be and 14C measurements, J. Quaternary Sci.,
33, 763–776, https://doi.org/10.1002/jqs.3058, 2018.
Young, N. E., Briner, J. P., Miller, G. H., Lesnek, A. J., Crump, S. E.,
Thomas, E. K., Pendleton, S. L., Cuzzone, J., Lamp, J., Zimmerman, S.,
Caffee, M., and Schaefer, J. M.: Deglaciation of the Greenland and
Laurentide ice sheets interrupted by glacier advance during abrupt coolings,
Quaternary Sci. Rev., 229, 106091, https://doi.org/10.1016/j.quascirev.2019.106091, 2020.
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
We present new results that show how the north Greenland Ice Sheet responded to climate changes...