Articles | Volume 16, issue 5
https://doi.org/10.5194/cp-16-1889-2020
https://doi.org/10.5194/cp-16-1889-2020
Research article
 | 
19 Oct 2020
Research article |  | 19 Oct 2020

Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum

Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists

Related authors

Impact of the Late Miocene Cooling on the loss of coral reefs in the Central Indo-Pacific
Benjamin Fredericks Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-28,https://doi.org/10.5194/cp-2024-28, 2024
Revised manuscript accepted for CP
Short summary
Comment on “The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the `boring billion' ” by Franz et al. (2023)
Martin J. Head, James B. Riding, Jennifer M. K. O'Keefe, Julius Jeiter, and Julia Gravendyck
Biogeosciences, 21, 1773–1783, https://doi.org/10.5194/bg-21-1773-2024,https://doi.org/10.5194/bg-21-1773-2024, 2024
Short summary
Making sense of variation in sclerochronological stable isotope profiles of mollusks and fish otoliths from the early Eocene southern North Sea Basin
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298,https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023,https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Planning for the Lake Izabal Basin Research Endeavor (LIBRE) continental scientific drilling project in eastern Guatemala
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023,https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary

Related subject area

Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022,https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022,https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Climate variability and long-term expansion of peatlands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea)
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016,https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)
U. Kotthoff, D. R. Greenwood, F. M. G. McCarthy, K. Müller-Navarra, S. Prader, and S. P. Hesselbo
Clim. Past, 10, 1523–1539, https://doi.org/10.5194/cp-10-1523-2014,https://doi.org/10.5194/cp-10-1523-2014, 2014
Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014,https://doi.org/10.5194/cp-10-1401-2014, 2014

Cited articles

Aze, T., Ezard, T. H., Purvis, A., Coxall, H. K., Stewart, D. R., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, https://doi.org/10.1111/j.1469-185X.2011.00178.x, 2011. 
Bauersachs, T., Schouten, S., Compaoré, J., Wollenzien, U., Stal, L. J., and Sinninghe Damsté, J. S.: Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria, Limnol. Oceanogr., 54, 1403–1411, https://doi.org/10.4319/lo.2009.54.4.1403, 2009. 
Bolle, M.-P. and Adatte, T.: Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence, Clay Miner., 36, 249–261, 2001. 
Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum, T.: A humid climate state during the Palaeocene/Eocene thermal maximum, Nature, 432, 495–499, https://doi.org/10.1038/nature03115, 2004. 
Bralower, T. J. and Self-Trail, J. M.: Nannoplankton malformation during the Paleocene-Eocene Thermal Maximum and its paleoecological and paleoceanographic significance, Paleoceanography, 31, 1423–1439, https://doi.org/10.1002/2016PA002980, 2016. 
Download
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.