Articles | Volume 16, issue 5
https://doi.org/10.5194/cp-16-1889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum
Vann Smith
CORRESPONDING AUTHOR
Department of Geology and Geophysics, Louisiana State University,
Baton Rouge, LA 70803, USA
Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
Sophie Warny
Department of Geology and Geophysics, Louisiana State University,
Baton Rouge, LA 70803, USA
Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
Kliti Grice
Western Australian Organic and Isotope Geochemistry Centre, The
Institute for Geoscience Research, School of Earth and Planetary Science,
Curtin University, Perth, WA 6102, Australia
Bettina Schaefer
Western Australian Organic and Isotope Geochemistry Centre, The
Institute for Geoscience Research, School of Earth and Planetary Science,
Curtin University, Perth, WA 6102, Australia
Michael T. Whalen
Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Johan Vellekoop
Department of Earth and Environmental Sciences, Division of Geology, KU Leuven, 3001 Heverlee, Belgium
Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, 1050 Brussels, Belgium
Elise Chenot
Institut Polytechnique Lasalle Beauvais, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
Sean P. S. Gulick
Department of Geological Sciences, Jackson School of Geosciences,
University of Texas at Austin, TX 78712, USA
Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, TX 78712, USA
Center for Planetary Systems Habitability, University of Texas at
Austin, TX 78712, USA
Ignacio Arenillas
Departamento de Ciencias de la Tierra e Instituto Universitario de
Investigación de Ciencias Ambientales de Aragón, Universidad de
Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Jose A. Arz
Departamento de Ciencias de la Tierra e Instituto Universitario de
Investigación de Ciencias Ambientales de Aragón, Universidad de
Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Thorsten Bauersachs
Department of Organic Geochemistry, Institute of Geosciences,
Christian Albrechts University, 24118 Kiel, Germany
Timothy Bralower
Department of Geosciences, Pennsylvania State University, University Park, PA 16801, USA
François Demory
CNRS, Aix-Marseille Univ, IRD, Coll France, INRAE, CEREGE,
Aix-en-Provence, France
Jérôme Gattacceca
CNRS, Aix-Marseille Univ, IRD, Coll France, INRAE, CEREGE,
Aix-en-Provence, France
Heather Jones
Department of Geosciences, Pennsylvania State University, University Park, PA 16801, USA
Johanna Lofi
Géosciences Montpellier, l'Université Montpellier, CNRS,
Montpellier, France
Christopher M. Lowery
Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, TX 78712, USA
Joanna Morgan
Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK
Noelia B. Nuñez Otaño
Facultad de Ciencia y Tecnología (FCyT), Universidad
Autónoma de Entre Ríos, CONICET, Laboratorio de Geología del
Neógeno-Cuaternario, Diamante, Entre Ríos, Argentina
Jennifer M. K. O'Keefe
Department of Physics, Earth Science, and Space Systems Engineering, Morehead State University, Morehead, KY, USA
Katherine O'Malley
Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Francisco J. Rodríguez-Tovar
Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
Lorenz Schwark
Western Australian Organic and Isotope Geochemistry Centre, The
Institute for Geoscience Research, School of Earth and Planetary Science,
Curtin University, Perth, WA 6102, Australia
Department of Organic Geochemistry, Institute of Geosciences,
Christian Albrechts University, 24118 Kiel, Germany
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Benjamin Fredericks Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-28, https://doi.org/10.5194/cp-2024-28, 2024
Revised manuscript under review for CP
Short summary
Short summary
It is known that there was a lack of coral reefs in the Central Indo-Pacific during the Pliocene. The cause of this is unknown. This study uses a new SST record biased on biomarkers from the Coral Sea between 11–2 Ma to demonstrate a 2-degree cooling in the Central Indo-Pacific as part of the Late Miocene Cooling. When combined with other impacts associated with this event, this might explain the collapse of coral reefs. The new data shows the importance of SST changes in Coral Reef loss.
Martin J. Head, James B. Riding, Jennifer M. K. O'Keefe, Julius Jeiter, and Julia Gravendyck
Biogeosciences, 21, 1773–1783, https://doi.org/10.5194/bg-21-1773-2024, https://doi.org/10.5194/bg-21-1773-2024, 2024
Short summary
Short summary
A diverse suite of “fossils” associated with the ~1.5 Ga Volyn (Ukraine) kerite was published recently. We show that at least some of them represent modern contamination including plant hairs, pollen, and likely later fungal growth. Comparable diversity is shown to exist in moderm museum dust, calling into question whether any part of the Volyn biota is of biological origin while emphasising the need for scrupulous care in collecting, analysing, and identifying Precambrian microfossils.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Heidi E. O'Hora, Sierra V. Petersen, Johan Vellekoop, Matthew M. Jones, and Serena R. Scholz
Clim. Past, 18, 1963–1982, https://doi.org/10.5194/cp-18-1963-2022, https://doi.org/10.5194/cp-18-1963-2022, 2022
Short summary
Short summary
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide into the atmosphere to warm the climate globally above an already warm background state. We reconstruct late Cretaceous seawater temperatures much warmer than today using the chemistry of fossil oysters from the modern-day Netherlands and Belgium. Covariations in temperature and water chemistry indicate changing ocean circulation patterns, potentially related to fluctuating sea level in this region.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Johanna Lofi, David Smith, Chris Delahunty, Erwan Le Ber, Laurent Brun, Gilles Henry, Jehanne Paris, Sonia Tikoo, William Zylberman, Philippe A. Pezard, Bernard Célérier, Douglas R. Schmitt, Chris Nixon, and Expedition 364 Science Party
Sci. Dril., 24, 1–13, https://doi.org/10.5194/sd-24-1-2018, https://doi.org/10.5194/sd-24-1-2018, 2018
Short summary
Short summary
In 2016 an international scientific expedition drilled a 1.3 km deep hole to explore the Chicxulub impact crater, buried below the surface of the Yucatán shelf (Mexico). This crater is linked to the End-Cretaceous mass extinction. Downhole logs have been acquired in the hole, providing several key parameters characterizing the geology of the crater. However, few of the data recorded may be artifacts and should not be misinterpreted as real geological features. They are discussed in this study.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Jan-Peter Duda, Volker Thiel, Thorsten Bauersachs, Helge Mißbach, Manuel Reinhardt, Nadine Schäfer, Martin J. Van Kranendonk, and Joachim Reitner
Biogeosciences, 15, 1535–1548, https://doi.org/10.5194/bg-15-1535-2018, https://doi.org/10.5194/bg-15-1535-2018, 2018
Short summary
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Cornelia Mueller-Niggemann, Sri Rahayu Utami, Anika Marxen, Kai Mangelsdorf, Thorsten Bauersachs, and Lorenz Schwark
Biogeosciences, 13, 1647–1666, https://doi.org/10.5194/bg-13-1647-2016, https://doi.org/10.5194/bg-13-1647-2016, 2016
T. Bauersachs, J. Rochelmeier, and L. Schwark
Biogeosciences, 12, 3741–3751, https://doi.org/10.5194/bg-12-3741-2015, https://doi.org/10.5194/bg-12-3741-2015, 2015
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2
Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition
Climate variability and long-term expansion of peatlands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea)
Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)
Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
U. Kotthoff, D. R. Greenwood, F. M. G. McCarthy, K. Müller-Navarra, S. Prader, and S. P. Hesselbo
Clim. Past, 10, 1523–1539, https://doi.org/10.5194/cp-10-1523-2014, https://doi.org/10.5194/cp-10-1523-2014, 2014
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Cited articles
Aze, T., Ezard, T. H., Purvis, A., Coxall, H. K., Stewart, D. R., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic
foraminifera from fossil data, Biol. Rev., 86, 900–927,
https://doi.org/10.1111/j.1469-185X.2011.00178.x, 2011.
Bauersachs, T., Schouten, S., Compaoré, J., Wollenzien, U., Stal, L. J.,
and Sinninghe Damsté, J. S.: Nitrogen isotopic fractionation associated
with growth on dinitrogen gas and nitrate by cyanobacteria, Limnol.
Oceanogr., 54, 1403–1411, https://doi.org/10.4319/lo.2009.54.4.1403,
2009.
Bolle, M.-P. and Adatte, T.: Palaeocene-early Eocene climatic evolution in
the Tethyan realm: clay mineral evidence, Clay Miner., 36, 249–261, 2001.
Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum, T.: A humid climate state during the Palaeocene/Eocene thermal maximum,
Nature, 432, 495–499, https://doi.org/10.1038/nature03115, 2004.
Bralower, T. J. and Self-Trail, J. M.: Nannoplankton malformation during the
Paleocene-Eocene Thermal Maximum and its paleoecological and
paleoceanographic significance, Paleoceanography, 31, 1423–1439,
https://doi.org/10.1002/2016PA002980, 2016.
Burdige, D. J.: Geochemistry of marine sediments, Princeton University
Press, Princeton, NJ, 2006.
Carmichael, M. J., Inglis, G. N., Badger, M. P., Naafs, B. D. A., Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A., and
Buss, H. L.: Hydrological and associated biogeochemical consequences of
rapid global warming during the Paleocene-Eocene Thermal Maximum, Global Planet. Change, 157, 114–138,
https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Cantrell, S. A., Casillas-Martinez, L., and Molina, M.: Characterization of
fungi from hypersaline environments of solar salterns using morphological
and molecular techniques, Mycol. Res., 110, 962–970,
https://doi.org/10.1016/j.mycres.2006.06.005, 2006.
Crouch, E. M., Dickens, G. R., Brinkhuis, H., Aubry, M.-P., Hollis, C. J.,
Rogers, K. M., and Visscher, H.: The Apectodinium acme and terrestrial discharge during
the Paleocene–Eocene thermal maximum: new palynological, geochemical and
calcareous nannoplankton observations at Tawanui, New Zealand,
Palaeogeogr. Palaeocl., 194, 387–403,
https://doi.org/10.1016/S0031-0182(03)00334-1, 2003.
de Pablo Galán, L.: Palygorskite in eocene-oligocene lagoonal
environment, Yucatan, Mexico, Rev. Mex. Cienc. Geol.,
13, 94–103, 1996.
Dickens, G. R., Castillo, M. M., and Walker, J. C.: A blast of gas in the
latest Paleocene: Simulating first-order effects of massive dissociation of
oceanic methane hydrate, Geology, 25, 259–262,
https://doi.org/10.1130/0091-7613(1997)025{<}0259:ABOGIT{>}2.3.CO;2, 1997.
Dickson, A. J., Rees-Owen, R. L., März, C., Coe, A. L., Cohen, A. S.,
Pancost, R. D., Taylor, K., and Shcherbinina, E.: The spread of marine
anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal
Maximum, Paleoceanography, 29, 471–488,
https://doi.org/10.1002/2014PA002629, 2014.
Dighton, J.: Fungi in ecosystem processes, 2nd edn., CRC Press, Boca Raton,
FL, 2016.
Dighton, J. and White, J. F.: The fungal community: its organization and
role in the ecosystem, 4th edn., CRC press, Boca Raton, FL, 2017.
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A.,
Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints on
ocean warming across the Paleocene–Eocene Thermal Maximum, Earth-Sci.
Rev., 125, 123–145, https://doi.org/10.1016/j.earscirev.2013.07.004,
2013.
Frieling, J. and Sluijs, A.: Towards quantitative environmental
reconstructions from ancient non-analogue microfossil assemblages:
Ecological preferences of Paleocene–Eocene dinoflagellates, Earth-Sci.
Rev., 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014,
2018.
Frieling, J., Gebhardt, H., Huber, M., Adekeye, O. A., Akande, S. O.,
Reichart, G.-J., Middelburg, J. J., Schouten, S., and Sluijs, A.: Extreme
warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene
Thermal Maximum, Sci. Adv., 3, e1600891,
https://doi.org/10.1126/sciadv.1600891, 2017.
Frieling, J., Reichart, G.-J., Middelburg, J. J., Röhl, U., Westerhold, T., Bohaty, S. M., and Sluijs, A.: Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, 2018.
Gingerich, P. D.: Environment and evolution through the Paleocene–Eocene
thermal maximum, Trends Ecol. Evol., 21, 246–253,
https://doi.org/10.1016/j.tree.2006.03.006, 2006.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The Geologic Time
Scale 2012, Elsevier, Amsterdam, the Netherlands, 2012.
Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J.,
Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y.:
Photic zone euxinia during the Permian-Triassic superanoxic event, Science,
307, 706–709, https://doi.org/10.1126/science.1104323, 2005.
Gulick, S. P., Barton, P. J., Christeson, G. L., Morgan, J. V., McDonald, M., Mendoza-Cervantes, K., Pearson, Z. F., Surendra, A., Urrutia-Fucugauchi, J., and Vermeesch, P. M.: Importance of pre-impact crustal structure for the
asymmetry of the Chicxulub impact crater, Nat. Geosci., 1, 131–135,
https://doi.org/10.1038/ngeo103, 2008.
Handley, L., O'Halloran, A., Pearson, P. N., Hawkins, E., Nicholas, C. J.,
Schouten, S., McMillan, I. K., and Pancost, R. D.: Changes in the
hydrological cycle in tropical East Africa during the Paleocene–Eocene
Thermal Maximum, Palaeogeogr. Palaeocl., 329,
10–21, https://doi.org/10.1016/j.palaeo.2012.02.002, 2012.
Higgins, M. B., Robinson, R. S., Husson, J. M., Carter, S. J., and Pearson, A.: Dominant eukaryotic export production during ocean anoxic events
reflects the importance of recycled NH4+, P. Natl.
Acad. Sci. USA, 109, 2269–2274,
https://doi.org/10.1073/pnas.1104313109, 2012.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel,
M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster,
G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V.,
Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A.,
Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann,
U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P.,
Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos,
J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to
PMIP4: methodologies for selection, compilation and analysis of latest
Paleocene and early Eocene climate proxy data, incorporating version 0.1 of
the DeepMIP database, Geosci. Model Dev., 12, 3149–3206,
https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether lipids,
Earth Planet. Sc. Lett., 224, 107–116,
https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Huguet, C., Smittenberg, R. H., Boer, W., Sinninghe Damsté, J. S., and
Schouten, S.: Twentieth century proxy records of temperature and soil
organic matter input in the Drammensfjord, southern Norway, Org.
Geochem., 38, 1838–1849,
https://doi.org/10.1016/j.orggeochem.2007.06.015, 2007.
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H.,
Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., and Quiroz, L.: Effects
of rapid global warming at the Paleocene-Eocene boundary on neotropical
vegetation, Science, 330, 957–961, https://doi.org/10.1126/science.1193833,
2010.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem.
Geophy., Geosy., 11, 1–30, https://doi.org/10.1029/2009GC002788,
2010.
Junium, C. K., Dickson, A. J., and Uveges, B. T.: Perturbation to the
nitrogen cycle during rapid Early Eocene global warming, Nat.
Commun., 9, 3186, https://doi.org/10.1038/s41467-018-05486-w, 2018.
Kim, J.-H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.:
New indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Lefticariu, M., Perry, E. C., Ward, W. C., and Lefticariu, L.: Post-Chicxulub
depositional and diagenetic history of the northwestern Yucatan Peninsula,
Mexico, Sediment. Geol., 183, 51–69,
https://doi.org/10.1016/j.sedgeo.2005.09.008, 2006.
Lowery, C. M., Bralower, T. J., Owens, J. D., Rodríguez-Tovar, F. J.,
Jones, H., Smit, J., Whalen, M. T., Claeys, P., Farley, K., and Gulick, S. P.: Rapid recovery of life at ground zero of the end-Cretaceous mass
extinction, Nature, 558, 288–291,
https://doi.org/10.1038/s41586-018-0163-6, 2018.
Lowery, C., Jones, H. L., Bralower, T. J., Perez Cruz, L. P., Gebhardt, C.,
Whalen, M. T., Chenot, E., Smit, J., Phillips, M. P., Choumiline, K.,
Arenillas, I., Arz, J., Garcia, F., Ferrand, M., and Choumiline, and Gulick, S. P.: Early Paleocene Paleoceanography and Export Productivity in the
Chicxulub Crater, EarthArXiv (preprint), available at:
https://eartharxiv.org/j8fsd/, last access: 20 July 2020.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
perturbation of carbon cycle, climate, and biosphere with implications for
the future, Annu. Rev. Earth Pl. Sc., 39, 489–516,
https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
Meyers, P. A. and Shaw, T. J.: Organic matter accumulation, sulfate
reduction, and methanogenesis in Pliocene–Pleistocene turbidites on the
Iberia Abyssal Plain, in: Proceedings of the Ocean Drilling Program,
Scientific Results, Ocean Drilling Program, College Station, TX, USA, vol. 149, 705–712, 1996.
Morgan, J., Warner, M., Brittan, J., Buffler, R., Camargo, A., Christeson, G., Denton, P., Hildebrand, A., Hobbs, R., Macintyre, H., Mackenzie, G.,
Maguire, P., Marin, L., Nakamura, Y., Pilkington, M., Sharpton, V., Snyder, D., Suarez, G., and Trejo, A.: Size and morphology of the Chicxulub impact
crater, Nature, 390, 472–476, https://doi.org/10.1038/37291, 1997.
Morgan, J. V., Gulick, S. P. S., Mellet, C. L., Green, S. L., and the Expedition
364 Scientists: Chicxulub: Drilling the K-Pg Impact Crater, in:
Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, Vol. 364, 2017.
Müller, P. J.: CN ratios in Pacific deep-sea sediments: Effect of
inorganic ammonium and organic nitrogen compounds sorbed by clays,
Geochim. Cosmochim. Ac., 41, 765–776,
https://doi.org/10.1016/0016-7037(77)90047-3, 1977.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C.,
Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. A.,
Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A.,
Mutterlose, J., Naafs, D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous
sea-surface temperature evolution: Constraints from TEX86 and
planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev., 172,
224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
Prasad, V., Utescher, T., Sharma, A., Singh, I. B., Garg, R., Gogoi, B.,
Srivastava, J., Uddandam, P. R., and Joachimski, M. M.: Low-latitude
vegetation and climate dynamics at the Paleocene-Eocene transition–A study
based on multiple proxies from the Jathang section in northeastern India,
Palaeogeogr. Palaeocl., 497, 139–156,
https://doi.org/10.1016/j.palaeo.2018.02.013, 2018.
Schmitz, B. and Pujalte, V.: Abrupt increase in seasonal extreme
precipitation at the Paleocene-Eocene boundary, Geology, 35, 215–218,
https://doi.org/10.1130/G23261A.1, 2007.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: a
new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sc. Lett., 204, 265–274,
https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schouten, S., Forster, A., Panoto, F. E., and Damsté, J. S. S.: Towards
calibration of the TEX86 palaeothermometer for tropical sea surface
temperatures in ancient greenhouse worlds, Org. Geochem., 38,
1537–1546, https://doi.org/10.1016/j.orggeochem.2007.05.014, 2007.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: a review,
Org. Geochem., 54, 19–61,
https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013.
Scotese, C. R. and Wright, N.: PALEOMAP paleodigital elevation models
(PaleoDEMS) for the Phanerozoic, available at:
https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018
(last access: 15 February 2020),
2018.
Singh, P., Raghukumar, C., Meena, R. M., Verma, P., and Shouche, Y.: Fungal
diversity in deep-sea sediments revealed by culture-dependent and
culture-independent approaches, Fungal Ecol., 5, 543–553,
https://doi.org/10.1016/j.funeco.2012.01.001, 2012.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L.,
Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G.-J., and Schouten, S.: Eustatic variations during the Paleocene-Eocene greenhouse world,
Paleoceanography, 23, 1–18, https://doi.org/10.1029/2008PA001615, 2008.
Sluijs, A., van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart, G.-J., and Slomp, C. P.: Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling, Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, 2014.
Smith, V., Warny, S., Jarzen, D., Demchuk, T., Vajda, V., and The Expedition
364 Scientific Party: Palaeocene-Eocene miospores from the Chicxulub impact
crater, Mexico. Part 1: spores and gymnosperm pollen, Palynology, 44,
473–487, https://doi.org/10.1080/01916122.2019.1630860, 2020a.
Smith, V., Warny, S., Jarzen, D., Demchuk, T., Vajda, V., and Gulick, S. P.:
Paleocene-Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen, Palynology, 44, 489–519,
https://doi.org/10.1080/01916122.2019.1705417, 2020b.
Srivastava, J. and Prasad, V.: Effect of global warming on diversity pattern
in Nypa mangroves across Paleocene–Eocene transition in the
paleo-equatorial region of the Indian sub-continent, Palaeogeogr. Palaeocl., 429, 1–12,
https://doi.org/10.1016/j.palaeo.2015.03.026, 2015.
Summons, R. E. and Powell, T. G.: Identification of aryl isoprenoids in
source rocks and crude oils: biological markers for the green sulphur
bacteria, Geochim. Cosmochim. Ac., 51, 557–566,
https://doi.org/10.1016/0016-7037(87)90069-X, 1987.
Summons, R. E., Volkman, J. K., and Boreham, C. J.: Dinosterane and other
steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum,
Geochim. Cosmochim. Ac., 51, 3075–3082,
https://doi.org/10.1016/0016-7037(87)90381-4, 1987.
Taylor, A. M. and Goldring, R.: Description and analysis of bioturbation and
ichnofabric, J. Geol. Soc. London, 150, 141–148,
https://doi.org/10.1144/gsjgs.150.1.0141, 1993.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying calibration
model for the TEX86 proxy, Geochim. Cosmochim. Ac., 127,
83–106, https://doi.org/10.1016/j.gca.2013.11.026, 2014.
Wang, M., Liu, F., Crous, P. W., and Cai, L.: Phylogenetic reassessment of
Nigrospora: ubiquitous endophytes, plant and human pathogens, Persoonia, 39, 118–142,
https://doi.org/10.3767/persoonia.2017.39.06, 2017.
Warny, S. A., Bart, P. J., and Suc, J.-P.: Timing and progression of
climatic, tectonic and glacioeustatic influences on the Messinian Salinity
Crisis, Palaeogeogr. Palaeocl., 202, 59–66,
https://doi.org/10.1016/S0031-0182(03)00615-1, 2003.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane lipids in soils:
Implications for the use of the TEX86 proxy and the BIT index, Org.
Geochem., 37, 1680–1693, https://doi.org/10.1016/j.orggeochem.2006.07.018,
2006.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
Whalen, M. T., Gulick, S. P. S., Pearson, Z. F., Norris, R. D., Perez-Cruz, L., and Urrutia-Fucugauchi, J.: Annealing the Chicxulub impact: Paleogene
Yucatán carbonate slope development in the Chicxulub impact basin,
Mexico, in: Deposits, Architecture, and Controls of Carbonate Margin, Slope and
Basinal Settings, Special Publication-SEPM, Society for Sedimentary
Geology, 105, 282–304, https://doi.org/10.2110/sepmsp.105.04, 2013.
Wing, S. L. and Currano, E. D.: Plant response to a global greenhouse event
56 million years ago, Am. J. Bot., 100, 1234–1254,
https://doi.org/10.3732/ajb.1200554, 2013.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M.,
and Freeman, K. H.: Transient floral change and rapid global warming at the
Paleocene-Eocene boundary, Science, 310, 993–996,
https://doi.org/10.1126/science.1116913, 2005.
Winguth, A., Shellito, C., Shields, C., and Winguth, C.: Climate Response at
the Paleocene–Eocene Thermal Maximum to Greenhouse Gas Forcing – A Model
Study with CCSM3, J. Climate, 23, 2562–2584,
https://doi.org/10.1175/2009JCLI3113.1, 2010.
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R.,
Brill, A., Bralower, T. J., and Premoli-Silva, I.: A transient rise in
tropical sea surface temperature during the Paleocene-Eocene thermal
maximum, Science, 302, 1551–1554, https://doi.org/10.1126/science.1090110,
2003.
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A.,
Brinkhuis, H., Gibbs, S. J., and Bralower, T. J.: Extreme warming of
mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum:
Inferences from TEX86 and isotope data, Geology, 34, 737–740,
https://doi.org/10.1130/G22522.1, 2006.
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future...