Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1387-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1387-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes
Christopher K. West
CORRESPONDING AUTHOR
Department of Geological Sciences, University of Saskatchewan, 114
Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
David R. Greenwood
Department of Biology, Brandon University, 270-18th Street,
Brandon, Manitoba, R7A 6A9, Canada
Tammo Reichgelt
Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, Storrs, CT 06269, USA
Alexander J. Lowe
Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
Janelle M. Vachon
Department of Biology, Brandon University, 270-18th Street,
Brandon, Manitoba, R7A 6A9, Canada
James F. Basinger
Department of Geological Sciences, University of Saskatchewan, 114
Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
Related authors
No articles found.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Tammo Reichgelt, William J. D'Andrea, Ailín del C. Valdivia-McCarthy, Bethany R. S. Fox, Jennifer M. Bannister, John G. Conran, William G. Lee, and Daphne E. Lee
Clim. Past, 16, 1509–1521, https://doi.org/10.5194/cp-16-1509-2020, https://doi.org/10.5194/cp-16-1509-2020, 2020
Short summary
Short summary
Carbon dioxide (CO2) levels are increasing in the atmosphere. CO2 has a direct fertilization effect on plants, meaning that plants can photosynthesize more and create more biomass under higher atmospheric CO2. This paper outlines the first direct evidence of a carbon fertilization effect on plants in Earth's past from 23 × 106 yr old fossil leaves, when CO2 was higher. This allowed the biosphere to extend into areas that are currently too dry or too cold for forests.
Ethan G. Hyland, Katharine W. Huntington, Nathan D. Sheldon, and Tammo Reichgelt
Clim. Past, 14, 1391–1404, https://doi.org/10.5194/cp-14-1391-2018, https://doi.org/10.5194/cp-14-1391-2018, 2018
Short summary
Short summary
Climate equability is a paradox in paleoclimate research, but modeling suggests that strong seasonality should be a feature of greenhouse Earth periods too. Records of temperature from floral assemblages, paleosol geochemistry, clumped isotope thermometry, and downscaled models during the early Eocene show that the mean annual range of temperature was high, and may have increased during warming events. This has implications for predicting future seasonal climate impacts in continental regions.
Sabine Prader, Ulrich Kotthoff, Francine M.G. McCarthy, Gerhard Schmiedl, Timme H. Donders, and David R. Greenwood
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-511, https://doi.org/10.5194/bg-2017-511, 2018
Manuscript not accepted for further review
Short summary
Short summary
The observed palaeovegetation movement signals probably correspond to several glacial phases of the middle Oligocene and Early Miocene and might be best reflected within peaks of the conifer forests. Glacial phases exposed shallow shelf areas and allowed the spreading of substrate-depending forest formations. Temperature estimates revealing relative stable humid warm temperate conditions. A Sporadic occurred extinct taxon widens the understanding of its distribution pattern during the Cenozoic.
U. Kotthoff, D. R. Greenwood, F. M. G. McCarthy, K. Müller-Navarra, S. Prader, and S. P. Hesselbo
Clim. Past, 10, 1523–1539, https://doi.org/10.5194/cp-10-1523-2014, https://doi.org/10.5194/cp-10-1523-2014, 2014
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Cenozoic
Late Miocene–Pliocene climate evolution recorded by the red clay cover on the Xiaoshuizi planation surface, NE Tibetan Plateau
Middle Miocene climate of southwestern Anatolia from multiple botanical proxies
Thenardite after mirabilite deposits as a cool climate indicator in the geological record: lower Miocene of central Spain
CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method
Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic
A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China
Multivariate statistic and time series analyses of grain-size data in quaternary sediments of Lake El'gygytgyn, NE Russia
Xiaomiao Li, Tingjiang Peng, Zhenhua Ma, Meng Li, Zhantao Feng, Benhong Guo, Hao Yu, Xiyan Ye, Zhengchuang Hui, Chunhui Song, and Jijun Li
Clim. Past, 15, 405–421, https://doi.org/10.5194/cp-15-405-2019, https://doi.org/10.5194/cp-15-405-2019, 2019
Short summary
Short summary
Multiple proxies for the XSZ planation surface reveal that the climate was dry and stable during the late Miocene but became intermittently humid with more seasonality at 4.7–3.9 Ma. Regional climatic differences between the central and western CLP reveal that expansion of the paleo-EASM occurred during the early Pliocene. The warming of the high northern latitudes in response to the closure of the Panama Seaway may have been responsible for the thermodynamical enhancement of the paleo–EASM.
Johannes Martin Bouchal, Tuncay Hüseyin Güner, and Thomas Denk
Clim. Past, 14, 1427–1440, https://doi.org/10.5194/cp-14-1427-2018, https://doi.org/10.5194/cp-14-1427-2018, 2018
Short summary
Short summary
Verterbate fossils suggest tropical climates and environments for the middle Miocene of western Anatolia (mammal zone MN6). We used three palaeobotanical proxies and inferred warm temperate climates. The onset of Miocene cooling (middle Miocene climate transition, MMCT, 14.7–13.9 Ma) is characterized by fluctuating ratios of woody and herbaceous pollen types, while a herb-rich pollen zone indicates pronounced cooling at 13.9–13.8 Ma. Prior to the MMCT (MN5), forest vegetation prevailed.
M. J. Herrero, J. I. Escavy, and B. C. Schreiber
Clim. Past, 11, 1–13, https://doi.org/10.5194/cp-11-1-2015, https://doi.org/10.5194/cp-11-1-2015, 2015
Short summary
Short summary
Thenardite deposits from the lower Miocene unit of the Tajo basin, Spain, result from a mirabilite diagenetic transformation salt that forms under cool climatic conditions. The time of the mirabilite formation correlates with a Mi cooling event coincident with mammal assemblages related to a relatively cool and arid climate in other basins of the Iberian Peninsula. This diagenetic transformation can be used as an analog with deposits from extreme conditions such as Antarctica or Mars.
M. Chevalier, R. Cheddadi, and B. M. Chase
Clim. Past, 10, 2081–2098, https://doi.org/10.5194/cp-10-2081-2014, https://doi.org/10.5194/cp-10-2081-2014, 2014
C. Meyer-Jacob, H. Vogel, A. C. Gebhardt, V. Wennrich, M. Melles, and P. Rosén
Clim. Past, 10, 209–220, https://doi.org/10.5194/cp-10-209-2014, https://doi.org/10.5194/cp-10-209-2014, 2014
X. Wang, D. H. Sun, F. Wang, B. F. Li, S. Wu, F. Guo, Z. J. Li, Y. B. Zhang, and F. H. Chen
Clim. Past, 9, 2731–2739, https://doi.org/10.5194/cp-9-2731-2013, https://doi.org/10.5194/cp-9-2731-2013, 2013
A. Francke, V. Wennrich, M. Sauerbrey, O. Juschus, M. Melles, and J. Brigham-Grette
Clim. Past, 9, 2459–2470, https://doi.org/10.5194/cp-9-2459-2013, https://doi.org/10.5194/cp-9-2459-2013, 2013
Cited articles
Archibald, S. B., Bossert, W. H., Greenwood, D. R., and Farrell, B. D.:
Seasonality, the latitudinal gradient of diversity, and Eocene insects,
Paleobiology, 36, 374–398, 2010.
Archibald, S. B., Greenwood, D. R., Smith, R. Y., Mathewes, R. W., and Basinger,
J. F.: Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of
the Okanagan Highlands (British Columbia and Washington State), Geosci.
Can., 38, 155–164, 2011.
Archibald, S. B., Greenwood, D. R., and Mathewes, R. W.: Seasonality, montane
beta diversity, and Eocene insects: testing Janzen's dispersal hypothesis in
an equable world, Palaeogeogr. Palaeocl., 371, 1–8, 2013.
Archibald, S. B., Morse, G. E., Greenwood, D. R., and Mathewes, R. W.: Fossil
palm beetles refine upland winter temperatures in the Early Eocene Climatic
Optimum, P. Natl. Acad. Sci. USA, 111, 8095–8100, 2014.
Basinger, J. F., Greenwood, D. R., and Sweda, T.: Early Tertiary vegetation of
Arctic Canada and its relevance to paleoclimatic interpretation, in:
Cenozoic plants and climates of the Arctic, Springer, Berlin, Heidelberg,
175–198, 1994.
Beerling, D. and Woodward, F. I.: Vegetation and the terrestrial carbon
cycle: the first 400 million years, Cambridge University Press, 2001.
Breedlovestrout, R. L.: Paleofloristic studies in the Paleogene Chuckanut
Basin, Western Washington, USA, PhD dissertation, University of Idaho, 189
pp., 2011.
Breedlovestrout, R. L., Evraets, B. J., and Parrish, J. T.: New Paleogene
climate analysis of western Washington using physiognomic characteristics of
fossil leaves, Palaeogeogr. Palaeocl., 392, 22–40, 2013.
Brown, S.: A comparison of the structure, primary productivity, and
transpiration of cypress ecosystems in Florida, Ecol. Monogr., 51,
403–427, 1981.
Busing, R. T.: NPP Temperate Forest: Great Smoky Mountains, Tennessee, USA,
1968–1992, R1, Data set, Oak
Ridge National Laboratory Distributed Active Archive Center, Oak Ridge,
Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/804, 2013.
Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C. A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., and Pancost, R. D.: A model–model and data–model comparison for the early Eocene hydrological cycle, Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, 2016.
Carmichael, M. J., Pancost, R. D., and Lunt, D. J.: Changes in the occurrence
of extreme precipitation events at the Paleocene–Eocene thermal maximum,
Earth Planet Sc. Lett., 501, 24–36, 2018.
Currano, E. D., Labandeira, C. C., and Wilf, P.: Fossil insect folivory
tracks paleotemperature for six million years, Ecol. Monogr., 80, 547–567,
2010.
Davies-Vollum, K. S.: Early Palaeocene palaeoclimatic inferences from fossil
floras of the western interior, USA, Palaeogeogr. Palaeocl.,
136, 145–164, 1997.
Dawson, M. R., McKenna, M. C., Beard, K. C., and Hutchison, J. H.: An early
Eocene plagiomenid mammal from Ellesmere and Axel Heiberg islands, Arctic
Canada, S Kaupia, 3, 179–192, 1993.
DeVore, M. L. and Pigg, K. B.: A brief review of the fossil history of the
family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern
Washington State, USA, and British Columbia, Canada, Plant Syst. Evol., 266,
45–57, 2007.
DeVore, M. L. and Pigg, K. B.: Floristic composition and comparison of middle
Eocene to late Eocene and Oligocene floras in North America, B. Geosci.,
85, 111–134, 2010.
Dillhoff, R. M., Dillhoff, T. A., Greenwood, D. R., DeVore, M. L., and Pigg,
K. B.: The Eocene Thomas Ranch flora, Allenby Formation, Princeton, British
Columbia, Canada, Botany, 91, 514–529, 2013.
Eberle, J. J. and Greenwood, D. R.: Life at the top of the greenhouse Eocene
world – a review of the Eocene flora and vertebrate fauna from Canada's High
Arctic, Geol. Soc. Am. Bull., 124, 3–23, https://doi.org/10.1130/B30571.1, 2012.
Eberle, J. J. and Greenwood, D. R.: An Eocene brontothere and tillodonts
(Mammalia) from British Columbia, and their paleoenvironments, Can. J. Earth
Sci., 54, 981–992, 2017.
Eberle, J. J., Gottfried, M. D., Hutchison, J. H., and Brochu, C. A.: First record of Eocene bony fishes and crocodyliforms from Canada's Western Arctic, PLoS ONE, 9, e96079, https://doi.org/10.1371/journal.pone.0096079, 2014.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M.: Increased
seasonality through the Eocene to Oligocene transition in northern high
latitudes, Nature, 459, 969–974, https://doi.org/10.1038/nature08069, 2009.
Eldrett, J. S., Greenwood, D. R., Polling, M., Brinkhuis, H., and Sluijs, A.: A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum, Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, 2014.
Estes, R. and Hutchison, J. H.: Eocene lower vertebrates from Ellesmere
Island, Canadian Arctic Archipelago, Palaeogeogr. Palaeocl.,
30, 325–347, 1980.
Environment Canada: National Climate Data and Information Archive, available at:
http://www.climate.weatheroffice.ec.gc.ca, last access:
18 January 2020.
Gholz, H. L.: Environmental limits on aboveground net primary production,
leaf area, and biomass in vegetation zones of the Pacific Northwest,
Ecology, 63, 469–481, 1982.
Greenwood, D. R.: Fossil angiosperm leaves and climate: from Wolfe and
Dilcher to Burnham and Wilf, Cour. Forsch. Senck., 258, 95–108, 2007.
Greenwood, D. R. and Conran, J. G.: Fossil coryphoid palms from the Eocene of
Vancouver, British Columbia, Canada, Int. J. Plant Sci., 181, 224–240,
https://doi.org/10.1086/706450, 2020.
Greenwood, D. R. and Wing, S. L.: Eocene continental climates and
latitudinal temperature gradients, Geology, 23, 1044–1048, 1995.
Greenwood, D. R., Archibald, S. B., Mathewes, R. W., and Moss, P. T.: Fossil
biotas from the Okanagan Highlands, southern British Columbia and
northeastern Washington State: climates and ecosystems across an Eocene
landscape, Can. J. Earth Sci., 42, 167–185, https://doi.org/10.1139/E04-100, 2005.
Greenwood, D. R., Basinger, J. F., and Smith, R. Y.: How wet was the Arctic
Eocene rainforest? Estimates of precipitation from Paleogene Arctic
macrofloras, Geology, 38, 15–18, https://doi.org/10.1130/G30218.1, 2010.
Greenwood, D. R., Pigg, K. B., Basinger, J. F., and DeVore, M. L.: A review of
paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands
floras of British Columbia, Canada and Washington, USA, Can. J. Earth
Sci., 53, 548–564, https://doi.org/10.1139/cjes-2015-0177, 2016.
Greenwood, D. R., Keefe, R. L., Reichgelt, T., and Webb, J. A.: Eocene
paleobotanical altimetry of Victoria's Eastern Uplands, Aust. J. Earth Sci.,
64, 625–637, 2017.
Grimm, G. W. and Potts, A. J.: Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction, Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, 2016.
Gushulak, C. A. C., West, C. K., and Greenwood, D. R.: Paleoclimate and
precipitation seasonality of the Early Eocene McAbee megaflora, Kamloops
Group, British Columbia, Can. J. Earth Sci., 53, 591–604, https://doi.org/10.1139/cjes-2015-0160, 2016.
Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J. A. M., Müller, R. D., Markwick, P., and Huber, M.: A suite of early Eocene (∼55 Ma) climate model boundary conditions, Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, 2014.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very
high re-solution interpolated climate surfaces for global land areas, Int.
J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276,
2005.
Hinojosa, L. F., Pérez, F., Gaxioloa, A., and Sandoval, I.: Historical
and phylogenetic constraints on the incidence of entire leaf margins:
insights from a new South American model, Global Ecol. Biogeogr., 20,
380–390, 2011.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Hopkins, R., Schmitt, J., and Stinchcombe, J. R.: A latitudinal cline and
response to vernalization in leaf angle and morphology in Arabidopsis thaliana (Brassicaceae),
New Phytol., 179, 155–164, https://doi.org/10.1111/j.1469-8137.2008.02447.x, 2008.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Huber, M. and Goldner, A.: Eocene monsoons, J. Asian Earth Sci., 44, 3–23,
https://doi.org/10.1016/j.jseaes.2011.09.014, 2012.
Hyland, E. G., Huntington, K. W., Sheldon, N. D., and Reichgelt, T.: Temperature seasonality in the North American continental interior during the Early Eocene Climatic Optimum, Clim. Past, 14, 1391–1404, https://doi.org/10.5194/cp-14-1391-2018, 2018.
Keery, J. S., Holden, P. B., and Edwards, N. R.: Sensitivity of the Eocene climate to CO2 and orbital variability, Clim. Past, 14, 215–238, https://doi.org/10.5194/cp-14-215-2018, 2018.
Kudo, G.: Leaf traits and shoot performance of an evergreen shrub, Ledum palustre ssp.
decumbens, in accordance with latitudinal change, Can. J. Botany, 73, 1451–1456, https://doi.org/10.1139/b95-157, 1995.
Lauretano, V., Littler, K., Polling, M., Zachos, J. C., and Lourens, L. J.: Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum, Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, 2015.
Littler, K., Röhl, U., Westerhold, T., and Zachos, J. C.: A high
resolution benthic stable-isotope record for the South Atlantic:
Implications for orbital-scale changes in Late Paleocene-Early Eocene
climate and carbon cycling, Earth Planet Sc. Lett., 401, 18–30, https://doi.org/10.1016/j.epsl.2014.05.054, 2014.
Loptson, C. A., Lunt, D. J., and Francis, J. E.: Investigating vegetation–climate feedbacks during the early Eocene, Clim. Past, 10, 419–436, https://doi.org/10.5194/cp-10-419-2014, 2014.
Lowe, A. J., Greenwood, D. R., West, C. K., Galloway, J. M., Reichgelt, T., and
Sudermann, M.: Plant community ecology and climate on an upland volcanic
landscape during the Early Eocene Climatic Optimum: McAbee fossil beds,
British Columbia, Canada, Paleogeogr. Palaeocl., 511, 433–448,
2018.
Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A., Winguth, A., Loptson, C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes, P., and Winguth, C.: A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP, Clim. Past, 8, 1717–1736, https://doi.org/10.5194/cp-8-1717-2012, 2012.
Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., von der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J.-B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C., and Zeebe, R. E.: The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0), Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, 2017.
Lunt, D. J., Bragg, F., Chan, W.-L., Hutchinson, D. K., Ladant, J.-B., Niezgodzki, I., Steinig, S., Zhang, Z., Zhu, J., Abe-Ouchi, A., de Boer, A. M., Coxall, H. K., Donnadieu, Y., Knorr, G., Langebroek, P. M., Lohmann, G., Poulsen, C. J., Sepulchre, P., Tierney, J., Valdes, P. J., Dunkley Jones, T., Hollis, C. J., Huber, M., and Otto-Bliesner, B. L.: DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-149, in review, 2020.
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K.:
cluster: Cluster Analysis Basics and Extensions, R package version 2.1.0.,
2019.
Mathewes, R. W.: Climatic conditions in the western and northern Cordillera
during the last glaciation: paleoecological evidence, Geogr. Phys.
Quatern., 45, 333–339, 1991.
Mathewes, R. W., Greenwood, D. R., and Archibald, S. B.: Paleoenvironment of
the Quilchena flora, British Columbia, during the Early Eocene Climatic
Optimum, Can. J. Earth Sci., 53, 574–590, 2016.
Mathewes, R. W., Greenwood, D. R., and Love, R. L.: The Kanaka Creek
fossil flora (Huntingdon Formation), British Columbia,
Canada–paleoenvironment and evidence for Paleocene age using palynology
and macroflora, Can. J. Earth Sci., 57, 348–365, 2020.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
perturbation of carbon cycle, climate, and biosphere with implications for
the future, Annu. Rev. Earth Planet. Sc., 39, 489–516, 2011.
McIver, E. E. and Basinger, J. F.: Early Tertiary floral evolution in the
Canadian high Arctic, Ann. Miss. Bot. Gard., 86, 523–545, 1999.
McKenna, M. C.: Eocene paleolatitude, climate, and mammals of Ellesmere
Island, Palaeogeogr. Palaeocl., 30, 349–362, 1980.
Migalina, S. V., Ivanova, L. A., and Makhnev, A. K.: Changes of Leaf Morphology
in Betula pendula Roth and B. pubescens Ehrh. along a Zonal–Climatic
Transect in the Urals and Western Siberia, Russ. J. Ecol., 41, 293–301,
https://doi.org/10.1134/S106741361004003X, 2010.
Moss, P. T., Greenwood, D. R., and Archibald, S. B.: Regional and local
vegetation community dynamics of the Eocene Okanagan Highlands (British
Columbia Washington State) from palynology, Can. J. Earth Sci., 42, 187–204,
2005.
Morley, R. J.: Cretaceous and Tertiary climate change and the past
distribution of megathermal rainforests, in: Tropical rainforest responses to
climatic change, Springer, Berlin, Heidelberg, 1–34, 2011.
Naafs, B. D. A., Rohrssen, M., Inglis, G. N., Lähteenoja, O., Feakins,
S. J., Collinson, M. E., Kennedy, E. M., Singh, P. K., Singh, M. P., Lunt, D.J.,
and Pancost, R. D.: High temperatures in the terrestrial mid-latitudes during
the early Palaeogene, Nat. Geosci., 11, 766–771, 2018.
National Oceanic and Atmospheric Administration: National Centers for
Environmental Information: available at: https://www.ncdc.noaa.gov/cdo-web/datatools/normals, last access: 18 January 2020.
New, M., Lister, D., Hulme, M., and Mankin, I.: A high resolutiondata set of
surface of surface climate over global landareas, Clim. Res., 21, 1–25,
https://doi.org/10.3354/cr021001, 2002.
Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight,
E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J. M., and
Correa, E.: Sensitivity of leaf size and shape to climate: global patterns
and paleoclimatic applications, New Phytol., 190, 724–739, 2011.
Quan, C., Liu, Y. S. C., and Utescher, T.: Paleogene temperature gradient,
seasonal variation and climate evolution of northeast China, Palaeogeogr. Palaeocl., 313, 150–161, 2012.
R Core Team: R: a language and environment for statistical computing,
version 3.0. 2. Vienna, Austria: R Foundation for Statistical Computing,
2019.
Reichgelt, T., West, C. K., and Greenwood, D. R.: The relation between the
global distribution of palms and climate, Sci. Rep.-UK, 8, 4721, https://doi.org/10.1038/s41598-018-23147-2, 2018.
Reichgelt, T., Kennedy, E. M., Conran, J. G., Lee, W. G., and Lee, D. E.: The
presence of moisture deficits in Miocene New Zealand, Global Planet. Change,
172, 268–277, 2019.
Reinhardt, L., Estrada, S., Andruleit, H., Dohrmann, R., Piepjohn, K., von
Gosen, W., Davis, D. W., and Davis, B.: Altered volcanic ashes in Palaeocene
and Eocene sediments of the Eureka Sound Group (Ellesmere Island, Nunavut,
Arctic Canada), Z. Dtsch. Ges. Geowiss., 164, 131–147, 2013.
Reinhardt, L., von Gosen, W., Piepjohn, K., Lückge, A., and Schmitz, M.:
The Eocene Thermal Maximum 2 (ETM-2) in a terrestrial section of the High
Arctic: identification by U-Pb zircon ages of volcanic ashes and carbon
isotope records of coal and amber (Stenkul Fiord, Ellesmere Island, Canada),
in: EGU2017, Vinena, Austria, Proceedings, 19, 8145, 2017.
Salpin, M., Schnyder, J., Baudin, F., Suan, G., Suc, J. P., Popescu, S. M., Fauquette, S., Reinhardt, L., Schmitz, M. D., and Labrousse, L.: Evidence for subtropical warmth in the Canadian Arctic (Beaufort-Mackenzie, Northwest Territories, Canada) during the early Eocene, in: Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens, edited by: Piepjohn, K., Strauss, J. V., Reinhardt, L., and McClelland, W. C., Geol. S. Am. Sp., 541, 1–28, https://doi.org/10.1130/2018.2541(27), 2019.
Saugier B., Roy J., and Mooney H. A.: Estimations of global terrestrial
productivity: converging toward a single number?, in: Terrestrial Global Productivity, edited by: Roy, J., Saugier, B.,
and Mooney, H. A., San Diego,
Academic, 543–57, 2001.
Shellito, C. J. and Sloan, L. C.: Reconstructing a lost Eocene paradise: Part
I. Simulating the change in global floral distribution at the initial Eocene
thermal maximum, Global Planet. Change, 50, 1–17, 2006.
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U.,
Reichart, G. J., Sangiorgi, F., Kim, J. H., Sinninghe Damsté, J. S., and
Brinkhuis, H.: Warm and wet conditions in the Arctic region during Eocene
Thermal Maximum 2, Nat. Geosci., 2, 777–780, 2009.
Smith, R. Y.: The Eocene Falkland fossil flora, Okanagan Highlands, British
Columbia: Paleoclimate and plant community dynamics during the Early Eocene
Climatic Optimum, PhD dissertation, University of Saskatchewan, 190 pp.,
2011.
Smith, R. Y., Basinger, J. F., and Greenwood, D. R.: Depositional setting,
fossil flora, and paleoenvironment of the Early Eocene Falkland site,
Okanagan Highlands, British Columbia, Can. J. Earth Sci., 46, 811–822, 2009.
Smith, R. Y., Greenwood, D. R., and Basinger, J. F.: Estimating
paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from
stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada,
Paleogeogr. Palaeocl., 293, 120–131, https://doi.org/10.1016/j.palaeo.2010.05.006, 2010.
Smith, R. Y., Basinger, J. F., and Greenwood, D. R.: Early Eocene plant
diversity and dynamics in the Falkland flora, Okanagan Highlands, British
Columbia, Canada, Palaeobio. Palaeoenv., 92, 309–328, https://doi.org/10.1007/s12549-011-0061-5, 2012.
Sudermann, M., Galloway, J. M., Greenwood, D. R., West, C. K., and Reinhardt,
L.: Palynostratigraphy of the lower Paleogene Margaret Formation at Stenkul
Fiord, Ellesmere Island, Nunavut, Canada, Palynology, in review, 2020.
Sunderlin, D., Loope, G., Parker, N. E., and Williams, C. J.: Paleoclimatic
and paleoecological implications of a Paleocene–Eocene fossil leaf
assemblage, Chickaloon Formation, Alaska. Palaios, 26, 335–345, 2011.
Suan, G., Popescu, S. M., Suc, J. P., Schnyder, J., Fauquette, S., Baudin, F.,
Yoon, D., Piepjohn, K., Sobolev, N. N., and Labrousse, L.: Subtropical
climate conditions and mangrove growth in Arctic Siberia during the early
Eocene, Geology, 45, 539–542, 2017.
Tribe, S.: Eocene paleo-physiography and drainage directions, southern
Interior Plateau, British Columbia, Can. J. Earth Sci., 42, 215–230, 2005.
Tripati, A., Zachos, J., Marincovich Jr., L., and Bice, K.: Late Paleocene
Arctic coastal climate inferred from molluscan stable and radiogenic isotope
ratios, Palaeogeogr. Palaeocl., 170, 101–113, 2001.
Triplehorn, D. M., Turner, D. L., and Naeser, C. W.: Radiometric age of the
Chickaloon Formation of south-central Alaska: Location of the
Paleocene-Eocene boundary, Geol. Soc. Am. Bull., 95, 740–742, 1984.
van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl,
P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude
calculator for paleoclimate studies, PloS One, 10, 1–21, 2015.
West, C. K., Greenwood, D. R., and Basinger, J. F.: Was the Arctic Eocene
“rainforest” monsoonal? Estimates of seasonal precipitation from early
Eocene megafloras from Ellesmere Island, Nunavut, Earth Planet Sc. Lett.,
427, 18–30, https://doi.org/10.1016/j.epsl.2015.06.036, 2015.
West, C. K., Greenwood, D. R., and Basinger, J. F.: The late Paleocene and
early Eocene Arctic megaflora of Ellesmere and Axel Heiberg islands,
Nunavut, Canada, Palaeontogr. Abt. B., 300, 47–163, 2019.
West, C. K., Greenwood, D. R., Reichgelt, T., Lowe, A. J., Vachon, J. M., and Basinger, J. F.: Data for: Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes, Mendeley Data, v1, https://doi.org/10.17632/m8sgvhnc8n.1, 2020.
Westerhold, T., Röhl, U., Wilkens, R. H., Gingerich, P. D., Clyde, W. C., Wing, S. L., Bowen, G. J., and Kraus, M. J.: Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores, Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, 2018.
Whittaker, R. H.: Communities and Ecosystems, 2nd ed., Macmillan, New York,
1975.
Wilf, P.: When are leaves good thermometers? A new case for leaf margin
analysis, Paleobiology, 23i, 373–390, 1997.
Wilf, P.: Late Paleocene–early Eocene climate changes in southwestern
Wyoming: Paleobotanical analysis, Geol. Soc. Am. Bull., 112, 292–307,
2000.
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L.: Using fossil leaves as paleoprecipitation indicators: an Eocene example, Geology, 26, 203–206, 1998.
Willard, D. A., Donders, T. H., Reichgelt, T., Greenwood, D. R., Sangiorgi, F.,
Peterse, F., Nierop, K. G., Frieling, J., Schouten, S., and Sluijs, A.: Arctic
vegetation, temperature, and hydrology during Early Eocene transient global
warming events, Global Planet. Change, 178, 139–152, 2019.
Williams, C. J., LePage, B. A., Johnson, A. H., and Vann, D. R.: Structure,
biomass, and productivity of a late Paleocene Arctic forest, P. Acad.
Nat. Sci. Phila., 158, 107–127, 2009.
Wing, S. L.: Tertiary vegetation of North America as a context for mammalian
evolution, in: Evolution of Tertiary Mammals of North America, edited by: Janis, C. M., Scott, K. M., Jacobs, L. L., Gunnell, G. F., and
Uhen, M. D., 1, 37–65,
Cambridge University Press, 1998.
Wing, S. L. and Greenwood, D. R.: Fossils and fossil climates: the case for
equable Eocene continental interiors, Philos. T. Roy. Soc. B., 341,
243–252, 1993.
Wolfe, J. A.: Distribution of Major Vegetational Types During the Tertiary,
in: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to
Present, edited by: Sundquist, E. and Broecker, W., 32, 357–375, 1985.
Wolfe, J. A.: Tertiary plants from the Cook Inlet region, Alaska, US Geol.
Survey Prof. P., 398, 1–32, 1966.
Wolfe, J. A.: A method of obtaining climatic parameters from leaf
assemblages, US Government Printing Office, No. 2040–2041, 1993.
Wolfe, J. A.: Tertiary climatic changes at middle latitudes of western North
America, Palaeogeogr. Palaeocl., 108, 195–205, 1994.
Wolfe, J. A., Forest, C. E., and Molnar, P.: Paleobotanical evidence of
Eocene and Oligocene paleoaltitudes in midlatitude western North America,
Geol. Soc. Am. Bull., 110, 664–678, 1998.
Woodward, F. I., Lomas, M. R., and Kelly, C. K.: Global climate and the
distribution of plant biomes, Philos. T. Roy. Soc. B., 359, 1465–1476,
2004.
Yang, J., Spicer, R. A., Spicer, T. E., and Li, C. S.: “CLAMP Online”: a new
web-based palaeoclimate tool and its application to the terrestrial
Paleogene and Neogene of North America, Palaeobio. Palaeoenv., 91,
163–183, https://doi.org/10.1007/s12549-011-0056-2, 2011.
Yang, J., Spicer, R. A., Spicer, T. E., Arens, N. C., Jacques, F. M., Su, T.,
Kennedy, E. M., Herman, A. B., Steart, D. C., Srivastava, G., Mehrotra, R. C.,
Valdes, P. J., Mehrotra, N. C., Zhou, Z., and Lai, J.: Leaf form – climate
relationships on the global stage: An ensemble of characters, Global Ecol.
Biogeogr., 24, 1113–1125, 2015.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective
on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283,
2008.
Zhang, L., Hay, W. W., Wang, C., and Gu, X.: The evolution of latitudinal
temperature gradients from the latest Cretaceous through the Present, Earth
Sci. Rev., 189, 147–158, 2019.
Short summary
During the globally warm early Eocene 56 million years ago, lush forests extended up to the high Arctic. Fossil plants from the Canadian High Arctic and Pacific Northwest of North America are a window into this past
greenhouse world. We used an improved method for plant fossil climate reconstruction that provides a consensus reconstruction from all available proxies. Results show that the early Eocene climate in northern North America was similar across a broad range of latitudes.
During the globally warm early Eocene 56 million years ago, lush forests extended up to the high...