Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1187-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1187-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Holocene (0–6 ka) sea-level changes in the Makassar Strait, Indonesia
Maren Bender
CORRESPONDING AUTHOR
MARUM – Center for Marine Environmental Sciences, University Bremen,
Leobener Straße 8, 28359 Bremen, Germany
Thomas Mann
ZMT – Leibniz Centre for Tropical Marine Research, Fahrenheitsstraße
6, 28359 Bremen, Germany
Paolo Stocchi
NIOZ – Royal Netherlands Institute for Sea Research, 17907 SZ 't Horntje,
Texel, the Netherlands
Dominik Kneer
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Hafenstrasse 43, 25992 List/Sylt, Germany
Tilo Schöne
Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum (GFZ),
Telegrafenberg 14473 Potsdam, Germany
Julia Illigner
Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum (GFZ),
Telegrafenberg 14473 Potsdam, Germany
Jamaluddin Jompa
Graduate School, Hasanuddin University, Makassar, 90245, Indonesia
Alessio Rovere
MARUM – Center for Marine Environmental Sciences, University Bremen,
Leobener Straße 8, 28359 Bremen, Germany
Related authors
No articles found.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
B. de Boer, P. Stocchi, and R. S. W. van de Wal
Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, https://doi.org/10.5194/gmd-7-2141-2014, 2014
T. Schöne, C. Zech, K. Unger-Shayesteh, V. Rudenko, H. Thoss, H.-U. Wetzel, A. Gafurov, J. Illigner, and A. Zubovich
Geosci. Instrum. Method. Data Syst., 2, 97–111, https://doi.org/10.5194/gi-2-97-2013, https://doi.org/10.5194/gi-2-97-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Historical Records | Timescale: Holocene
A unified proxy for ENSO and PDO variability since 1650
S. McGregor, A. Timmermann, and O. Timm
Clim. Past, 6, 1–17, https://doi.org/10.5194/cp-6-1-2010, https://doi.org/10.5194/cp-6-1-2010, 2010
Cited articles
Alimuddin, I., Bayuaji, L., Langkoke, R., Sumantyo, J. T. S., and Kuze, H.:
Evaluating Land Surface Changes of Makassar City Using DInSAR and Landsat
Thematic Mapper Images, Journal of Civil Engineering and Architecture, 7, 1287–1294, https://doi.org/10.17265/1934-7359/2013.10.012, 2013.
Azmy, K., Edinger, E., Lundberg, J., and Diegor, W.: Sea level and
paleotemperature records from a mid-Holocene reef on the North coast of
Java, Indonesia, Int. J. Earth Sci., 99, 231–244,
https://doi.org/10.1007/s00531-008-0383-3, 2010.
Bender, M., Mann, T., Stocchi, P., Kneer, D., Schöne, T., Illigner, J., Jompa, J., and Rovere, A.: Fossil Microatoll radiocarbon and elevation records from the Spermonde Archipelago in SW Sulawesi, Indonesia, 2017,
PANGAEA, https://doi.org/10.1594/PANGAEA.917694, 2020.
Bird, M. I., Austin, W. E. N., Wurster, C. M., Fifield, L. K., Mojtahid, M.,
and Sargeant, C.: Punctuated eustatic sea-level rise in the early
mid-Holocene, Geology, 38, 803–806, https://doi.org/10.1130/G31066.1, 2010.
Bird, P.: An updated digital model of plate boundaries, Geochem.
Geophy. Geosy., 4, 1–52, https://doi.org/10.1029/2001GC000252, 2003.
Church, J. A., White, N. J., and Hunter, J. R.: Sea-level rise at tropical
Pacific and Indian Ocean islands, Global Planet. Change, 53, 155–168,
https://doi.org/10.1016/j.gloplacha.2006.04.001, 2006.
Clark, J. A. and Farrell, W. E.: On Postglacial Sea Level, Geophys. J. Roy. Astr. Soc., 46, 647–667, 1976.
Clark, M.: Tangible heritage of the Macassan–Aboriginal encounter in
contemporary South Sulawesi, in: Macassan History and Heritage: Journeys, Encounters and Influences, edited by: Clark, M. and May, S., ANU Press, 159–182, 2013.
Dangendorf, S., Marcos, M., Woppelmann, G., Conrad, C. P., Frederikse, T.,
and Riva, R.: Reassessment of 20th century global mean sea level rise, P.
Natl. Acad. Sci. USA, 114, 5946–5951, https://doi.org/10.1073/pnas.1616007114, 2017.
Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk,
K., and Jensen, J.: Persistent acceleration in global sea-level rise since
the 1960s, Nat. Clim. Change, 9, 705–710, https://doi.org/10.1038/s41558-019-0531-8,
2019.
de Boer, B., Dolan, A. M., Bernales, J., Gasson, E., Goelzer, H., Golledge, N. R., Sutter, J., Huybrechts, P., Lohmann, G., Rogozhina, I., Abe-Ouchi, A., Saito, F., and van de Wal, R. S. W.: Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project, The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, 2015.
de Boer, B., Stocchi, P., Whitehouse, P. L., and van de Wal, R. S. W.:
Current state and future perspectives on coupled ice-sheet e sea-level
modelling, Quaternary Sci. Rev., 169, 13–28,
https://doi.org/10.1016/j.quascirev.2017.05.013, 2017.
De Klerk, L. G.: Zeespiegel Riffen en Kustflakten in zuitwest Sulawesi,
Indonesia, thesis, Geografisch Instituut, Rijksuniversiteit Utrech, 172–172, 1982.
de Radermacher, J. C. M.: Korte beschrijving van het eiland Celebes, en de
eilanden Floris, Sumbauwa, Lombok, en Baly, Reinier Arrenberg, 1786.
Durrant, T., Hemer, M., Trenham, C., and Greenslade, D.: CAWCR Wave Hindcast
1979–2010, Data Collection, CSIRO, https://doi.org/10.4225/08/523168703DCC5, 2013.
Durrant, T., Hemer, M., Smith, G., Trenham, C., and Greenslade, D.: CAWCR
Wave Hindcast extension June 2013–July 2014, v2, CSIRO, Service
Collection, https://doi.org/10.4225/08/55C99193B3A63, 2015.
Fieux, M., Andri, C., Charriaud, E., Ilahude, A. G., Metzl, N., Molcard, R.,
and Swallow, J. C.: Hydrological and chloroflouromethane measuremtens of the
Indonesian throughflow entering the Indian Ocean, J. Geophys. Res., 101, 12433–12454, 1996.
Grossman, E. E., Fletcher, C. H., and Richmond, B. M.: The Holocene
sea-level highstand in the equatorial Pacific: Analysis of the insular
paleosea-level database, Coral Reefs, 17, 309–327, https://doi.org/10.1007/s003380050132, 1998.
Hall, R.: Cenozoic plate tectonic reconstructions of SE Asia SE Asia
Research Group, Geol. Soc. Spec. Publ., 126, 11–23, https://doi.org/10.1144/GSL.SP.1997.126.01.03, 1997.
Hallmann, N., Camoin, G., Eisenhauer, A., Botella, A., Milne, G. A., Vella,
C., Samankassou, E., Pothin, V., Dussouillez, P., Fleury, J., and Fietzke,
J.: Ice volume and climate changes from a 6000 year sea-level record in
French Polynesia, Nat. Commun., 9, 1–12,
https://doi.org/10.1038/s41467-017-02695-7, 2018.
Harris, R. O. N. and Major, J.: Waves of destruction in the East Indies:
the Wichmann catalogue of earthquakes and tsunami in the Indonesian region
from 1538 to 1877, Geol. Soc. Spec. Publ., 441, 9–46, https://doi.org/10.1144/SP441.2, 2017.
Janßen, A., Wizemann, A., Klicpera, A., and Satari, D. Y.: Sediment
Composition and Facies of Coral Reef Islands in the Spermonde Archipelago,
Indonesia, Frontiers in Marine Science, 4, 144, https://doi.org/10.3389/fmars.2017.00144, 2017.
Kench, P. S. and Mann, T.: Reef Island Evolution and Dynamics: Insights
from the Indian and Pacific Oceans and Perspectives for the Spermonde
Archipelago, Frontiers in Marine Science, 4, 145, https://doi.org/10.3389/fmars.2017.00145, 2017.
Kench, P. S., McLean, R. F., Owen, S. D., Ryan, E., Morgan, K. M., Ke, L.,
Wang, X., and Roy, K.: Climate-forced sea-level lowstands in the Indian
Ocean during the last two millennia, Nat. Geosci., 13, 61–64,
https://doi.org/10.1038/s41561-019-0503-7, 2019.
Khan, N. S., Ashe, E., Shaw, T. A., Vacchi, M., Walker, J., Peltier, W. R.,
Kopp, R. E., and Horton, B. P.: Holocene Relative Sea-Level Changes from
Near-, Intermediate-, and Far-Field Locations, Current Climate Change
Reports, 1, 247-262, https://doi.org/10.1007/s40641-015-0029-z, 2015.
Khan, N. S., Hibbert, F., and Rovere, A.: Sea-level databases, Past Global
Changes Magazine, 27, 10–11, https://doi.org/10.22498/pages.27.1.10, 2019.
Kopp, R. E., Horton, B. P., Kemp, A. C., and Tebaldi, C.: Past and future
sea-level rise along the coast of North Carolina, USA, Climatic Change, 132,
693–707, https://doi.org/10.1007/s10584-015-1451-x, 2015.
Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P.,
Gehrels, W. R., Hay, C. C., Mitrovica, J. X., Morrow, E. D., and Rahmstorf,
S.: Temperature-driven global sea-level variability in the Common Era,
P. Natl. Acad. Sci. USA, 113, E1434–E1441, https://doi.org/10.1073/pnas.1517056113, 2016.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene,
P. Natl. Acad. Sci. USA, 111, 15296–15303,
https://doi.org/10.1073/pnas.1411762111, 2014.
Mann, T., Rovere, A., Schöne, T., Klicpera, A., Stocchi, P., Lukman, M.,
and Westphal, H.: The magnitude of a mid-Holocene sea-level highstand in the
Strait of Makassar, Geomorphology, 257, 155–163,
https://doi.org/10.1016/j.geomorph.2015.12.023, 2016.
Mann, T., Bender, M., Lorscheid, T., Stocchi, P., Vacchi, M., Switzer, A.
D., and Rovere, A.: Holocene sea levels in Southeast Asia, Maldives, India
and Sri Lanka: The SEAMIS database, Quaternary Sci. Rev., 219, 112–125, https://doi.org/10.1016/j.quascirev.2019.07.007, 2019a.
Mann, T., Stocchi, P., Bender, M., Rovere, A., Switzer, A., Vacchi, M., and Lorscheid, T.: Data for: Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS database, Mendeley, Version 1, https://doi.org/10.17632/mr247yy42x.1, 2019b.
Meltzner, A. J. and Woodroffe, C. D.: Coral microatolls, in: Handbook of
Sea-Level Research, edited by: Shennan, I., Long, A. J., and Horton, B. P., 125–145, https://doi.org/10.1002/9781118452547.ch8, 2015.
Meltzner, A. J., Switzer, A. D., Horton, B. P., Ashe, E., Qiu, Q., Hill, D.
F., Bradley, S. L., Kopp, R. E., Hill, E. M., Majewski, J. M., Natawidjaja,
D. H., and Suwargadi, B. W.: Half-metre sea-level fluctuations on centennial
timescales from mid-Holocene corals of Southeast Asia, Nat.
Commun., 8, 14387–14387, https://doi.org/10.1038/ncomms14387, 2017.
Milne, G. A. and Mitrovica, J. X.: Searching for eustasy in deglacial
sea-level histories, Quaternary Sci. Rev., 27, 2292–2302,
https://doi.org/10.1016/j.quascirev.2008.08.018, 2008.
Mitrovica, J. X. and Peltier, W. R.: On Postglacial Geoid Subsidence Over
the Equatorial Oceans, J. Geophys. Res., 96, 20053–20071, https://doi.org/10.1029/91JB01284, 1991.
Mitrovica, J. X. and Milne, G. A.: On the origin of late Holocene sea-level
highstands within equatorial ocean basins, Quaternary Sci. Rev., 21, 2179–2190, https://doi.org/10.1016/S0277-3791(02)00080-X, 2002.
Peltier, W. R.: Closure of the budget of global sea level rise over the
GRACE era: the importance and magnitudes of the required corrections for
global glacial isostatic adjustment, Quaternary Sci. Rev., 28,
1658–1674, https://doi.org/10.1016/j.quascirev.2009.04.004, 2009.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, 2015.
Prasetya, G. S., De Lange, W. P., and Healy, T. R.: The Makassar Strait
Tsunamigenic region, Indonesia, Nat. Hazards, 24, 295–307,
https://doi.org/10.1023/A:1012297413280, 2001.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer,
B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal
BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rhodes, B. P., Kirby, M. E., Jankaew, K., and Choowong, M.: Evidence for a
mid-Holocene tsunami deposit along the Andaman coast of Thailand preserved
in a mangrove environment, Mar. Geol., 282, 255–267,
https://doi.org/10.1016/j.margeo.2011.03.003, 2011.
Rovere, A., Stocchi, P., and Vacchi, M.: Eustatic and Relative Sea Level Changes, Current Climate Change Reports, 2, 221–231, https://doi.org/10.1007/s40641-016-0045-7, 2016.
Rovere, A., Stocchi, P., and Bender, M.: Models, data and python tools for the analysis of sea level data in the Spermonde Archipelago, Zenodo, https://doi.org/10.5281/zenodo.3739179, 2020.
Sasajima, S., Nishimura, S., Hirooka, K., Otofuji, Y., Leeuwen, T. V., and
Hehuwat, F.: Paleomagnetic studies combined with fission-track datings on
the western arc of Sulawesi, east Indonesia, Tectonophysics, 64, 163–172,
https://doi.org/10.1016/0040-1951(80)90267-X, 1980.
Sawall, Y., Teichberg, M. C., Seemann, J., Litaay, M., Jompa, J., and
Richter, C.: Nutritional status and metabolism of the coral Stylophora
subseriata along a eutrophication gradient in Spermonde Archipelago
(Indonesia), Coral Reefs, 30, 841–853, https://doi.org/10.1007/s00338-011-0764-0, 2011.
Schwerdtner Máñez, K. and Ferse, S. C.: The history of Makassan trepang fishing and trade, PLoS One, 5, e11346, https://doi.org/10.1371/journal.pone.0011346, 2010.
Schwerdtner Máñez, K., Husain, S., Ferse, S. C. A., and
Máñez Costa, M.: Water scarcity in the Spermonde Archipelago,
Sulawesi, Indonesia: Past, present and future, Environ. Sci. Policy, 23, 74–84, https://doi.org/10.1016/j.envsci.2012.07.004, 2012.
Scoffin, T. P. and Stoddart, D. R.: The Nature and Significance of
microatolls, Philos. T. Roy. Soc. B, 284, 23–23, https://doi.org/10.1098/rstb.1978.0055, 1978.
Shennan, I.: Flandrian sea-level changes in the Fenland. II: Tendencies of
sea-level movement, altitudinal changes, and local and regional factors,
J. Quaternary Sci., 1, 155–179, https://doi.org/10.1002/jqs.3390010205, 1986.
Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Haji Abu, S.,
Promthong, C., Subarya, C., Sarsito, D. A., Matheussen, S., Morgan, P., and
Spakman, W.: A decade of GPS in Southeast Asia: Resolving Sundaland motion
and boundaries, J. Geophys. Res., 112, B06420, https://doi.org/10.1029/2005JB003868, 2007.
Smithers, S. G. and Woodroffe, C. D.: Coral microatolls and 20th century
sea level in the eastern Indian Ocean, Earth Planet. Sc. Lett., 191, 173–184, https://doi.org/10.1016/S0012-821X(01)00417-4, 2001.
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., and Yim, W. W. S.:
Marine reservoir corrections for the Indian Ocean and Southeast Asia,
Radiocarbon, 44, 167–180, https://doi.org/10.1017/S0033822200064778, 2002.
Spada, G. Ã. and Stocchi, P.: SELEN: A Fortran 90 program for solving
the “sea-level equation”, Comput. Geosci., 33, 538–562,
https://doi.org/10.1016/j.cageo.2006.08.006, 2007.
Syamsir, Birawida, A. B., and Faisal, A.: Development of Water Quality Index
of Island Wells in Makassar City, J. Phys. Conf. Ser., 1155, 012106,
https://doi.org/10.1088/1742-6596/1155/1/012106, 2019.
Tahir, A., Boer, M., Susilo, S. B., and Jaya, d. I.: Indeks Kerentanan
Pulau-Pulau Kecil : Kasus Pulau Barrang Lompo-Makasar, ILMU KElautan, 14,
183–188, 2009.
Tjia, H. D., Fujii, S., Kigoshi, K., Sugimura, A., and Zakaria, T.:
Radiocarbon dates of elevated shorelines, Indonesia and Malaysia. Part 1,
Quaternary Res., 2, 487–495, https://doi.org/10.1016/0033-5894(72)90087-7, 1972.
Walpersdorf, A., Vigny, C., Manurung, P., Subarya, C., and Sutisna, S.:
Determining the Sula block kinematics in the triple junction area in
Indonesia by GPS, Geophys. J. Int., 135, 351–361, 1998.
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res., 101, 8741–8743, https://doi.org/10.1029/96jb00104, 1996.
Williams, S. L.: A new collaboration for Indonesia's small islands, Front. Ecol. Environ., 11, 274–275, 2013.
Woodroffe, C. D.: Mid-late Holocene El Niño variability in the
equatorial Pacific from coral microatolls, Geophys. Res. Lett., 30, 1358, https://doi.org/10.1029/2002GL015868, 2003.
Woodroffe, C. D. and Webster, J. M.: Coral reefs and sea-level change,
Mar. Geol., 352, 248–267, https://doi.org/10.1016/j.margeo.2013.12.006, 2014.
Woodroffe, C. D., McGregor, H. V., Lambeck, K., Smithers, S. G., and Fink,
D.: Mid-Pacific microatolls record sea-level stability over the past 5000 yr, Geology, 40, 951–954, https://doi.org/10.1130/G33344.1, 2012.
Woodroffe, S. A., Long, A. J., Lecavalier, B. S., Milne, G. A., and Bryant,
C. L.: Using relative sea-level data to constrain the deglacial and Holocene
history of southern Greenland, Quaternary Sci. Rev., 92, 345–356,
https://doi.org/10.1016/j.quascirev.2013.09.008, 2014.
Zachariasen, J.: Paleoseismology and Paleogeodesy of the Sumatra Subduction
Zone: A Study of Vertical Deformation Using Coral Microatolls, The California Institute of Technology, USA, 1998.
Short summary
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and the reconstruction of the local Holocene relative sea-level history in combination with glacial isostasic adjustment models. We further show the importance of surveying the height of living coral microatolls as modern analogs to the fossil ones. Other interesting aspects are the potential subsidence of one of the densely populated islands, and we present eight samples that are dated to the Common Era.
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and...