Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1097-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1097-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volcanism and climate change as drivers in Holocene depositional dynamic of Laguna del Maule (Andes of central Chile – 36° S)
Matías Frugone-Álvarez
CORRESPONDING AUTHOR
Departamento de Ecología & Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Laboratorio Internacional en Cambio Global, LINCGlobal PUC-CSIC-UFRJ, Santiago, Chile
Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
Claudio Latorre
Departamento de Ecología & Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Laboratorio Internacional en Cambio Global, LINCGlobal PUC-CSIC-UFRJ, Santiago, Chile
Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
Fernando Barreiro-Lostres
Laboratorio Internacional en Cambio Global, LINCGlobal PUC-CSIC-UFRJ, Santiago, Chile
Instituto Pirenaico de Ecología (IPE-CSIC), Saragossa, Spain
Santiago Giralt
Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), Barcelona, Spain
Ana Moreno
Laboratorio Internacional en Cambio Global, LINCGlobal PUC-CSIC-UFRJ, Santiago, Chile
Instituto Pirenaico de Ecología (IPE-CSIC), Saragossa, Spain
Josué Polanco-Martínez
DeustoTech – Deusto Institute of Technology, Faculty of Engineering, University of Deusto, Avda. Universidades, 24, Bilbao, Spain
Basque Centre for Climate Change (BC3), Leioa, Spain
Antonio Maldonado
Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
Centro de Estudios Avanzados en Zonas Áridas, Universidad de La Serena, La Serena, Chile
Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
María Laura Carrevedo
Laboratorio Internacional en Cambio Global, LINCGlobal PUC-CSIC-UFRJ, Santiago, Chile
Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
Patricia Bernárdez
Marine Geosciences and Territorial Planning, Edificio de Ciencias Experimentales, University of Vigo, Vigo, Spain
Ricardo Prego
Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
Antonio Delgado Huertas
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain
Magdalena Fuentealba
Departamento de Ecología & Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile
Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
Blas Valero-Garcés
Laboratorio Internacional en Cambio Global, LINCGlobal PUC-CSIC-UFRJ, Santiago, Chile
Instituto Pirenaico de Ecología (IPE-CSIC), Saragossa, Spain
Related authors
No articles found.
Coral Pardo-Esté, Juan Castro-Severyn, Francisco Remonsellez, Antonio Maldonado, Inger Heine Fuster, Hector Pizarro, and Adriana Aránguiz-Acuña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3035, https://doi.org/10.5194/egusphere-2024-3035, 2024
Short summary
Short summary
Inka-Coya Lake is located in the Atacama Desert, and this pioneer study characterized the gradient of microbial life along the deep lacustrine sediments that stratified for over 600 years, since the pre-mining period. Our results indicate there is great taxonomic novelty and strong relationships with geochemical composition especially in Cu, Fe, Ni, and V. We propose a clustering of taxa and function in three zones with characteristic taxonomic and functional potential.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Preprint under review for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Erik T. Brown, Margarita Caballero, Enrique Cabral Cano, Peter J. Fawcett, Socorro Lozano-García, Beatriz Ortega, Liseth Pérez, Antje Schwalb, Victoria Smith, Byron A. Steinman, Mona Stockhecke, Blas Valero-Garcés, Sebastian Watt, Nigel J. Wattrus, Josef P. Werne, Thomas Wonik, Amy E. Myrbo, Anders J. Noren, Ryan O'Grady, Douglas Schnurrenberger, and the MexiDrill Team
Sci. Dril., 26, 1–15, https://doi.org/10.5194/sd-26-1-2019, https://doi.org/10.5194/sd-26-1-2019, 2019
Short summary
Short summary
MexiDrill, the Basin of Mexico Drilling Program, recovered a continuous, high-resolution 400 000 year record of tropical North American environmental change. The field location, in the densely populated, water-stressed, Mexico City region, gives this record particular societal relevance. The record also contains a rich record of volcanic activity; knowledge of the history of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity.
Ignacio A. Jara, Antonio Maldonado, Leticia González, Armand Hernández, Alberto Sáez, Santiago Giralt, Roberto Bao, and Blas Valero-Garcés
Clim. Past, 15, 1845–1859, https://doi.org/10.5194/cp-15-1845-2019, https://doi.org/10.5194/cp-15-1845-2019, 2019
Short summary
Short summary
The South American summer monsoon (SASM) is the most important climate system of South America. However, little is known about its long-term variability. Here we present a new SASM reconstruction from Lago Chungará in the southern Altiplano (18°S). We show important changes in SASM precipitation at timescales of centuries. Our results suggest that SASM variability was controlled not only by tropical climates but was also influenced by precipitation outside the tropics.
Tricia Light, Núria Catalán, Santiago Giralt, and Rafael Marcé
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-128, https://doi.org/10.5194/bg-2019-128, 2019
Revised manuscript not accepted
Short summary
Short summary
Water reservoir sediments can store large amounts of organic. However, it is unclear what happens to this organic carbon when water reservoirs go dry due to drought, water diversion, etc. Here, we conducted laboratory incubations of reservoir sediment to determine the effect of drying on this stored organic carbon. We found that while some of the organic carbon in water reservoir sediments is released to the atmosphere as reservoirs go dry, other sediment processes can offset these emissions.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
O. Margalef, I. Cacho, S. Pla-Rabes, N. Cañellas-Boltà, J. J. Pueyo, A. Sáez, L. D. Pena, B. L. Valero-Garcés, V. Rull, and S. Giralt
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1407-2015, https://doi.org/10.5194/cpd-11-1407-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
The Rano Aroi peat record (Easter Island, 27ºS) is characterized by six major events of enhanced precipitation between 38 and 65 kyr BP coinciding with Heinrich and Dansgaard-Oeschger (DO) Stadials. These events draw a coherent regional picture involving atmospheric and oceanic reorganization. The singular location of Easter Island, filling a gap in an area where marine records are not available, contributes to understand the mechanisms behind these global rapid climatic excursions.
Related subject area
Subject: Feedback and Forcing | Archive: Terrestrial Archives | Timescale: Holocene
Viticulture extension in response to global climate change drivers – lessons from the past and future projections
Wet–dry status change in global closed basins between the mid-Holocene and the Last Glacial Maximum and its implication for future projection
Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales
Joel Guiot, Nicolas Bernigaud, Alberte Bondeau, Laurent Bouby, and Wolfgang Cramer
Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, https://doi.org/10.5194/cp-19-1219-2023, 2023
Short summary
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
Xinzhong Zhang, Yu Li, Wangting Ye, Simin Peng, Yuxin Zhang, Hebin Liu, Yichan Li, Qin Han, and Lingmei Xu
Clim. Past, 16, 1987–1998, https://doi.org/10.5194/cp-16-1987-2020, https://doi.org/10.5194/cp-16-1987-2020, 2020
Short summary
Short summary
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were much wetter in a similar warm world 6000 years ago. Why do they respond differently and will it be wetter or drier? We assess the wet–dry status and mechanism at different timescales and suggest that moisture change in the past and future warm periods are controlled by summer and winter precipitation, respectively. Diversified responses in different closed basins need a more resilient strategy.
Markus Czymzik, Raimund Muscheler, and Achim Brauer
Clim. Past, 12, 799–805, https://doi.org/10.5194/cp-12-799-2016, https://doi.org/10.5194/cp-12-799-2016, 2016
Short summary
Short summary
Integrating discharge data of the River Ammer back to 1926 and a 5500-year flood layer record from an annually laminated sediment core of the downstream Ammersee allowed investigating changes in the frequency of major floods in Central Europe on interannual to multi-centennial timescales. Significant correlations between flood frequency variations in both archives and changes in the activity of the Sun suggest a solar influence on the frequency of these hydrometeorological extremes.
Cited articles
Abarzúa, A. M., Villagrán, C., and Moreno, P. I.: Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, southern Chile (43∘ S), Quaternary Res., 62, 49–59, https://doi.org/10.1016/j.yqres.2004.04.005, 2004. a
Andersen, N. L., Singer, B. S., Jicha, B. R., Hildreth, E. W., Fierstein, J., and Rogers, N. W.: Evolution of Rhyolite at Laguna del Maule, a Rapidly
Inflating Volcanic Field in the Southern Andes, AGU Fall Meeting Abstracts,
V31C-2804, available at: http://adsabs.harvard.edu/abs/2012AGUFM.V31C2804A (last access: 29 May 2019), 2012. a, b
Andersen, N. L., Singer, B. S., Jicha, B. R., Beard, B. L., Johnson, C. M., and Licciardi, J. M.: Pleistocene to Holocene Growth of a Large Upper Crustal Rhyolitic Magma Reservoir beneath the Active Laguna del Maule Volcanic Field, Central Chile, J. Petrol., 58, 85–114, https://doi.org/10.1093/petrology/egx006, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Appleby, P. and Oldfield, F.: The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment, CATENA, 5, 1–8, https://doi.org/10.1016/S0341-8162(78)80002-2, 1978. a
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, https://doi.org/10.1080/01490410903297766, 2009. a
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317,
https://doi.org/10.1016/0277-3791(91)90033-Q, 1991. a
Bernárdez, P., Prego, R., Francés, G., and González-Álvarez, R.: Opal content in the Ría de Vigo and Galician continental shelf: biogenic silica in the muddy fraction as an accurate paleoproductivity proxy, Cont. Shelf Res., 25, 1249–1264, https://doi.org/10.1016/j.csr.2004.12.009, 2005. a
Betancourt, J. L., Latorre, C., Rech, J. A., Quade, J., and Rylander, K. A.: A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert, Science, 289, 1542–1546, https://doi.org/10.1126/science.289.5484.1542, 2000. a
Boisier, J. P., Rondanelli, R., and Garreaud, René D., M. n. F.: Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile, Geophys. Res. Lett., 43, 413–421, https://doi.org/10.1002/2015GL067265, 2016. a
Botrel, M., Gregory-Eaves, I., and Maranger, R.: Defining drivers of nitrogen stable isotopes (δ15N) of surface sediments in temperate lakes, J. Paleolimnol., 52, 419–433, https://doi.org/10.1007/s10933-014-9802-6, 2014. a
Carré, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P., Falcón, R. A., Julien, M., and Lavallée, D.: Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific, Science, 29, 1045–1048, https://doi.org/10.1126/science.1252220, 2014. a
Carrevedo, M. L., Frugone, M., Latorre, C., Maldonado, A., Bernárdez, P., Prego, R., Cárdenas, D., and Valero-Garcés, B.: A 700-year record of climate and environmental change from a high Andean lake: Laguna del Maule, central Chile (36∘ S), The Holocene, 25, 956–972, https://doi.org/10.1177/0959683615574584, 2015. a, b, c, d, e, f, g, h, i, j
Christenson, B., Németh, K., Rouwet, D., Tassi, F., Vandemeulebrouck, J., and Varekamp, J. C.: Volcanic Lakes, in: Volcanic Lakes, edited by: Rouwet, D., Christenson, B., Tassi, F., and Vandemeulebrouck, J., Springer, Berlin, Heidelberg, 1–20, https://doi.org/10.1007/978-3-642-36833-2_1, 2015. a, b
Contreras, S., Werne, J. P., Araneda, A., Urrutia, R., and Conejero, C.: Organic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes, Sci. Total Environ., 630, 878–888, https://doi.org/10.1016/j.scitotenv.2018.02.225, 2018. a
Corella, J. P., Benito, G., Rodriguez-Lloveras, X., Brauer, A., and Valero-Garcés, B. L.: Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula, Quaternary Sci. Rev., 93, 77–90, https://doi.org/10.1016/j.quascirev.2014.03.020, 2014. a
Daele, M. V., Bertrand, S., Meyer, I., Moernaut, J., Vandoorne, W., Siani, G., Tanghe, N., Ghazoui, Z., Pino, M., Urrutia, R., and Batist, M. D.: Late Quaternary evolution of Lago Castor (Chile, 45.6∘ S): Timing of the deglaciation in northern Patagonia and evolution of the southern westerlies during the last 17 kyr, Quaternary Sci. Rev., 133, 130–146, https://doi.org/10.1016/j.quascirev.2015.12.021, 2016. a
Davison, W.: Iron and manganese in lakes, Earth-Sci. Rev., 34, 119–163, https://doi.org/10.1016/0012-8252(93)90029-7, 1993. a
de Jong, R., von Gunten, L., Maldonado, A., and Grosjean, M.: Late Holocene summer temperatures in the central Andes reconstructed from the sediments of high-elevation Laguna Chepical, Chile (32∘ S), Clim. Past, 9, 1921–1932, https://doi.org/10.5194/cp-9-1921-2013, 2013. a
De Pol‐Holz, R., Ulloa, O., Lamy, F., Dezileau, L., Sabatier, P., and Hebbeln, D.: Late Quaternary variability of sedimentary nitrogen isotopes in the eastern South Pacific Ocean, Paleoceanography, 22, PA2207, https://doi.org/10.1029/2006PA001308, 2007. a
Dewey, J. F. and Lamb, S. H.: Active tectonics of the Andes, Tectonophysics, 205, 79–95, https://doi.org/10.1016/0040-1951(92)90419-7, 1992. a
Díaz, F. P., Frugone, M., Gutiérrez, R. A., and Latorre, C.: Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet, Sci. Rep., 6, 22226, https://doi.org/10.1038/srep22226, 2016. a
Espizua, L. E.: Holocene glacier chronology of Valenzuela Valley, Mendoza Andes, Argentina, The Holocene, 15, 1079–1085, https://doi.org/10.1191/0959683605hl866rr, 2005. a
Faegri, K., Iversen, J., Kaland, P. E., and Krzywinski, K.: Textbook of Pollen Analysis, Blackburn Press, Caldwell, NJ, 340 pp., 1989. a
Falvey, M. and Garreaud, R.: Wintertime Precipitation Episodes in Central Chile: Associated Meteorological Conditions and Orographic Influences, J. Hydrometeorol., 8, 171–193, https://doi.org/10.1175/JHM562.1, 2007. a
Falvey, M. and Garreaud, R. D.: Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of
subtropical South America (1979–2006), J. Geophys. Res., 114, D04102, https://doi.org/10.1029/2008JD010519, 2009. a
Feigl, K. L., Le Mevel, H., Tabrez Ali, S., Cordova, L., Andersen, N. L., DeMets, C., and Singer, B. S.: Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic zone (Chile) 2007–2012, Geophys. J. Int., 196, 885–901, https://doi.org/10.1093/gji/ggt438, 2014. a, b, c
Fernández Murillo, M. D. P., Cuevas, J. G., and Maldonado, A.: Análisis de la lluvia polínica actual en un gradiente altitudinal en los Andes de Chile Central (33∘ S), Gayana Bot., 76, 220–236,
https://doi.org/10.4067/S0717-66432019000200220, 2019. a
Filzmoser, P., Fritz, H., and Kalcher, K.: pcaPP: Robust PCA by Projection Pursuit, r package version 1.9-73, available at: https://CRAN.R-project.org/package=pcaPP (last access: 3 December 2019), 2018. a
Fisher, R. V. and Schmincke, H.-U.: Pyroclastic Rocks, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-74864-6, 1984. a
Fletcher, M.-S. and Moreno, P.: Zonally symmetric changes in the strength and position of the Southern Westerlies drove atmospheric CO2 variations over the past 14 k.y., Geology, 39, 419–422, https://doi.org/10.1130/G31807.1, 2011. a, b
Fletcher, M.-S. and Moreno, P. I.: Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem, Quatern. Int., 253, 32–46, https://doi.org/10.1016/j.quaint.2011.04.042, 2012. a
Fontijn, K., Lachowycz, S. M., Rawson, H., Pyle, D. M., Mather, T. A., Naranjo, J. A., and Moreno-Roa, H.: Late Quaternary tephrostratigraphy of southern Chile and Argentina, Quaternary Sci. Rev., 89, 70–84, https://doi.org/10.1016/j.quascirev.2014.02.007, 2014. a, b
Fontijn, K., Rawson, H., Daele, M. V., Moernaut, J., Abarzúa, A. M., Heirman, K., Bertrand, S., Pyle, D. M., Mather, T. A., Batist, M. D., Naranjo, J.-A., and Moreno, H.: Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District, Quaternary Sci. Rev., 137, 234–254, https://doi.org/10.1016/j.quascirev.2016.02.015, 2016. a
Fornace, K. L., Hughen, K. A., Shanahan, T. M., Fritz, S. C., Baker, P. A., and Sylva, S. P.: A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments, Earth Planet. Sc. Lett., 408, 263–271, https://doi.org/10.1016/j.epsl.2014.10.024, 2014. a, b
Frugone-Álvarez, M.: Reconstruction of Holocene climatie and environmental variability in central Chile based on lacustrine sedimentary sequences: El Maule and Vichuquén lake records, PhD thesis, Universidad de Zaragoza, España, 287 pp., available at: https://dialnet.unirioja.es/servlet/tesis?codigo=203081 (last access: 3 December 2019), 2016. a, b, c
Frugone-Álvarez and Valero-Garcés, B.: Laguna del Maule, Chile 13,000 Year Multiproxy Sediment Data, NOAA Study Page, available at: https://www.ncdc.noaa.gov/paleo-search/study/29692, last access: 29 May 2020. a
Frugone-Álvarez, M., Latorre, C., Giralt, S., Polanco-Martínez, J., Bernárdez, P., Oliva-Urcia, B., Maldonado, A., Carrevedo, M. L., Moreno, A., Delgado Huertas, A., Prego, R., Barreiro-Lostres, F., and Valero-Garcés, B.: A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuquén, 34∘ S): implications for past sea level and environmental variability, J. Quaternary Sci., 32, 830–844, https://doi.org/10.1002/jqs.2936, 2017. a, b, c, d, e, f
Fuentealba, M., Latorre, C., Frugone-Álvarez, M., Sarricolea, P., Giralt, S., Contreras-Lopez, M., Prego, R., Bernárdez, P., and Valero-Garcés, B.: A combined approach to establishing the timing and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-watershed system, Sci. Rep., 10, 1–13, 2020. a
Garreaud, R. D.: Estimación de la altura de la línea de nieve en cuencas de Chile central, Revista Chilena de Ingeniería Hidráulica, 7, 21–32, 1992. a
Garreaud, R. D. and Falvey, M.: The coastal winds off western subtropical South America in future climate scenarios, Int. J. Climatol., 29, 543–554, https://doi.org/10.1002/joc.1716, 2009. a
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeogr. Palaeocl., 281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009. a, b
Giralt, S., Moreno, A., Bao, R., Sáez, A., Prego, R., Valero-Garcés, B. L., Pueyo, J. J., González-Sampériz, P., and Taberner, C.: A statistical approach to disentangle environmental forcings in a lacustrine record: the Lago Chungará case (Chilean Altiplano), J. Paleolimnol., 40, 195–215, https://doi.org/10.1007/s10933-007-9151-9, 2008. a
Grosjean, M. and Núñez, A. L.: Lateglacial, early and middle holocene environments, human occupation, and resource use in the Atacama (Northern Chile), Geoarchaeology, 9, 271–286, https://doi.org/10.1002/gea.3340090402, 1994. a
Grosjean, M., Valero-Garcés, B. L., Geyh, M. A., Messerli, B., Schotterer, U., Schreier, H., and Kelts, K.: Mid- and late-Holocene limnogeology of Laguna del Negro Francisco, northern Chile, and its palaeoclimatic implications, The Holocene, 7, 151–159, https://doi.org/10.1177/095968369700700203, 1997 a, b
Grosjean, M., van Leeuwen, J. F. N., van der Knaap, W. O., Geyh, M. A., Ammann, B., Tanner, W., Messerli, B., Núñez, L. A., Valero-Garcés, B. L., and Veit, H.: A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23∘ S), northern Chile, Global Planet. Change, 28, 35–51, https://doi.org/10.1016/S0921-8181(00)00063-1, 2001. a
Hildreth, W. and Drake, R. E.: Volcán Quizapu, Chilean Andes, B. Volcanol., 54, 93–125, https://doi.org/10.1007/BF00278002, 1992. a
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H.: SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP, Radiocarbon, 55, 1889–1903, https://doi.org/10.2458/azu_js_rc.55.16783, 2013. a
Holdaway, R. N., Duffy, B., and Kennedy, B.: Evidence for magmatic carbon bias in 14C dating of the Taupo and other major eruptions, Nat. Commun., 9, 4110, https://doi.org/10.1038/s41467-018-06357-0, 2018. a
Jacques-Coper, M. and Garreaud, R. D.: Characterization of the 1970s climate shift in South America, Int. J. Climatol., 35, 2164–2179, https://doi.org/10.1002/joc.4120, 2014. a
Jara, I. A. and Moreno, P. I.: Climatic and disturbance influences on the temperate rainforests of northwestern Patagonia (40∘ S) since ∼ 14,500 cal yr BP, Quaternary Sci. Rev., 90, 217–228, https://doi.org/10.1016/j.quascirev.2014.01.024, 2014. a, b, c
Jenny, B., Valero-Garcés, B. L., Villa-Martínez, R., Urrutia, R., Geyh, M., and Veit, H.: Early to Mid-Holocene Aridity in Central Chile and the Southern Westerlies: The Laguna Aculeo Record (34∘ S), Quaternary Res., 58, 160–170, https://doi.org/10.1006/qres.2002.2370, 2002. a, b, c, d, e, f, g, h, i
Jenny, B., Wilhelm, D., and Valero-Garcés, B.: The Southern Westerlies in Central Chile: Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33∘50′ S), Clim. Dynam., 20 269–280, https://doi.org/10.1007/s00382-002-0267-3 2003. a, b
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007.
Kaiser, J., Schefuß, E., Lamy, F., Mohtadi, M., and Hebbeln, D.: Glacial to Holocene changes in sea surface temperature and coastal vegetation in north central Chile: high vs low latitude forcing, Quaternary Sci. Rev., 27, 2064–2075, https://doi.org/10.1016/j.quascirev.2008.08.025, 2008. a, b
Kienast, M., Kienast, S. S., Calvert, S. E., Eglinton, T. I., Mollenhauer, G., Francois, R., and Mix, A. C.: Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation, Nature, 443, 846–849, https://doi.org/10.1038/nature05222, 2006. a
Kim, J.-H., Schneider, R. R., Hebbeln, D., Müller, P. J., and Wefer, G.: Last deglacial sea-surface temperature evolution in the Southeast Pacific compared to climate changes on the South American continent, Quaternary Sci. Rev., 21, 2085–2097, https://doi.org/10.1016/S0277-3791(02)00012-4, 2002. a, b, c, d, e, f
Lamy, F. and Kaiser, J.: Glacial to Holocene Paleoceanographic and Continental Paleoclimate Reconstructions Based on ODP Site 1233/GeoB 3313 Off Southern Chile, in: Past Climate Variability in South America and Surrounding Regions, edited by: Vimeux, F., Sylvestre, F., and Khodri, M., Springer Netherlands, Developments in Paleoenvironmental Research, 14, 129–156, https://doi.org/10.1007/978-90-481-2672-9_6, 2009. a
Lamy, F., Hebbeln, D., and Wefer, G.: High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment Parameters, Quaternary Res., 51, 83–93, https://doi.org/10.1006/qres.1998.2010, 1999. a, b
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G.: Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies, Earth Planet. Sc. Lett., 185, 369–382, https://doi.org/10.1016/S0012-821X(00)00381-2, 2001. a, b
Lamy, F., Rühlemann, C., Hebbeln, D., and Wefer, G.: High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene, Paleoceanography, 17, 16-1–16-10, https://doi.org/10.1029/2001PA000727, 2002. a, b
Latorre, C., Betancourt, J. L., Rylander, K. A., Quade, J., and Matthei, O.: A vegetation history from the arid prepuna of northern Chile (22–23∘ S) over the last 13,500 years, Palaeogeogr. Palaeocl., 194, 223–246, https://doi.org/10.1016/S0031-0182(03)00279-7, 2003. a
Latorre, C., Betancourt, J. L., and Arroyo, M. T.: Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22∘ S) of Northern Chile, Quaternary Res., 65, 450–466, https://doi.org/10.1016/j.yqres.2006.02.002, 2006. a
Latorre, C., Moreno, P. I., Vargas, G., Maldonado, A., Villa-Martínez, R., Armesto, J. J., Villagrán, C., Pino, M., Núñez, L., and Grosjean, M.: Late Quaternary environments and palaeoclimate, The Geology of Chile, edited by: Gibbons, W. and Moreno, T., London Geological Society Press, https://doi.org/10.1144/GOCH.12, 2007. a
Lauterbach, S., Chapron, E., Brauer, A., Hüls, M., Gilli, A., Arnaud, F., Piccin, A., Nomade, J., Desmet, M., von Grafenstein, U., and DecLakes Participants: A sedimentary record of Holocene surface runoff events and earthquake activity from Lake Iseo (Southern Alps, Italy), The Holocene, 22, 749–760, https://doi.org/10.1177/0959683611430340, 2012. a
Liu, Z., Lu, Z., Wen, X., Otto-Bliesner, B. L., Timmermann, A., and Cobb, K. M.: Evolution and forcing mechanisms of El Niño over the past 21,000 years, Nature, 515, 550–553, https://doi.org/10.1038/nature13963, 2014. a
Luebert, F. and Pliscoff, P.: Sinopsis bioclimática y vegetacional de Chile, Editorial universitaria, 2006. a
Maher, L. J.: Pollen Analyses of Surface Materials from the Southern San Juan Mountains, Colorado, GSA Bulletin, 74, 1485–1503, https://doi.org/10.1130/0016-7606(1963)74[1485:PAOSMF]2.0.CO;2, 1963. a
Maher, L. J.: Absolute pollen diagram of Redrock Lake, Boulder County, Colorado, Quaternary Res., 2, 531–553, https://doi.org/10.1016/0033-5894(72)90090-7, 1972. a
Maldonado, A. and Villagrán, C.: Paleoenvironmental Changes in the Semiarid Coast of Chile (∼32∘ S) during the Last 6200 cal Years Inferred from a Swamp–Forest Pollen Record, Quaternary Res., 58, 130–138, https://doi.org/10.1006/qres.2002.2353, 2002. a
Maldonado, A. and Villagrán, C.: Climate variability over the last 9900 cal yr BP from a swamp forest pollen record along the semiarid coast of Chile, Quaternary Res., 66, 246–258, https://doi.org/10.1016/j.yqres.2006.04.003, 2006. a, b, c, d
Martel-Cea, A., Maldonado, A., Grosjean, M., Alvial, I., de Jong, R., Fritz, S. C., and von Gunten, L.: Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical, Central Chile (32∘ S;
3050 m a.s.l.), Palaeogeogr. Palaeocl., 461, 44–54, https://doi.org/10.1016/j.palaeo.2016.08.003, 2016. a
Masiokas, M. H., Villalba, R., Luckman, B. H., Le Quesne, C., and Aravena, J. C.: Snowpack Variations in the Central Andes of Argentina and Chile, 1951–2005: Large-Scale Atmospheric Influences and Implications for Water Resources in the Region, J. Climate, 19, 6334–6352, https://doi.org/10.1175/JCLI3969.1, 2006. a, b
Masiokas, M. H., Villalba, R., Luckman, B. H., and Mauget, S.: Intra- to Multidecadal Variations of Snowpack and Streamflow
Records in the Andes of Chile and Argentina between 30∘ and 37∘ S, J. Hydrometeorol., 11, 822–831, https://doi.org/10.1175/2010JHM1191.1, 2010. a
Masiokas, M. H., Villalba, R., Christie, D. A., Betman, E., Luckman, B. H., Le Quesne, C., Prieto, M. R., and Mauget, S.: Snowpack variations since AD 1150 in the Andes of Chile and Argentina (30∘–37∘ S) inferred from rainfall, tree-ring and documentary records, J. Geophys. Res., 117, D05112, https://doi.org/10.1029/2011JD016748, 2012. a
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J.: Holocene climate variability, Quaternary Res., 62, 243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004. a
Meyers, P. A.: Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem. Geol., 114, 289–302, https://doi.org/10.1016/0009-2541(94)90059-0, 1994. a, b
Meyers, P. A.: Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes, Org. Geochem., 34, 261–289, https://doi.org/10.1016/S0146-6380(02)00168-7, 2003. a, b, c, d
Meyers, P. A. and Teranes, J. L.: Sediment Organic Matter, in: Tracking Environmental Change Using Lake Sediments, edited by: Last, W. M. and Smol, J. P., Developments in Paleoenvironmental Research, 2, 239–269, https://doi.org/10.1007/0-306-47670-3_9, 2002. a
Michelutti, N., Wolfe, A. P., Cooke, C. A., Hobbs, W. O., Vuille, M., and Smol, J. P.: Climate Change Forces New Ecological States in Tropical Andean Lakes, PLoS ONE, 10, e0115338, https://doi.org/10.1371/journal.pone.0115338, 2015. a
Moernaut, J., De Batist, M., Heirman, K., Van Daele, M., Pino, M., Brümmer, R., and Urrutia, R.: Fluidization of buried mass-wasting deposits in lake sediments and its relevance for paleoseismology: Results from a reflection seismic study of lakes Villarrica and Calafquén (South-Central Chile), Sediment. Geol., 213, 121–135, https://doi.org/10.1016/j.sedgeo.2008.12.002, 2009. a
Moernaut, J., Daele, M. V., Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R., and De Batist, M.: Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile, J. Geophys. Res.-Sol. Ea., 119, 1607–1633, https://doi.org/10.1002/2013JB010738, 2014. a
Moernaut, J., Daele, M. V., Heirman, K., Wiemer, G., Molenaar, A., Vandorpe, T., Melnick, D., Hajdas, I., Pino, M., Urrutia, R., and Batist, M. D.: The subaqueous landslide cycle in south-central Chilean lakes: The role of tephra, slope gradient and repeated seismic shaking, Sediment. Geol., 381, 84–105, https://doi.org/10.1016/j.sedgeo.2019.01.002, 2019. a
Montecinos, A. and Aceituno, P.: Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies, J. Climate, 16, 281–296, https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2, 2003. a, b
Moreno, P. I.: Millennial-scale climate variability in northwest Patagonia over the last 15000 yr, J. Quaternary Sci., 19, 35–47, https://doi.org/10.1002/jqs.813, 2004. a
Moreno, P. I. and León, A. L.: Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America, J. Quaternary Sci., 18, 787–800, https://doi.org/10.1002/jqs.801, 2003. a
Mosblech, N. A., Bush, M. B., Gosling, W. D., Hodell, D., Thomas, L., Van Calsteren, P., Correa-Metrio, A., Valencia, B. G., Curtis, J., and Van Woesik, R.: North Atlantic forcing of Amazonian precipitation during the last ice age, Nat. Geosci., 5, 817, https://doi.org/10.1038/ngeo1588, 2012. a, b
Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M.: Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch, Nature, 420, 162–165, https://doi.org/10.1038/nature01194, 2002. a, b, c
Muratli, J., Chase, Z., Mix, A., and McManus, J.: Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water, Nat. Geosci., 3, 23–26, https://doi.org/10.1038/ngeo715, 2010a. a, b, c
Muratli, J. M., Chase, Z., McManus, J., and Mix, A.: Ice-sheet control of
continental erosion in central and southern Chile (36∘–41∘ S) over the last 30,000 years, Quaternary Sci. Rev., 29, 3230–3239, https://doi.org/10.1016/j.quascirev.2010.06.037, 2010b. a, b, c
Naeher, S., Gilli, A., North, R. P., Hamann, Y., and Schubert, C. J.: Tracing bottom water oxygenation with sedimentary Mn∕Fe ratios in Lake Zurich, Switzerland, Chem. Geol., 352, 125–133, https://doi.org/10.1016/j.chemgeo.2013.06.006, 2013. a, b
Nõges, T.: Relationships between morphometry, geographic location and water quality parameters of European lakes, Hydrobiologia, 633, 33–43, https://doi.org/10.1007/s10750-009-9874-x, 2009. a, b
Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., O'Hara, R., Simpson, G., Solymos, P., Stevens, M., and Wagner, H.: vegan: Community Ecology Package, r package version 2.5-5, available at: https://CRAN.R-project.org/package=vegan (last access: 3 December 2019), 2018. a
Paez, M., Villagrán, C., Stutz, S., Hinojosa, F., and Villa, R.: Vegetation and pollen dispersal in the subtropical-temperate climatic transition of Chile and Argentina, Rev. Palaeobot. Palyno., 96, 169–181, https://doi.org/10.1016/S0034-6667(96)00039-5, 1997. a
Pecoraino, G., D'Alessandro, W., and Inguaggiato, S.: The Other Side of the Coin: Geochemistry of Alkaline Lakes in Volcanic Areas, in: Volcanic Lakes. Advances in Volcanology, edited by: Rouwet, D., Christenson, B., Tassi, F., ND Vandemeulebrouck, J., Springer, Berlin, Heidelberg, 219–237, https://doi.org/10.1007/978-3-642-36833-2_9, 2015. a
Pittock, A. B.: Patterns of Climatic Variation in Argentina and Chile – I Precipitation, 1931–60, Mon. Weather Rev., 108, 1347–1361, https://doi.org/10.1175/1520-0493(1980)108<1347:POCVIA>2.0.CO;2, 1980. a
Pueyo, J. J., Sáez, A., Giralt, S., Valero-Garcés, B. L., Moreno, A., Bao, R., Schwalb, A., Herrera, C., Klosowska, B., and Taberner, C.: Carbonate and organic matter sedimentation and isotopic signatures in Lake Chungará, Chilean Altiplano, during the last 12.3 kyr, Palaeogeogr. Palaeocl., 307, 339–355, https://doi.org/10.1016/j.palaeo.2011.05.036, 2011. a, b
QGIS Development Team: QGIS Geographic Information System, Open Source Geospatial Foundation, available at: http://qgis.org (last access: 3 December 2019), 2009. a
Quade, J., Rech, J. A., Betancourt, J. L., Latorre, C., Quade, B., Rylander, K. A., and Fisher, T.: Paleowetlands and regional climate change in the central Atacama Desert, northern Chile, Quaternary Res., 69, 343–360, https://doi.org/10.1016/j.yqres.2008.01.003, 2008. a
Quayle, W. C., Peck, L. S., Peat, H., Ellis-Evans, J. C., and Harrigan, P. R.: Extreme Responses to Climate Change in Antarctic Lakes, Science, 295, 645–645, https://doi.org/10.1126/science.1064074, 2002. a
Quintana, J. M. and Aceituno, P.: Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43∘ S, Atmósfera, 25, 1–22, available at:
http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0187-62362012000100001&lng=es&nrm=iso&tlng=en
(last access: 3 December 2019), 2012. a
R Core Team: R: A Language and Environment for Statistical Computing, available at: https://www.R-project.org/ (last access: 3 December 2019), 2018. a
Rodbell, D. T., Seltzer, G. O., Anderson, D. M., Abbott, M. B., Enfield, D. B., and Newman, J. H.: An ∼ 15,000-Year Record of El Niño-Driven
Alluviation in Southwestern Ecuador, Science, 283, 516–520, https://doi.org/10.1126/science.283.5401.516, 1999. a
Rull, V., Cañellas-Boltà, N., Margalef, O., Sáez, A., Pla-Rabes, S., and Giralt, S.: Late Holocene vegetation dynamics and deforestation in Rano Aroi: Implications for Easter Island's ecological and cultural history, Quaternary Sci. Rev., 126, 219–226, https://doi.org/10.1016/j.quascirev.2015.09.008, 2015. a
Rutllant, J. and Fuenzalida, H.: Synoptic aspects of the central chile rainfall variability associated with the southern oscillation, International J. Climatol., 11, 63–76, https://doi.org/10.1002/joc.3370110105, 1991. a
Sáez, A., Valero-Garcés, B. L., Moreno, A., Bao, R., Pueyo, J. J., González-Sampériz, P., Giralt, S., Taberner, C., Herrera, C., and Gibert, R. O.: Lacustrine sedimentation in active volcanic settings: the Late Quaternary depositional evolution of Lake Chungará (northern Chile), Sedimentology, 54, 1191–1222, https://doi.org/10.1111/j.1365-3091.2007.00878.x, 2007. a, b, c
Schittek, K., Forbriger, M., Mächtle, B., Schäbitz, F., Wennrich, V., Reindel, M., and Eitel, B.: Holocene environmental changes in the highlands of the southern Peruvian Andes (14∘ S) and their impact on pre-Columbian cultures, Clim. Past, 11, 27–44, https://doi.org/10.5194/cp-11-27-2015, 2015. a
Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics of the intertropical convergence zone, Nature, 513, 45–53, https://doi.org/10.1038/nature13636, 2014. a
Schnurrenberger, D., Russell, J., and Kelts, K.: Classification of lacustrine sediments based on sedimentary components, J. Paleolimnol., 29, 141–154, https://doi.org/10.1023/A:1023270324800, 2003. a
Simpson, G.: Analogue Methods in Palaeoecology: Using the analogue Package, J. Stat. Softw., 22, 1–29, https://doi.org/10.18637/jss.v022.i02, 2007. a
Singer, B., Hildreth, W., and Vincze, Y.: 40Ar/39Ar evidence for early deglaciation of the central Chilean Andes, Geophys. Res. Lett., 27, 1663–1666, https://doi.org/10.1029/1999GL011065, 2000. a, b
Singer, B. S., Andersen, N. L., Le Mével, H., Feigl, K. L., DeMets, C., Tikoff, B., Thurber, C. H., Jicha, B. R., Cardona, C., Córdova, L., Fernando., G., J. Unsworth, M., Williams-Jones, G., Miller, C., Fierstein, J., Hildreth, W., and Vazquez, J.: Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile, GSA Today, 24, 4–10, https://doi.org/10.1130/GSATG216A.1, 2014. a
Singer, B. S., Le Mével, H., Licciardi, J. M., Córdova, L., Tikoff, B., Garibaldi, N., Andersen, N. L., Diefenbach, A. K., and Feigl, K. L.: Geomorphic expression of rapid Holocene silicic magma reservoir growth beneath Laguna del Maule, Chile, Science Advances, 4, eaat1513, https://doi.org/10.1126/sciadv.aat1513, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Smith, W. H. F. and Sandwell, D. T.: Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings, Science, 277, 1956–1962, https://doi.org/10.1126/science.277.5334.1956, 1997. a
Smol, J. P. and Douglas, M. S.: From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments, Front.
Ecol. Environ., 5, 466–474, https://doi.org/10.1890/060162, 2007. a
Stansell, N. D., Rodbell, D. T., Abbott, M. B., and Mark, B. G.: Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru, Quaternary Sci. Rev., 70, 1–14, https://doi.org/10.1016/j.quascirev.2013.03.003, 2013. a, b
Stefer, S., Moernaut, J., Melnick, D., Echtler, H. P., Arz, H. W., Lamy, F., De Batist, M., Oncken, O., and Haug, G. H.: Forearc uplift rates deduced from sediment cores of two coastal lakes in south-central Chile, Tectonophysics, 495, 129–143, https://doi.org/10.1016/j.tecto.2009.05.006, 2010. a
Stocker, T. F., Dahe, Q., Plattner, G.-K., et al.: Climate change 2013: The physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, vol. 1535, Cambridge university press, Cambridge, New York, 2013. a
Sulerzhitzky, L. D.: Radiocarbon dating of volcanoes, Bulletin Volcanologique, 35, 85–94, https://doi.org/10.1007/BF02596809, 1971. a
Tipping, E., Woof, C., and Cooke, D.: Iron oxide from a seasonally anoxic lake, Geochim. Cosmochim. Ac., 45, 1411–1419, https://doi.org/10.1016/0016-7037(81)90275-1, 1981. a
Urrutia, R., Araneda, A., Torres, L., Cruces, F., Vivero, C., Torrejón, F., Barra, R., Fagel, N., and Scharf, B.: Late Holocene environmental changes inferred from diatom, chironomid, and pollen assemblages in an Andean lake in Central Chile, Lake Laja (36∘ S), Hydrobiologia, 648, 207–225, https://doi.org/10.1007/s10750-010-0264-1, 2010. a
Valero-Garcés, B. L., Grosjean, M., Schwalb, A., Geyh, M., Messerli, B., and Kelts, K.: Limnogeology of Laguna Miscanti: evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile), J. Paleolimnol., 16, 1–21, https://doi.org/10.1007/BF00173268, 1996. a, b, c, d
Valero-Garcés, B. L., Jenny, B., Rondanelli, M., Delgado-Huertas, A., Burns, S. J., Veit, H., and Moreno, A.: Palaeohydrology of Laguna de Tagua Tagua (34∘30′ S) and moisture fluctuations in Central Chile for the last 46000 yr, J. Quaternary Sci., 20, 625–641, https://doi.org/10.1002/jqs.988, 2005. a, b, c, d
van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G., and Kroon, D.: Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia, Earth Planet. Sc. Lett., 275, 54–60, https://doi.org/10.1016/j.epsl.2008.07.060, 2008. a
Van Daele, M., Moernaut, J., Doom, L., Boes, E., Fontijn, K., Heirman, K., Vandoorne, W., Hebbeln, D., Pino, M., Urrutia, R., Brümmer, R., and De Batist, M.: A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology, Sedimentology, 62, 1466–1496, https://doi.org/10.1111/sed.12193, 2015. a, b
Van Daele, M., Araya-Cornejo, C., Pille, T., Vanneste, K., Moernaut, J., Schmidt, S., Kempf, P., Meyer, I., and Cisternas, M.: Distinguishing intraplate from megathrust earthquakes using lacustrine turbidites, Geology, 47, 127–130, https://doi.org/10.1130/G45662.1, 2019. a
Viale, M. and Garreaud, R.: Summer Precipitation Events over the Western Slope of the Subtropical Andes, Mon. Weather Rev., 142, 1074–1092, https://doi.org/10.1175/MWR-D-13-00259.1, 2013. a
Villalba, R., Grosjean, M., and Kiefer, T.: Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): State of the art and perspectives, Palaeogeogr. Palaeocl., 281, 175–179, https://doi.org/10.1016/j.palaeo.2009.08.007, 2009. a
Villa-Martínez, R. P.: Historia del clima y la vegetación de chile central durante el holoceno: una reconstrucción basada en el análisis de polen, sedimentos, microalgas y carbón, PhD thesis, Universidad de Chile, 350 pp., 2002. a
Villa-Martínez, R., Villagrán, C., and Jenny, B.: The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high resolution pollen record from Laguna Aculeo (34∘ S), Quaternary Res., 60, 284–293, https://doi.org/10.1016/j.yqres.2003.07.007, 2003. a, b
von Gunten, L., Grosjean, M., Rein, B., Urrutia, R., and Appleby, P.: A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850, The Holocene, 19, 873–881, https://doi.org/10.1177/0959683609336573, 2009. a
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid-to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
a
Wersin, P., Höhener, P., Giovanoli, R., and Stumm, W.: Early diagenetic influences on iron transformations in a freshwater lake sediment, Chem. Geol., 90, 233–252, https://doi.org/10.1016/0009-2541(91)90102-W, 1991. a
Wespestad, C. E., Thurber, C. H., Andersen, N. L., Singer, B. S., Cardona, C., Zeng, X., Bennington, N. L., Keranen, K., Peterson, D. E., Cordell, D., Unsworth, M., Miller, C., and Williams-Jones, G.: Magma Reservoir Below Laguna del Maule Volcanic Field, Chile, Imaged With Surface-Wave Tomography, J. Geophys. Res.-Sol. Ea., 124, 2858–2872, https://doi.org/10.1029/2018JB016485, 2019. a
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, available at: https://ggplot2.tidyverse.org (last access: 3 December 2019), 2016. a
Wickham, H., Francois, R., Henry, L., and Müller, K.: dplyr: A Grammar of Data Manipulation, R package version 0.8.3, available at: https://CRAN.R-project.org/package=dplyr (last access: 3 December 2019), 2018. a
Wiemer, G., Moernaut, J., Stark, N., Kempf, P., De Batist, M., Pino, M., Urrutia, R., de Guevara, B. L., Strasser, M., and Kopf, A.: The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile, Int. J. Earth Sci., 104, 1439–1457, https://doi.org/10.1007/s00531-015-1144-8, 2015. a
Wils, K., Van Daele, M., Lastras, G., Kissel, C., Lamy, F., and Siani, G.: Holocene Event Record of Aysén Fjord (Chilean Patagonia): An Interplay of Volcanic Eruptions and Crustal and Megathrust Earthquakes, J. Geophys. Res.-Sol. Ea., 123, 324–343, https://doi.org/10.1002/2017JB014573, 2018. a
Zhang, Z., Leduc, G., and Sachs, J. P.: El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands, Earth Planet. Sc. Lett., 404, 420–434, https://doi.org/10.1016/j.epsl.2014.07.013, 2014. a, b
Short summary
The manuscript identifies the main volcanic phases in the Laguna del Maule volcanic field and their impact in the lake basin through the late glacial and Holocene. We show that the bio-productivity and geochemical variabilities in the lake are related with climatic dynamics type ENSO, SPA and SWW and that the main phases are synchronous with the major regional climate changes on millennial timescales.
The manuscript identifies the main volcanic phases in the Laguna del Maule volcanic field and...