Articles | Volume 16, issue 3
https://doi.org/10.5194/cp-16-1043-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1043-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe
Jeanne Rezsöhazy
CORRESPONDING AUTHOR
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM), Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
Aix Marseille University, CNRS, IRD, INRA, College de France, CEREGE, Aix-en-Provence, France
Hugues Goosse
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM), Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
Joël Guiot
Aix Marseille University, CNRS, IRD, INRA, College de France, CEREGE, Aix-en-Provence, France
Fabio Gennaretti
Institut de recherche sur les forêts, UQAT, Rouyn-Noranda, Québec, J9X 5E4, Canada
Etienne Boucher
Université du Québec à Montréal, Département de géographie, GEOTOP and Centre d'études nordiques, Montréal, H2X 3R9, Canada
Frédéric André
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Croix du Sud 2, L7.05.09, 1348 Louvain-la-Neuve, Belgium
Mathieu Jonard
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Croix du Sud 2, L7.05.09, 1348 Louvain-la-Neuve, Belgium
Related authors
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Emile Neimry, Hugues Goosse, and Mathieu Jonard
EGUsphere, https://doi.org/10.5194/egusphere-2025-5490, https://doi.org/10.5194/egusphere-2025-5490, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study examines 180 years of drought variability in western Central Europe and its links to atmospheric circulation using three evaluated reanalysis datasets. Results reveal strong multidecadal variability, winter wetting, summer drying, and a growing influence of atmospheric evaporative demand. Four circulation patterns are identified, with recent droughts increasingly tied to the European High, marking a shift toward dynamics that intensify drought under climate change.
Joel Guiot, Nicolas Bernigaud, Alberte Bondeau, Laurent Bouby, and Wolfgang Cramer
Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, https://doi.org/10.5194/cp-19-1219-2023, 2023
Short summary
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
Arthur Guignabert, Quentin Ponette, Frédéric André, Christian Messier, Philippe Nolet, and Mathieu Jonard
Geosci. Model Dev., 16, 1661–1682, https://doi.org/10.5194/gmd-16-1661-2023, https://doi.org/10.5194/gmd-16-1661-2023, 2023
Short summary
Short summary
Spatially explicit and process-based models are useful to test innovative forestry practices under changing and uncertain conditions. However, their larger use is often limited by the restricted range of species and stand structures they can reliably account for. We therefore calibrated and evaluated such a model, HETEROFOR, for 23 species across southern Québec. Our results showed that the model is robust and can predict accurately both individual tree growth and stand dynamics in this region.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Cited articles
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E. R.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn,
T. J., Zhang, P., Rydval, M., Schneider, L., Schurer, A., Wiles, G., and
Zorita, E.: Last millennium Northern Hemisphere summer temperatures from
tree rings: Part II, spatially resolved reconstructions, Quaternary Sci.
Rev., 163, 1–22, https://doi.org/10.1016/j.quascirev.2017.02.020, 2017. a, b
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer,
M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati, C.,
Bouriaud, O., Ciais, P., and Frank, D.: Site- and species-specific responses
of forest growth to climate across the European continent, Global Ecol.
Biogeogr., 22, 706–717, https://doi.org/10.1111/geb.12023, 2013. a, b, c
Boucher, É., Guiot, J., Hatté, C., Daux, V., Danis, P.-A., and Dussouillez, P.: An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations, Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, 2014. a, b, c
Breitenmoser, P., Brönnimann, S., and Frank, D.: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies, Clim. Past, 10, 437–449, https://doi.org/10.5194/cp-10-437-2014, 2014. a, b, c
Briffa, K. R., Schweingruber, F. H., Jones, P. D., Osborn, T. J., Harris,
I. C., Shiyatov, S. G., Vaganov, E. A., and Grudd, H.: Trees tell of past
climates: but are they speaking less clearly today?, Philos.
T. R. Soc. Lond. B,
353, 65–73, https://doi.org/10.1098/rstb.1998.0191, 1998. a
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Harris, I. C., Jones,
P. D., Shiyatov, S. G., and Vaganov, E. A.: Low-frequency temperature
variations from a northern tree ring density network, J. Geophys.
Res.-Atmos., 106, 2929–2941, https://doi.org/10.1029/2000JD900617, 2001. a
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet,
V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J.,
and Esper, J.: 2500 Years of European Climate Variability and Human
Susceptibility, Science, 331, 578–582, https://doi.org/10.1126/science.1197175,
2011. a, b
Buras, A.: A comment on the expressed population signal, Dendrochronologia,
44, 130–132, https://doi.org/10.1016/j.dendro.2017.03.005, 2017. a
Cook, E. R. and Kairiukstis, L.: Methods of dendrochronology: Applications in
the Environmental Sciences, Kluwer Academic, Boston,
https://doi.org/10.1016/0048-9697(91)90076-q, 1990. a
Cook, E. R., Meko, D. M., Stahle, D. W., and Cleaveland, M. K.: Drought
reconstructions for the continental United States, J. Climate, 12,
1145–1163, https://doi.org/10.1175/1520-0442(1999)012{<}1145:drftcu{>}2.0.co;2, 1999. a
D'Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P.: On the 'Divergence
Problem' in Northern Forests: A review of the tree-ring evidence and possible
causes, Global Planet. Change, 60, 289–305,
https://doi.org/10.1016/j.gloplacha.2007.03.004, 2008. a
Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility
of proxy system models for estimating climate states over common era,
J. Adv. Model. Earth Sy., 8, 1164–1179,
https://doi.org/10.1002/2016MS000677, 2016. a, b, c
Duchesne, L., Houle, D., Ouimet, R., Caldwell, L., Gloor, M., and Brienen, R.:
Large apparent growth increases in boreal forests inferred from tree-rings
are an artefact of sampling biases, Sci. Rep., 9, 1–9,
https://doi.org/10.1038/s41598-019-43243-1, 2019. a, b
Erni, S., Arseneault, D., Parisien, M. A., and Bégin, Y.: Spatial and
temporal dimensions of fire activity in the fire-prone eastern Canadian
taiga, Glob. Change Biol., 23, 1152–1166, https://doi.org/10.1111/gcb.13461, 2017. a
Esper, J., George, S. S., Anchukaitis, K., D'Arrigo, R., Ljungqvist, F.,
Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., and Büntgen,
U.: Large-scale, millennial-length temperature reconstructions from
tree-rings, Dendrochronologia, 50, 81–90,
https://doi.org/10.1016/j.dendro.2018.06.001,
2018. a
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of proxy system modeling in high resolution paleoclimatology,
Quaternary Sci. Rev., 76, 16–28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013. a, b
Fang, M. and Li, X.: An Artificial Neural Networks-Based Tree Ring Width Proxy
System Model for Paleoclimate Data Assimilation, J. Adv. Model. Earth Sy., 11, 892–904, https://doi.org/10.1029/2018MS001525, 2019. a
FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.2). FAO,
Rome, Italy and IIASA, Laxenburg, Austria, 2012. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, USA., https://doi.org/10.1017/CBO9781107415324,
2013. a
Franke, J., Brönnimann, S., Bhend, J., and Brugnara, Y.: A monthly
global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past
climatic variations, Sci. Data, 4, 1–19, https://doi.org/10.1038/sdata.2017.76,
2017. a
Fritts, H. C.: Reconstructing large-scale climatic patterns from tree-ring
data: A diagnostic analysis, University of Arizona Press, Tucson, Arizona,
USA, 1991. a
Gea-Izquierdo, G., Guibal, F., Joffre, R., Ourcival, J. M., Simioni, G., and
Guiot, J.: Modelling the climatic drivers determining photosynthesis and
carbon allocation in evergreen Mediterranean forests using multiproxy long
time series, Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015,
2015. a, b, c, d, e
Gea-Izquierdo, G., Nicault, A., Battipaglia, G., Dorado-Liñán, I.,
Gutiérrez, E., Ribas, M., and Guiot, J.: Risky future for
Mediterranean forests unless they undergo extreme carbon fertilization,
Glob. Change Biol., 23, 2915–2927, https://doi.org/10.1111/gcb.13597, 2017. a
Gennaretti, F.: MAIDEN ecophysiological forest model, figshare, Software, https://doi.org/10.6084/m9.figshare.5446435.v1, 2017. a, b
Gennaretti, F., Arseneault, D., and Bégin, Y.: Millennial
disturbance-driven forest stand dynamics in the Eastern Canadian taiga
reconstructed from subfossil logs, J. Ecol., 102, 1612–1622,
https://doi.org/10.1111/1365-2745.12315, 2014a. a, b
Gennaretti, F., Arseneault, D., Nicault, A., Perreault, L., and Begin, Y.:
Volcano-induced regime shifts in millennial tree-ring chronologies from
northeastern North America, P. Natl. Acad. Sci. USA,
111, 10077–10082, https://doi.org/10.1073/pnas.1324220111,
2014b. a, b
Gennaretti, F., Gea-Izquierdo, G., Boucher, E., Berninger, F., Arseneault, D., and Guiot, J.: Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest, Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Gennaretti, F., Boucher, E., Nicault, A., Gea-Izquierdo, G., Arseneault, D.,
Berninger, F., Savard, M. M., Bégin, C., and Guiot, J.:
Underestimation of the Tambora effects in North American taiga ecosystems,
Environ. Res. Lett., 13, 3, https://doi.org/10.1088/1748-9326/aaac0c,
2018. a
Goosse, H.: An additional step toward comprehensive paleoclimate reanalyses,
J. Adv. Model. Earth Sy., 6, 1501–1503,
https://doi.org/10.1002/2016MS000739, 2016. a
Goosse, H., Crespin, E., Dubinkina, S., Loutre, M. F., Mann, M. E., Renssen,
H., Sallaz-Damaz, Y., and Shindell, D.: The role of forcing and internal
dynamics in explaining the “Medieval Climate Anomaly”, Clim. Dynam., 39,
2847–2866, https://doi.org/10.1007/s00382-012-1297-0, 2012. a
Guiot, J., Boucher, E., and Gea-Izquierdo, G.: Process models and model-data
fusion in dendroecology, Front. Ecol. Evol., 2, 1–12,
https://doi.org/10.3389/fevo.2014.00052,
2014. a, b, c, d
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014. a
Hughes, M. K., Swetnam, T. W., and Diaz, H. F.: Dendroclimatology: Progress
and Prospects, vol. 11, Springer, New York, 2011. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a, b
Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., and Papadopol, P.: Development and testing of
Canada-wide interpolated spatial models of daily minimum-maximum temperature
and precipitation for 1961–2003, J. Appl. Meteorol.
Clim., 48, 725–741, https://doi.org/10.1175/2008JAMC1979.1, 2009. a, b, c, d, e
Johnson, S. E. and Abrams, M. D.: Age class, longevity and growth rate
relationships: Protracted growth increases in old trees in the eastern United
States, Tree Physiol., 29, 1317–1328, https://doi.org/10.1093/treephys/tpp068,
2009. a, b
Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.:
High-resolution palaeoclimatic records for the last millennium, Holocene, 4, 455–471, 1998. a
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., Van Ommen, T. D.,
Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E.,
Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J.,
Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M.,
Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope,
A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution
palaeoclimatology of the last millennium: A review of current status and
future prospects, Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009. a
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, New York, USA, 2003. a
Lavergne, A., Daux, V., Villalba, R., and Barichivich, J.: Temporal changes in
climatic limitation of tree-growth at upper treeline forests: Contrasted
responses along the west-to-east humidity gradient in Northern Patagonia,
Dendrochronologia, 36, 49–59, https://doi.org/10.1016/j.dendro.2015.09.001, 2015. a
Lavergne, A., Gennaretti, F., Risi, C., Daux, V., Boucher, E., Savard, M. M., Naulier, M., Villalba, R., BÉgin, C., and Guiot, J.: Modelling tree ring cellulose δ118O variations in two temperature-sensitive tree species from North and South America, Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, 2017. a
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern Hemisphere
temperatures during the past millennium, Geophys. Res. Lett., 26, 759–762,
1999. a
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K.,
Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and
global surface temperature variations over the past two millennia,
P. Natl. Acad. Sci. USA, 105, 13252–13257,
https://doi.org/10.1073/pnas.0805721105, 2008. a
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K.,
Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global Signatures and
Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1260, https://doi.org/10.1126/science.1177303, 2009. a
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An
overview of the global historical climatology network-daily database,
J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/JTECH-D-11-00103.1, 2012b. a, b, c
Misson, L.: MAIDEN: a model for analyzing ecosystem processes in
dendroecology, Can. J. Forest Res., 34, 874–887,
https://doi.org/10.1139/x03-252,
2004. a, b, c, d
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, USA, https://doi.org/10.1017/CBO9781107415324.018, 2013. a
Nicault, A., Boucher, E., Tapsoba, D., Arseneault, D., Berninger, F.,
Bégin, C., DesGranges, J., Guiot, J., Marion, J., Wicha, S., and
Bégin, Y.: Spatial analysis of black spruce (Picea mariana (Mill.) B.S.P.) radial growth response to climate in northern Québec –
Labrador Peninsula, Canada, Can. J. Forest Res., 45,
343–352, https://doi.org/10.1139/cjfr-2014-0080, 2014. a, b, c, d, e, f, g, h, i, j, k, l
PAGES 2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Sci. Data, 4, 1–33, https://doi.org/10.1038/sdata.2017.88, 2017. a, b, c, d
Payette, S., Filion, L., and Delwaide, A.: Spatially explicit fire-climate
history of the boreal forest-tundra (Eastern Canada) over the last 2000
years, Philos. T. Roy. Soc. B, 363, 2301–2316, https://doi.org/10.1098/rstb.2007.2201, 2008. a
Seftigen, K., Frank, D. C., Björklund, J., Babst, F., and Poulter, B.:
The climatic drivers of normalized difference vegetation index and
tree-ring-based estimates of forest productivity are spatially coherent but
temporally decoupled in Northern Hemispheric forests, Global Ecol. Biogeogr., 27, 1352–1365, https://doi.org/10.1111/geb.12802, 2018. a, b
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1,
2006 (data available at: http://hydrology.princeton.edu/data.php, last access: 4 January 2019).
a, b, c
St. George, S. and Esper, J.: Concord and discord among Northern Hemisphere
paleotemperature reconstructions from tree rings, Quaternary Sci.
Rev., 203, 278–281, https://doi.org/10.1016/j.quascirev.2018.11.013, 2019. a
Steiger, N. J. and Smerdon, J. E.: A pseudoproxy assessment of data assimilation for reconstructing the atmosphereocean dynamics of hydroclimate extremes, Clim. Past, 13, 1435–1449, https://doi.org/10.5194/cp-13-1435-2017, 2017. a
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P.,
Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium
Reanalysis with an expanded proxy database and seasonal proxy modeling,
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019. a
Tolwinski-Ward, S. E., Anchukaitis, K. J., and Evans, M. N.: Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width, Clim. Past, 9, 1481–1493, https://doi.org/10.5194/cp-9-1481-2013, 2013. a, b
University of East Anglia Climatic Research Unit, Harris, I. C., and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016), Centre for Environmental Data Analysis, https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0, 2017.
Wilson, R. and Elling, W.: Temporal instability in tree-growth/climate
response in the Lower Bavarian Forest region: Implications for dendroclimatic
reconstruction, Trees-Struct. Funct., 18, 19–28,
https://doi.org/10.1007/s00468-003-0273-z, 2004. a
Wilson, R., D'Arrigo, R., Buckley, B., Büntgen, U., Esper, J., Frank, D.,
Luckman, B., Payette, S., Vose, R., and Youngblut, D.: A matter of
divergence: Tracking recent warming at hemispheric scales using tree ring
data, J. Geophys. Res.-Atmos., 112, 1–17,
https://doi.org/10.1029/2006JD008318, 2007. a
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn,
T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and
Zorita, E.: Last millennium northern hemisphere summer temperatures from
tree rings: Part I: The long term context, Quaternary Sci. Rev., 134,
1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016. a, b
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Tree rings are the main data source for climate reconstructions over the last millennium....