Articles | Volume 16, issue 3
https://doi.org/10.5194/cp-16-1043-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1043-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe
Jeanne Rezsöhazy
CORRESPONDING AUTHOR
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM), Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
Aix Marseille University, CNRS, IRD, INRA, College de France, CEREGE, Aix-en-Provence, France
Hugues Goosse
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM), Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
Joël Guiot
Aix Marseille University, CNRS, IRD, INRA, College de France, CEREGE, Aix-en-Provence, France
Fabio Gennaretti
Institut de recherche sur les forêts, UQAT, Rouyn-Noranda, Québec, J9X 5E4, Canada
Etienne Boucher
Université du Québec à Montréal, Département de géographie, GEOTOP and Centre d'études nordiques, Montréal, H2X 3R9, Canada
Frédéric André
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Croix du Sud 2, L7.05.09, 1348 Louvain-la-Neuve, Belgium
Mathieu Jonard
Université catholique de Louvain (UCLouvain), Earth and Life Institute (ELI), Croix du Sud 2, L7.05.09, 1348 Louvain-la-Neuve, Belgium
Related authors
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Joel Guiot, Nicolas Bernigaud, Alberte Bondeau, Laurent Bouby, and Wolfgang Cramer
Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, https://doi.org/10.5194/cp-19-1219-2023, 2023
Short summary
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
Arthur Guignabert, Quentin Ponette, Frédéric André, Christian Messier, Philippe Nolet, and Mathieu Jonard
Geosci. Model Dev., 16, 1661–1682, https://doi.org/10.5194/gmd-16-1661-2023, https://doi.org/10.5194/gmd-16-1661-2023, 2023
Short summary
Short summary
Spatially explicit and process-based models are useful to test innovative forestry practices under changing and uncertain conditions. However, their larger use is often limited by the restricted range of species and stand structures they can reliably account for. We therefore calibrated and evaluated such a model, HETEROFOR, for 23 species across southern Québec. Our results showed that the model is robust and can predict accurately both individual tree growth and stand dynamics in this region.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020, https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Short summary
Given their key role in the simulation of climate impacts on tree growth, phenological and water balance processes must be integrated in models simulating forest dynamics under a changing environment. Here, we describe these processes integrated in HETEROFOR, a model accounting simultaneously for the functional, structural and spatial complexity to explore the forest response to forestry practices. The model evaluation using phenological and soil water content observations is quite promising.
Mathieu Jonard, Frédéric André, François de Coligny, Louis de Wergifosse, Nicolas Beudez, Hendrik Davi, Gauthier Ligot, Quentin Ponette, and Caroline Vincke
Geosci. Model Dev., 13, 905–935, https://doi.org/10.5194/gmd-13-905-2020, https://doi.org/10.5194/gmd-13-905-2020, 2020
Short summary
Short summary
To explore the forest response to new forestry practices under a changing environment, one needs models combining a process-based approach with a detailed spatial representation, which is very rare. We decided to develop our own model according to a spatially explicit approach describing individual tree growth based on resource sharing (light, water and nutrients). A first evaluation showed that HETEROFOR predicts well individual radial growth and is able to reproduce size–growth relationships.
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019, https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Short summary
In a context of global changes, modeling and predicting the dynamics of soil carbon stocks in forest ecosystems are vital but challenging. Yasso07 is considered to be one of the most promising models for such a purpose. We examine the accuracy of its prediction of soil carbon dynamics over the whole French metropolitan territory at a decennial timescale. We revealed how the bottleneck in soil carbon modeling is linked with the lack of knowledge on soil carbon quality and fine-root litter.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
Marta Camino-Serrano, Elisabeth Graf Pannatier, Sara Vicca, Sebastiaan Luyssaert, Mathieu Jonard, Philippe Ciais, Bertrand Guenet, Bert Gielen, Josep Peñuelas, Jordi Sardans, Peter Waldner, Sophia Etzold, Guia Cecchini, Nicholas Clarke, Zoran Galić, Laure Gandois, Karin Hansen, Jim Johnson, Uwe Klinck, Zora Lachmanová, Antti-Jussi Lindroos, Henning Meesenburg, Tiina M. Nieminen, Tanja G. M. Sanders, Kasia Sawicka, Walter Seidling, Anne Thimonier, Elena Vanguelova, Arne Verstraeten, Lars Vesterdal, and Ivan A. Janssens
Biogeosciences, 13, 5567–5585, https://doi.org/10.5194/bg-13-5567-2016, https://doi.org/10.5194/bg-13-5567-2016, 2016
Short summary
Short summary
We investigated the long-term trends of dissolved organic carbon (DOC) in soil solution and the drivers of changes in over 100 forest monitoring plots across Europe. An overall increasing trend was detected in the organic layers, but no overall trend was found in the mineral horizons. There are strong interactions between controls acting at local and regional scales. Our findings are relevant for researchers focusing on the link between terrestrial and aquatic ecosystems and for C-cycle models.
M. Naulier, M. M. Savard, C. Bégin, F. Gennaretti, D. Arseneault, J. Marion, A. Nicault, and Y. Bégin
Clim. Past, 11, 1153–1164, https://doi.org/10.5194/cp-11-1153-2015, https://doi.org/10.5194/cp-11-1153-2015, 2015
Short summary
Short summary
This paper presents a millennial δ18O series and the reconstruction of the maximal temperature. The maximal replication and annual resolution have been obtained by using cohort sampling method. Three contrasted climatic periods have been identified: the medieval warm period (~997-1250; the warmest), the little ice age (~1450-1880) and the modern period (1970-2000) that is one of the fastest warming over the last millennium.
G. Gea-Izquierdo, F. Guibal, R. Joffre, J. M. Ourcival, G. Simioni, and J. Guiot
Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015, https://doi.org/10.5194/bg-12-3695-2015, 2015
Short summary
Short summary
We developed a process-based model for evergreen Mediterranean forests. We used multiproxy data including eddy covariance CO2 flux and annual growth dendrochronological time series. The model explicitly takes into account the influence of climatic variability to calculate photosynthesis and carbon allocation. We analyzed long-time acclimation processes and climatic trade-offs between the C-source and the C-sink. There is much potentiality to apply the model at a larger scale.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
Cited articles
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E. R.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn,
T. J., Zhang, P., Rydval, M., Schneider, L., Schurer, A., Wiles, G., and
Zorita, E.: Last millennium Northern Hemisphere summer temperatures from
tree rings: Part II, spatially resolved reconstructions, Quaternary Sci.
Rev., 163, 1–22, https://doi.org/10.1016/j.quascirev.2017.02.020, 2017. a, b
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer,
M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati, C.,
Bouriaud, O., Ciais, P., and Frank, D.: Site- and species-specific responses
of forest growth to climate across the European continent, Global Ecol.
Biogeogr., 22, 706–717, https://doi.org/10.1111/geb.12023, 2013. a, b, c
Boucher, É., Guiot, J., Hatté, C., Daux, V., Danis, P.-A., and Dussouillez, P.: An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations, Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, 2014. a, b, c
Breitenmoser, P., Brönnimann, S., and Frank, D.: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies, Clim. Past, 10, 437–449, https://doi.org/10.5194/cp-10-437-2014, 2014. a, b, c
Briffa, K. R., Schweingruber, F. H., Jones, P. D., Osborn, T. J., Harris,
I. C., Shiyatov, S. G., Vaganov, E. A., and Grudd, H.: Trees tell of past
climates: but are they speaking less clearly today?, Philos.
T. R. Soc. Lond. B,
353, 65–73, https://doi.org/10.1098/rstb.1998.0191, 1998. a
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Harris, I. C., Jones,
P. D., Shiyatov, S. G., and Vaganov, E. A.: Low-frequency temperature
variations from a northern tree ring density network, J. Geophys.
Res.-Atmos., 106, 2929–2941, https://doi.org/10.1029/2000JD900617, 2001. a
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet,
V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J.,
and Esper, J.: 2500 Years of European Climate Variability and Human
Susceptibility, Science, 331, 578–582, https://doi.org/10.1126/science.1197175,
2011. a, b
Buras, A.: A comment on the expressed population signal, Dendrochronologia,
44, 130–132, https://doi.org/10.1016/j.dendro.2017.03.005, 2017. a
Cook, E. R. and Kairiukstis, L.: Methods of dendrochronology: Applications in
the Environmental Sciences, Kluwer Academic, Boston,
https://doi.org/10.1016/0048-9697(91)90076-q, 1990. a
Cook, E. R., Meko, D. M., Stahle, D. W., and Cleaveland, M. K.: Drought
reconstructions for the continental United States, J. Climate, 12,
1145–1163, https://doi.org/10.1175/1520-0442(1999)012{<}1145:drftcu{>}2.0.co;2, 1999. a
D'Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P.: On the 'Divergence
Problem' in Northern Forests: A review of the tree-ring evidence and possible
causes, Global Planet. Change, 60, 289–305,
https://doi.org/10.1016/j.gloplacha.2007.03.004, 2008. a
Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility
of proxy system models for estimating climate states over common era,
J. Adv. Model. Earth Sy., 8, 1164–1179,
https://doi.org/10.1002/2016MS000677, 2016. a, b, c
Duchesne, L., Houle, D., Ouimet, R., Caldwell, L., Gloor, M., and Brienen, R.:
Large apparent growth increases in boreal forests inferred from tree-rings
are an artefact of sampling biases, Sci. Rep., 9, 1–9,
https://doi.org/10.1038/s41598-019-43243-1, 2019. a, b
Erni, S., Arseneault, D., Parisien, M. A., and Bégin, Y.: Spatial and
temporal dimensions of fire activity in the fire-prone eastern Canadian
taiga, Glob. Change Biol., 23, 1152–1166, https://doi.org/10.1111/gcb.13461, 2017. a
Esper, J., George, S. S., Anchukaitis, K., D'Arrigo, R., Ljungqvist, F.,
Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., and Büntgen,
U.: Large-scale, millennial-length temperature reconstructions from
tree-rings, Dendrochronologia, 50, 81–90,
https://doi.org/10.1016/j.dendro.2018.06.001,
2018. a
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of proxy system modeling in high resolution paleoclimatology,
Quaternary Sci. Rev., 76, 16–28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013. a, b
Fang, M. and Li, X.: An Artificial Neural Networks-Based Tree Ring Width Proxy
System Model for Paleoclimate Data Assimilation, J. Adv. Model. Earth Sy., 11, 892–904, https://doi.org/10.1029/2018MS001525, 2019. a
FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.2). FAO,
Rome, Italy and IIASA, Laxenburg, Austria, 2012. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, USA., https://doi.org/10.1017/CBO9781107415324,
2013. a
Franke, J., Brönnimann, S., Bhend, J., and Brugnara, Y.: A monthly
global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past
climatic variations, Sci. Data, 4, 1–19, https://doi.org/10.1038/sdata.2017.76,
2017. a
Fritts, H. C.: Reconstructing large-scale climatic patterns from tree-ring
data: A diagnostic analysis, University of Arizona Press, Tucson, Arizona,
USA, 1991. a
Gea-Izquierdo, G., Guibal, F., Joffre, R., Ourcival, J. M., Simioni, G., and
Guiot, J.: Modelling the climatic drivers determining photosynthesis and
carbon allocation in evergreen Mediterranean forests using multiproxy long
time series, Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015,
2015. a, b, c, d, e
Gea-Izquierdo, G., Nicault, A., Battipaglia, G., Dorado-Liñán, I.,
Gutiérrez, E., Ribas, M., and Guiot, J.: Risky future for
Mediterranean forests unless they undergo extreme carbon fertilization,
Glob. Change Biol., 23, 2915–2927, https://doi.org/10.1111/gcb.13597, 2017. a
Gennaretti, F.: MAIDEN ecophysiological forest model, figshare, Software, https://doi.org/10.6084/m9.figshare.5446435.v1, 2017. a, b
Gennaretti, F., Arseneault, D., and Bégin, Y.: Millennial
disturbance-driven forest stand dynamics in the Eastern Canadian taiga
reconstructed from subfossil logs, J. Ecol., 102, 1612–1622,
https://doi.org/10.1111/1365-2745.12315, 2014a. a, b
Gennaretti, F., Arseneault, D., Nicault, A., Perreault, L., and Begin, Y.:
Volcano-induced regime shifts in millennial tree-ring chronologies from
northeastern North America, P. Natl. Acad. Sci. USA,
111, 10077–10082, https://doi.org/10.1073/pnas.1324220111,
2014b. a, b
Gennaretti, F., Gea-Izquierdo, G., Boucher, E., Berninger, F., Arseneault, D., and Guiot, J.: Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest, Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Gennaretti, F., Boucher, E., Nicault, A., Gea-Izquierdo, G., Arseneault, D.,
Berninger, F., Savard, M. M., Bégin, C., and Guiot, J.:
Underestimation of the Tambora effects in North American taiga ecosystems,
Environ. Res. Lett., 13, 3, https://doi.org/10.1088/1748-9326/aaac0c,
2018. a
Goosse, H.: An additional step toward comprehensive paleoclimate reanalyses,
J. Adv. Model. Earth Sy., 6, 1501–1503,
https://doi.org/10.1002/2016MS000739, 2016. a
Goosse, H., Crespin, E., Dubinkina, S., Loutre, M. F., Mann, M. E., Renssen,
H., Sallaz-Damaz, Y., and Shindell, D.: The role of forcing and internal
dynamics in explaining the “Medieval Climate Anomaly”, Clim. Dynam., 39,
2847–2866, https://doi.org/10.1007/s00382-012-1297-0, 2012. a
Guiot, J., Boucher, E., and Gea-Izquierdo, G.: Process models and model-data
fusion in dendroecology, Front. Ecol. Evol., 2, 1–12,
https://doi.org/10.3389/fevo.2014.00052,
2014. a, b, c, d
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014. a
Hughes, M. K., Swetnam, T. W., and Diaz, H. F.: Dendroclimatology: Progress
and Prospects, vol. 11, Springer, New York, 2011. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a, b
Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., and Papadopol, P.: Development and testing of
Canada-wide interpolated spatial models of daily minimum-maximum temperature
and precipitation for 1961–2003, J. Appl. Meteorol.
Clim., 48, 725–741, https://doi.org/10.1175/2008JAMC1979.1, 2009. a, b, c, d, e
Johnson, S. E. and Abrams, M. D.: Age class, longevity and growth rate
relationships: Protracted growth increases in old trees in the eastern United
States, Tree Physiol., 29, 1317–1328, https://doi.org/10.1093/treephys/tpp068,
2009. a, b
Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.:
High-resolution palaeoclimatic records for the last millennium, Holocene, 4, 455–471, 1998. a
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., Van Ommen, T. D.,
Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E.,
Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J.,
Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M.,
Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope,
A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution
palaeoclimatology of the last millennium: A review of current status and
future prospects, Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952, 2009. a
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, New York, USA, 2003. a
Lavergne, A., Daux, V., Villalba, R., and Barichivich, J.: Temporal changes in
climatic limitation of tree-growth at upper treeline forests: Contrasted
responses along the west-to-east humidity gradient in Northern Patagonia,
Dendrochronologia, 36, 49–59, https://doi.org/10.1016/j.dendro.2015.09.001, 2015. a
Lavergne, A., Gennaretti, F., Risi, C., Daux, V., Boucher, E., Savard, M. M., Naulier, M., Villalba, R., BÉgin, C., and Guiot, J.: Modelling tree ring cellulose δ118O variations in two temperature-sensitive tree species from North and South America, Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, 2017. a
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern Hemisphere
temperatures during the past millennium, Geophys. Res. Lett., 26, 759–762,
1999. a
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K.,
Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and
global surface temperature variations over the past two millennia,
P. Natl. Acad. Sci. USA, 105, 13252–13257,
https://doi.org/10.1073/pnas.0805721105, 2008. a
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K.,
Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global Signatures and
Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1260, https://doi.org/10.1126/science.1177303, 2009. a
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An
overview of the global historical climatology network-daily database,
J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/JTECH-D-11-00103.1, 2012b. a, b, c
Misson, L.: MAIDEN: a model for analyzing ecosystem processes in
dendroecology, Can. J. Forest Res., 34, 874–887,
https://doi.org/10.1139/x03-252,
2004. a, b, c, d
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, USA, https://doi.org/10.1017/CBO9781107415324.018, 2013. a
Nicault, A., Boucher, E., Tapsoba, D., Arseneault, D., Berninger, F.,
Bégin, C., DesGranges, J., Guiot, J., Marion, J., Wicha, S., and
Bégin, Y.: Spatial analysis of black spruce (Picea mariana (Mill.) B.S.P.) radial growth response to climate in northern Québec –
Labrador Peninsula, Canada, Can. J. Forest Res., 45,
343–352, https://doi.org/10.1139/cjfr-2014-0080, 2014. a, b, c, d, e, f, g, h, i, j, k, l
PAGES 2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Sci. Data, 4, 1–33, https://doi.org/10.1038/sdata.2017.88, 2017. a, b, c, d
Payette, S., Filion, L., and Delwaide, A.: Spatially explicit fire-climate
history of the boreal forest-tundra (Eastern Canada) over the last 2000
years, Philos. T. Roy. Soc. B, 363, 2301–2316, https://doi.org/10.1098/rstb.2007.2201, 2008. a
Seftigen, K., Frank, D. C., Björklund, J., Babst, F., and Poulter, B.:
The climatic drivers of normalized difference vegetation index and
tree-ring-based estimates of forest productivity are spatially coherent but
temporally decoupled in Northern Hemispheric forests, Global Ecol. Biogeogr., 27, 1352–1365, https://doi.org/10.1111/geb.12802, 2018. a, b
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1,
2006 (data available at: http://hydrology.princeton.edu/data.php, last access: 4 January 2019).
a, b, c
St. George, S. and Esper, J.: Concord and discord among Northern Hemisphere
paleotemperature reconstructions from tree rings, Quaternary Sci.
Rev., 203, 278–281, https://doi.org/10.1016/j.quascirev.2018.11.013, 2019. a
Steiger, N. J. and Smerdon, J. E.: A pseudoproxy assessment of data assimilation for reconstructing the atmosphereocean dynamics of hydroclimate extremes, Clim. Past, 13, 1435–1449, https://doi.org/10.5194/cp-13-1435-2017, 2017. a
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P.,
Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium
Reanalysis with an expanded proxy database and seasonal proxy modeling,
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019. a
Tolwinski-Ward, S. E., Anchukaitis, K. J., and Evans, M. N.: Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width, Clim. Past, 9, 1481–1493, https://doi.org/10.5194/cp-9-1481-2013, 2013. a, b
University of East Anglia Climatic Research Unit, Harris, I. C., and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016), Centre for Environmental Data Analysis, https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0, 2017.
Wilson, R. and Elling, W.: Temporal instability in tree-growth/climate
response in the Lower Bavarian Forest region: Implications for dendroclimatic
reconstruction, Trees-Struct. Funct., 18, 19–28,
https://doi.org/10.1007/s00468-003-0273-z, 2004. a
Wilson, R., D'Arrigo, R., Buckley, B., Büntgen, U., Esper, J., Frank, D.,
Luckman, B., Payette, S., Vose, R., and Youngblut, D.: A matter of
divergence: Tracking recent warming at hemispheric scales using tree ring
data, J. Geophys. Res.-Atmos., 112, 1–17,
https://doi.org/10.1029/2006JD008318, 2007. a
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn,
T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and
Zorita, E.: Last millennium northern hemisphere summer temperatures from
tree rings: Part I: The long term context, Quaternary Sci. Rev., 134,
1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016. a, b
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Tree rings are the main data source for climate reconstructions over the last millennium....